ECE 595, Section 10
 Numerical Simulations Lecture 5: Linear Algebra

Prof. Peter Bermel

January 16, 2013

Outline

- Recap from Monday
- Overview: Computational Linear Algebra
- Gaussian Elimination
- LU Decomposition
- Singular Value Decomposition
- Sparse Matrices
- QR Decomposition

Recap from Monday

- $\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{U}_{c \geq 1} \operatorname{DTIME}\left(2^{n^{c}}\right)$
- NP-complete problems:
- Can be Karp-reduced (via Cook-Levin theorem) to hardest general problem in Conjunctive Normal Form: SAT

- Only soluble in polynomial time if $\mathbf{P}=\mathbf{N P}$
- Unknown whether $\mathbf{P}=\mathbf{N P}$
- If not, some problems will remain quite difficult: can use heuristics to compensate
- If so, impressive applications may be possible

Overview: Computational Linear Algebra

- Broadly speaking: the solution of matrix problems, such as $A \cdot x=b$ or A^{-1}
- Unique solutions not always guaranteed
- May have mismatch of equations \& unknowns
- Possible degeneracy (aka singularity)
- Near degeneracies \rightarrow large round-off errors
- On the other end of the spectrum, some special features can help
- Sparse values
- Banded diagonals

Gauss-Jordan Elimination: No Pivoting

- Based on transforming $A \cdot x=b$ to $x=A^{-1} b$
- Without pivoting:
- Normalize element on diagonal to unity
- Subtract later columns
- Potential problems:
- Element on diagonal is zero
- Element on diagonal is near zero

Gauss-Jordan Elimination: Pivoting

- Pivoting allows one more flexibility
- Interchange rows (partial pivoting)
- Interchange rows and columns (full pivoting)
- Goal: put biggest element on diagonal
- Caveat: some (artificial?) exceptions
- Solution: implicit pivoting

Gaussian Elimination

- Reduce original matrix to partially empty (e.g., on lower left) - to be called U

$$
\left[\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} & a_{14}^{\prime} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & a_{24}^{\prime} \\
0 & 0 & a_{33}^{\prime} & a_{34}^{\prime} \\
0 & 0 & 0 & a_{44}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime}
\end{array}\right]
$$

- Perform backsubstitution to find the solution:

$$
x_{i}=\frac{1}{a_{i i}^{\prime}}\left[b_{i}^{\prime}-\sum_{j=i+1}^{N} a_{i j}^{\prime} x_{j}\right]
$$

LU Decomposition

- Rewrite input matrix A as a product of lowertriangular and upper-triangular matrices, i.e.,

$$
\left[\begin{array}{cccc}
\alpha_{11} & 0 & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44}
\end{array}\right] \cdot\left[\begin{array}{cccc}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\
0 & \beta_{22} & \beta_{23} \\
0 & \beta_{24} \\
0 & 0 & \beta_{33} & \beta_{34} \\
\beta_{44}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

- Then solve with $L \cdot y=b$ (forward substitution)

$$
\left.y_{i}=\frac{1}{a_{n}\left[b_{i}-\sum_{j=1}^{n}+a_{j}, y_{y}\right]}\right]
$$

- Finally, solve via $U \cdot x=y$ (backsubstitution)

$$
x_{1}=\frac{1}{\beta_{n}}\left[y_{i}-\sum_{j=1}^{N} \beta_{n} x_{3}\right]
$$

LU Decomposition

- To construct the LU matrices, use Crout's algorithm to compute the decomposition in place:

$$
\begin{gathered}
\beta_{i j}=a_{i j}-\sum_{k=1}^{i-1} \alpha_{i k} \beta_{k j} \\
\alpha_{i j}=\frac{1}{\beta_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} \alpha_{i k} \beta_{k j}\right) \\
{\left[\begin{array}{llll}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\
\alpha_{21} & \beta_{22} & \beta_{23} & \beta_{24} \\
\alpha_{31} & \alpha_{32} & \beta_{33} & \beta_{34} \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \beta_{44}
\end{array}\right]}
\end{gathered}
$$

LU Decomposition

- Execution time:
- total number of elements computed: N^{2}
- Total number of operations per element (average): N/3
- Inversion: backsubstitute after factorization
- Determinant of an LU factorization:

$$
\operatorname{det}=\prod_{j=1}^{N} \beta_{j j}
$$

Band Diagonal Matrices

- Band diagonal means only k diagonals are non-zero
- Common special case: tridiagonal:

$$
\left[\begin{array}{ccclclc}
b_{1} & c_{1} & 0 & \cdots & & & \\
a_{2} & b_{2} & c_{2} & \cdots & & & \\
& & & \cdots & & & \\
& & & \cdots & a_{N-1} & b_{N-1} & c_{N-1} \\
& & & \cdots & 0 & a_{N} & b_{N}
\end{array}\right] \cdot\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\cdots \\
u_{N-1} \\
u_{N}
\end{array}\right]=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\cdots \\
r_{N-1} \\
r_{N}
\end{array}\right]
$$

- Can perform LU decomposition in kN operations

Iterative Improvement

- If our exact solution is $A \cdot x=b$
- And we already have $A \cdot x^{\prime}=b^{\prime}$
- Then since $A \cdot x^{\prime}-A \cdot x=b^{\prime}-b$
- We can subtract $A^{-1}\left(b^{\prime}-b\right)$ from x^{\prime}
- Can repeat until reach limits of precision
- This can be formalized and used to devise certain useful guesses for our starting point b^{\prime}

Singular Value Decomposition

- Based on theorem: any matrix $A=U \cdot W \cdot V$, where:
- U and V are both orthogonal: $U^{T} U=1 ; V^{T} V=1$
- Inversion is easy: $A^{-1}=V \cdot \frac{\mathbf{1}}{W} \cdot U^{T}$
- Condition number is set by $\max \mathrm{w}_{\mathrm{j}} / \min \mathrm{w}_{\mathrm{j}}$

Sparse Linear Systems

Band diagonal

Block triangular

Bordered bandtriangular

Block tridiagonal

Single-bordered band diagonal

Single-bordered block triangular

1/16/2013

Single-bordered block diagonal

Double-bordered band diagonal

Double-bordered block diagonal

Vandermonde Matrices

- To solve the problem of moments, construct Vandermonde matrices which look like:

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{N-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{N-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{N} & x_{N}^{2} & \cdots & x_{N}^{N-1}
\end{array}\right] \cdot\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

Cholesky Decomposition

- Can be thought of as taking the square root of a matrix A, such that $A=L L^{T}$
- Writing out explicitly yields following equations:

$$
\begin{aligned}
& L_{i u}=\left(a_{i u}-\sum_{k=1}^{t-1} L_{i=1}^{2}\right)^{1 / 2} \\
& L_{s}=\frac{1}{L_{m}\left(a_{a}-\sum_{k=1}^{H} L_{u_{s}} L_{s}\right)}
\end{aligned}
$$

QR Decomposition

- Write $A=Q \cdot R$, where $Q^{T} Q=1$, and R is upper triangular
- Can then solve $R \cdot x=Q^{T} b$
- Matrix from a series of Householder transformation, s.t. $Q=\prod_{i} Q_{i}$
- each $Q_{i}=1-2 w \cdot w^{T}$
- Choose vector w to eliminate off-diagonal entries in one row + one column

Next Class

- Discussion of root finding and optimization
- Please read Chapter 10 of "Numerical Recipes" by W.H. Press et al.

