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Outline

e Recap from Wednesday

e Eigenproblem Solution Techniques
— Power Methods
— Inverse lteration
— Atomic Transformations

— Factorization Methods



Recap from Wednesday

* Optimization Methods

— Brent’s Method

— Golden Section Search

— Downhill Simplex

— Conjugate gradient methods

— Multiple level, single linkage (MLSL)
* Eigenproblems

— Overview

— Basic definitions



Power Method
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e Algorithm:

— Initially guess dominant 10"
eigenvector v,

— Let vy41 = Avy (optionally:
normalize each step) 0"
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— Dominant eigenvalue 4; = ——
Vg™ Vg

* To find other eigenvalues:
— Inverse power method
— Shifted inverse power method



Inverse lteration

Formalizes concept of
converging on a target
eigenvalue & eigenvector

Algorithm:

— Start with approximate
eigenvalue T and random unit
vector b,

— Letxy, = (A—11)"1h,_,

Xk
— Let bk = |x_k|

— Repeat until tolerance reached

— Our elgTenvaIue is given by
A- b,
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Inverse Iteration Challenges

* For unlucky b,, convergence too slow

* For multiple close roots, can only find one
eigenvector

* For non-symmetric real matrices, can’t find
complex conjugate pairs



Transformation Methods

* General concept of similarity transformations:
A->Z71AZ
— Atomic transformations: construct each Z explicitly
— Factorization methods: QR and QL methods

e Keep iterating atomic transformations:

— Until off-diagonal elements are small: then use Z
matrix to read off eigenvectors

— Otherwise: use factorization approach



Jacobi Transformations

 Atomic transformation: - S

L
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e Generalizes rotation matrix: ( .
—sin@ cosé6
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Householder Transformation

e Basic approach discussed previously

[ a1s 0 .. 0]
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* Keys to this strategy: -
— Construct vector w to eliminatTe most elements:
w =[0,a;1 — a,azq, -, ayq]

— Where a = —sgn a4 \/Z?I:z(ajl)z

— lterate recursively to tridiagonal form and solve:
R-x=A[[;Q;" x



Factorization in Eigenproblems

* Most common approach known as QR method
A=Q R A'=R-Q A'=0Q7.A.Q
 Can also do the same with Aa=q L

QL algorithm:
— Use Householder algorithm to construct Q,
— Factorize: Ak = QkLk

— Rearrange: Ay = L, Q; = QkTAka



QL Algorithm + Implicit Shifts

* Convergence for off-diagonal elements

AN
a;; )~ (7])

* Can be accelerated by shifting A, = A, — (1

S
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* Convergence now goes as aij(s)fv (A‘ ﬁ)
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Asymmetric Matrices

* Generally much more sensitive to numerical
(round-off) errors

e Balancing with diagonal matrices can relieve
this imbalance
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* Reduction to Hessenberg form: Ll

— Series of Householder matrices

— Gaussian elimination with pivoting




Basic Linear Algebra Subprograms
(BLAS)

* Extremely early software package (1979,
written originally in FORTRAN)

 Consists of 3 levels:
— Vector transformations: v = v + aw

— Matrix-vector operations: 3 - a¥ + fA - W

— Matrix-matrix operations: A - ad+ ,[>’§- C
 Tremendous number of implementations and

variations now available



Linear Algebra Package (LAPACK)

e Builds on BLAS to implement many of the linear
algebra techniques we discussed in class

— Linear programming/least squares
— Matrix decompositions/factorizations

— Eigenvalues

* Designed in 1992 to deal with special cases efficiently
Matrix type full | banded | packed | tridiag | generalized problem
general ge gb gt gg
symmetric Sy sb Sp st
Hermitian he | hb hp
SPD/ HPD po | pb PP pt
triangular tr th tp (g
upper Hessenberg | hs hg
trapezoidal 1z
orthogonal or op
unitary un up
diagonal di
bidiagonal bd




Next Class

* |s on Monday, Jan. 28

* Will discuss numerical tools for
simulating eigenproblems further



