ECE 595, Section 10
 Numerical Simulations
 Lecture 4: NP-hardness

Prof. Peter Bermel

January 14, 2013

Outline

- Recap from Friday
- Class NP
- Non-deterministic Turing machines
- Reducibility
- Cook-Levin theorem
- Coping with NP Hardness

Recap from Friday

- Church-Turing thesis used to demonstrate demonstrate several models of computation:
- Turing machines
- Register machines
- Lambda calculus
- Big-oh notation: DTIME(n2)
- Polynomial complexity: $\mathrm{P}=\mathrm{U}_{c \geq 1} \operatorname{DTIME}\left(n^{c}\right)$,

Examples in \mathbf{P}

- CONNECTED - the set of all connected graphs
- TRIANGLEFREE - the set of all graphs without a triangle
- BIPARTITE - the set of all bipartite (distinct) graphs
- TREE - the set of all trees

Class NP Definition

- Decision problems that can be efficiently verified
- The language L subset $\{0,1\}^{*}$ is in NP if there exists a polynomial $p: N \rightarrow N$ and a polynomial time TM M s.t. for every x :
$-x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)}$
- If $x \in L$ and $u \in\{0,1\}^{p(|x|)}$ satisfies $M(x, u)=1$, then u is a certificate for x

Examples of NP

- Independent set - find a k-size subset of a given graph G^{\prime} s vertices
- Traveling salesman - given a set of n nodes and pairwise distances, find a closed circuit that visits every node once of length no more than k
- Linear/integer programming - given a set of m linear inequalities for n variables, find a set of rational/integer solutions
- Graph isomorphism - given two nxn adjacency matrices M_{1} and M_{2}, decide if they define the same graph
- Composite numbers - decide if number N is prime
- Factoring - for a number N, find a factor M in the interval [L,U]

Relationship of P \& NP

- \mathbf{P} is a subset of $\mathbf{N P}$
- Formally, $\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{U}_{c \geq 1} \operatorname{DTIME}\left(2^{n^{c}}\right)$
- Recall DTIME(T) is computable in $\mathrm{cT}(\mathrm{n})$ time

Relationship of \mathbf{P} \& NP

- Key open question: does $\mathbf{P}=\mathbf{N P}$?
- Some NP problems are in P:
- Connectivity - breadth-first search
- Composite numbers - Agrawal, Kayal, and Saxena solved this a few years ago
- Linear programming - ellipsoidal algorithm of Khachiyan

Relationship of P \& NP

- Problems not shown to be in \mathbf{P} :
- Independent set
- Traveling salesman
- Subset sum
- Integer programming
- This general group is known as NP complete: i.e., not in \mathbf{P} unless $\mathbf{P}=\mathbf{N P}$

Non-deterministic Turing machines

- Has two transition functions δ_{0} and δ_{1}
- The NDTM has another internal state, $\mathrm{q}_{\text {accept }}$
- M outputs 1 if some (non-deterministic) sequence of choices $\rightarrow \mathrm{q}_{\text {accept }}$
- Can also define NTIME s.t. NDTM takes cT(n)time $\forall x \in L \Leftrightarrow M(x)=1$
- Alternative definition:NP $=\mathrm{U}_{c \in \mathbb{N}}$ NTIME $\left(n^{c}\right)$

Reducibility

- Karp reductions relate the various example problems to one another
- Language A reduces to B if there is a polynomial-time computable function f, s.t. $\forall x \in\{0,1\}^{*}, x \in A$ iff $f(x) \in B$
- B is NP-hard if $A \leq_{p} B, \forall A \in \mathrm{NP}$

NP completeness

- By transitivity of Karp reduction, there should be a language that's "hardest," known as NPcomplete
- The TMSAT language is NP-complete
$-T M S A T=\left\{\left\langle\alpha, x, 1^{n}, 1^{t}\right\rangle: \exists u \in\{0,1\}^{n}\right\}$
$-M_{\alpha}$ denotes TM represented by α
$-M_{\alpha}$ outputs 1 on $\langle x, u\rangle$

Cook-Levin theorem

- CNF: conjunctive normal form used for a Boolean formula consisting of AND's and OR's
- kCNF: CNF consisting of k AND's: $\bigwedge_{i=1}^{k}\left(\mathrm{~V}_{j} v_{i j}\right)$
- Cook-Levin Theorem:
- Let SAT be the language of all satisfiable CNF formulae: SAT is NP-complete
- Let 3SAT be the language of all satisfiable 3CNF formulae: 3SAT is NP-complete

Web of reductions

Coping with NP-hardness

- Approximate/heuristic solutions
- Example: traveling salesman
- Key considerations:
- Maximum error
- Average-case complexity

Related Complexity Classes

- coNP $-x \in L \Leftrightarrow \forall u \in\{0,1\}^{p(|x|)}$ s.t. $\mathrm{M}(\mathrm{x}, \mathrm{u})=1$
- $\operatorname{EXP}=U_{c \geq 0} \operatorname{DTIME}\left(2^{n^{c}}\right)$
- NEXP $=\mathrm{U}_{c \geq 0}$ NTIME $\left(2^{n^{c}}\right)$
- Must have $\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{EXP} \subseteq \mathrm{NEXP}$

What if $\mathbf{P}=\mathbf{N P}$?

- Any decision (or equivalently, search) problem could be solved in a reasonable amount of time
- Perfectly optimal designs for all areas of engineering could be chosen
- Automated theory generation for experimental results
- No privacy in the digital domain

Next Class

- Discussion of solving linear algebraic equations
- Please read Chapter 2 of "Numerical Recipes" by W.H. Press et al.

