ECE 595, Section 10
Numerical Simulations
Lecture 5: Linear Algebra
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Recap from Monday
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— Can be Karp-reduced (via Cook-Levin = /
theorem) to hardest general problem in weoas * /
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Conjunctive Normal Form: SAT b
— Only soluble in polynomial time if P=NP

e Unknown whether P=NP

— If not, some problems will remain quite
difficult: can use heuristics to compensate

— If so, impressive applications may be
possible
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Overview: Computational Linear
Algebra

* Broadly speaking: the solution of matrix
problems, suchas A-x = b or A™1
* Unique solutions not always guaranteed
— May have mismatch of equations & unknowns
— Possible degeneracy (aka singularity)
— Near degeneracies = large round-off errors
* On the other end of the spectrum, some special
features can help
— Sparse values
— Banded diagonals



Gauss-Jordan Elimination: No Pivoting

 Based on transforming A-x =btox = A"1b
* Without pivoting:
— Normalize element on diagonal to unity

— Subtract later columns

e Potential problems:
— Element on diagonal is zero

— Element on diagonal is near zero



Gauss-Jordan Elimination: Pivoting

Pivoting allows one more flexibility
— Interchange rows (partial pivoting)

— Interchange rows and columns (full pivoting)
Goal: put biggest element on diagonal
Caveat: some (artificial?) exceptions
Solution: implicit pivoting



Gaussian Elimination

* Reduce original matrix to partially empty (e.g.,
on lower left) — to be called U
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e Perform backsubstitution to find the solution:




LU Decomposition

* Rewrite input matrix A as a product of lower-
triangular and upper-triangular matrices, i.e.,
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* Then solve with L -y = b (forward substitution)
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* Finally, solve via U - x = y (backsubstitution)
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LU Decomposition

 To construct the LU matrices, use Crout’s

algorithm to compute the decomposition in
place:
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LU Decomposition

* Execution time:
— total number of elements computed: N?

— Total number of operations per element (average):
N/3

e |nversion: backsubstitute after factorization
e Determinant of an LU factorization:
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Band Diagonal Matrices

 Band diagonal means only k diagonals are
non-zero

e Common special case: tridiagonal:

by oo 0O ... 1 ™
s by €y --- Us T

L cevoan_1 by en_a J Lu_ﬂ; JJ r'x 1 J
. apy Ei'_'\.' lfl'_'\.' I'_'\.'

S0

* Can perform LU decomposition in kN
operations



Iterative Improvement

If our exact solutionisA-x =b

And we already have A x' = b’
ThensinceA-x'—A-x=b"—»b

We can subtract A1 (b’ — b) from x’
Can repeat until reach limits of precision

This can be formalized and used to devise
certain useful guesses for our starting point b’



Singular Value Decomposition

Based on theorem: any matrix A = U - W -V, where:
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U and V are both orthogonal: UTU = 1; VTV =1

Inversioniseasy: A1 =V - —
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Condition number is set by max w;/min w;



Sparse Linear Systems
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Vandermonde Matrices

* To solve the problem of moments, construct
Vandermonde matrices which look like:
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Cholesky Decomposition

* Can be thought of as taking the square root of
a matrix A, such that A = LLT

* Writing out explicitly yields following
equations:



QR Decomposition

e Write A =0Q R, where Q"Q =1, and R is
upper triangular

e Canthensolve R-x =0Q"bh

* Matrix from a series of Householder
transformation, s.t. Q = |[; Q;
—eachQ; =1—-2w-w’

— Choose vector w to eliminate off-diagonal entries
in one row + one column



Next Class

* Discussion of root finding and
optimization

* Please read Chapter 10 of “Numerical
Recipes” by W.H. Press et al.



