ECE 595, Section 10
Numerical Simulations
Lecture 6: Finding Special Values



Outline

e Recap from Wednesday

e Root Finding
— Bisection
— Newton-Raphson method
— Brent’s method
* Optimization
— Golden Section Search
— Brent’s Method
— Downhill Simplex
— Conjugate gradient methods
— Multiple level, single linkage (MLSL)



Recap from Wednesday

Solve linear algebra problems A~1
andA-x=0>

Gauss-Jordan method (4" - x = b’)
Gaussian Elimination (U - x = b’)
LU Decomposition (A = L - U)

Singular Value Decomposition  Crout’s algorithm
A=U-W-VTh

Sparse Matrices

Iteratlve |mprovement (subtract
A~1(b' — b) from x')

QR Decomposition (A =[] Q; - R)

ZETOS

Band diagonal
sparse matrix




Finding Zeros

Relevance in micro & nano
research

Key concept: bracketing

Bisection — continuously halve
intervals

Newton-Raphson method —
uses tangent

Laguerre’s method — for
polynomials

Brent’s method — adds inverse
guadratic interpolation

Newton’s method for finding
an isolated real root

slope=F" (xn)m‘\}




Importance of Bracketing

e Critically important for both root finding and
optimization

* Can always guarantee at least one solution for
continuous functions with sign change in 1D

* |f more than one solution present, may not be
able to guarantee which one is reached —
method-dependent



Bisection

 Most stable and reliable approach
e Algorithm:

— Choose point x5 in the middle of the
bracket with sign change: [x4, x,]

— Check sign of f(x3)

— If non-zero, construct new bracket
from midpoint and original point f(x2)

. S f(x3)
with opposite sign /
— Repeat previous steps s
X/ X3 )

f(x1)

>




Newton-Raphson Method

* Key assumption: system
is nearly linear in region -
Newton’s method for finding v

betwee n Sta rti ng pOi nt an isolated real root
and root

 When sufficiently close, 1=
converge quadratically on
correct value (from Taylor
expansion)



NR Method Failures

e Getting stuck in a limit
cycle is possible

* Can even get worse —
certain locally flat
curves can send you
into outer space!




Laguerre’s Method

* Specifically for polynomials o = [ -
* Algorithm o 4InlP. ()
— Calculate quantities G and H - dx
_ d? In| P, (x)|
— Assume far roots a distance b; H=-—"53
one root is a distance g away  , _ n

: "G +./(n- D(nH - G2
— |terate solutionasa — 0 V= Dn )



Brent’s Method: Finding Roots

 Combines bracketing, bisection, YA
and inverse quadratic /
>

interpolation

a b
* Guaranteed to converge, but /\ i
speed can vary with functionand  f(@ b+P/Q
qguality of initial guess

: _f®)

* Algorithm: R=20
— Calculate f(a), f(b), f(c) c_f®)

— Calculate R, S, T, P, Q f(a)
—Leth > b+ P/Q T:f;g

— Repeatas f(b) » 0 P=S[T(R=T)(c—=b)—(1=R)(b - a)]
Q=T-DR-DES -1



Optimization

 Relevance in micro & nano [______. arabota oo O O
research coessssessasnss parabola through (D 3 @)

* Convexity
 Search classifications

e Techniques:
— Brent’s Method
— Golden Section Search
— Downhill Simplex

— Conjugate gradient
methods
— Multiple level, single N

(5) &)
&

These and further images from “Numerical
Recipes,” by WH Press et al.

linkage (MLSL) @ E«s==———>" "
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Convexity

e Convex functions have certain properties that
aid in finding an optimum:
— Precisely one optimum in an open set of values
— Continuous and at least twice differentiable

— Midpoints always lower than edges —i.e.,

flox; + (1 —8)6x,] <6f(xq) + (1 —68)f(x3)
f(x2)

* Examples include x?, sinh(x) fw

xl X9

>




Search Types

Local — assumes convex/concave problem
Global — uses heuristics to deal with multiple
optima

Non-derivative based — no specific
assumptions about best search direction

Derivative based — incorporates derivatives to
determine search direction



Brent’s Method: Finding Optima

 Assumes a concave function

e Algorithm:

— Evaluate function at bracket
endpoints & center

— Fit parabola
— Find Xmin & f(xmin)
— Keep two closest points for

bracket and repeat until
bracket is around +/¢

* Infer optimum based

parabola through (1) (2)(3)
veeraress parabola through fj; ':_1_:' f‘_g'

]
I
L
.
13
[}
i
i




Golden Section Search

* Closely related to

bisection approach to A f(x2)
finding roots fW
e Algorithm >

X1 Xg X3 X2

— Taking a downhill step

— Bracket lowest point with
higher values on each
side

— Keep repeating until
interval is around +/¢



Downhill Simplex Search

* Simplex is a triangle (2D),
tetrahedron (3D), etc. Ammm

* Algorithm: |
— Create an N-dimensional j

simplex: P; = P, + A;é;
— Perform one of 4 steps é%m
(b)

shown on right

— Repeat until tolerances 4
reached (e.g., for change in ©
simplex end-points, or A
function values) A e

(d)



Conjugate Gradient Method

Assumes convex multidimensional
function

Uses derivative information

Algorithm:
— Start with initial g_=h,
— Calculate scalars A, ¥

— Construct new vectors g, and h,,,,
satisfying orthogonality & conjugacy
conditions

— Repeat until tolerance reached

Note that no a priori knowledge of
Hessian matrix A is required!




Multiple Level Single Linkage

700

0.38

e Global search

e Algorithm:

.......

— Quasi-random
sequence of starting
points

EEEE O

second coating thickness (nm)

— Local optimization
(e.g., conjugate

gradient)
. . . 200 300 400 500
— HeurIStIC tracks baS|nS first coating thickness (nm)
of convergence M. Ghebrebrhan, P. Bermel, et al., Opt.

Express 17, 7505 (2009)
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Next Class

Is on Wednesday, Jan. 23 (because of Martin Luther
King, Jr. Day)

Discussion of eigenproblems

Please read Chapter 11 of “Numerical Recipes” by
W.H. Press et al.



