ECE 595, Section 10 Numerical Simulations Lecture 8: Eigenvalues

> Prof. Peter Bermel January 25, 2013

Outline

- Recap from Wednesday
- Eigenproblem Solution Techniques
 - Power Methods
 - Inverse Iteration
 - Atomic Transformations
 - Factorization Methods

Recap from Wednesday

- Optimization Methods
 - Brent's Method
 - Golden Section Search
 - Downhill Simplex
 - Conjugate gradient methods
 - Multiple level, single linkage (MLSL)
- Eigenproblems
 - Overview
 - Basic definitions

Power Method

- Algorithm:
 - Initially guess dominant eigenvector v_o
 - Let $v_{k+1} = Av_k$ (optionally: normalize each step)
 - Dominant eigenvalue $\lambda_1 = \frac{v_k^T A v_k}{v_k^T v_k}$

Error vs. iteration number

- To find other eigenvalues:
 - Inverse power method
 - Shifted inverse power method

Inverse Iteration

- Formalizes concept of converging on a target eigenvalue & eigenvector
- Algorithm:
 - Start with approximate eigenvalue τ and random unit vector b_o

- Let
$$x_k = (A - \tau \mathbf{1})^{-1} b_{k-1}$$

- Let $b_k = \frac{x_k}{|x_k|}$
- Repeat until tolerance reached
- Our eigenvalue is given by $\lambda = b_k^T \cdot \mathbf{A} \cdot b_k$

Error vs. iteration number

Inverse Iteration Challenges

- For unlucky b_o , convergence too slow
- For multiple close roots, can only find one eigenvector
- For non-symmetric real matrices, can't find complex conjugate pairs

Transformation Methods

- General concept of similarity transformations: $A \rightarrow Z^{-1}AZ$
 - Atomic transformations: construct each Z explicitly
 - Factorization methods: QR and QL methods
- Keep iterating atomic transformations:
 - Until off-diagonal elements are small: then use Z matrix to read off eigenvectors
 - Otherwise: use factorization approach

Jacobi Transformations

$$\mathbf{A}' = \mathbf{P}_{pq}^T \cdot \mathbf{A} \cdot \mathbf{P}_{pq} \qquad S' = S - 2|a_{pq}|^2$$

Householder Transformation

• Basic approach discussed previously

$$\mathbf{P} = \mathbf{1} - 2\mathbf{w} \cdot \mathbf{w}^{T} \qquad \mathbf{A}' = \mathbf{P} \cdot \mathbf{A} \cdot \mathbf{P} = \begin{bmatrix} \frac{a_{11} & k & 0 & \cdots & 0}{k} \\ 0 & & & \\ \vdots & & & \\ 0$$

- Keys to this strategy:
 - Construct vector w to eliminate most elements: $w = [0, a_{21} - \alpha, a_{31}, \cdots, a_{N1}]^T$

- Where
$$\alpha = - \operatorname{sgn} a_{21} \sqrt{\sum_{j=2}^{N} (a_{j1})^2}$$

- Iterate recursively to tridiagonal form and solve: $R \cdot x = \lambda \prod_{i} Q_i^T x$

Factorization in Eigenproblems

• Most common approach known as QR method

 $\mathbf{A} = \mathbf{Q} \cdot \mathbf{R} \qquad \mathbf{A}' = \mathbf{R} \cdot \mathbf{Q} \qquad \mathbf{A}' = \mathbf{Q}^T \cdot \mathbf{A} \cdot \mathbf{Q}$

- Can also do the same with $A = Q \cdot L$
- QL algorithm:
 - Use Householder algorithm to construct Q_k
 - Factorize: $A_k = Q_k L_k$
 - Rearrange: $A_{k+1} = L_k Q_k = Q_k^T A_k Q_k$

QL Algorithm + Implicit Shifts

- Convergence for off-diagonal elements $a_{ij}^{(s)} \sim \left(\frac{\lambda_i}{\lambda_j}\right)^s$
- Can be accelerated by shifting $A_k \rightarrow A_k \beta 1$
- Convergence now goes as $\tilde{a}_{ij}^{(s)} \sim \left(\frac{\lambda_i \beta}{\lambda_j \beta}\right)^s$

Asymmetric Matrices

- Generally much more sensitive to numerical (round-off) errors
- Balancing with diagonal matrices can relieve this imbalance
- Reduction to Hessenberg form:
 - Series of Householder matrices
 - Gaussian elimination with pivoting

	×	\times	\times	\times	\times	×
	×	\times	\times	\times	\times	×
		×	×	×	×	×
			\times	\times	\times	×
Ì				\times	\times	×
	L				\times	×

Basic Linear Algebra Subprograms (BLAS)

- Extremely early software package (1979, written originally in FORTRAN)
- Consists of 3 levels:
 - Vector transformations: $\vec{v} \rightarrow \vec{v} + \alpha \vec{w}$
 - Matrix-vector operations: $\vec{v} \rightarrow \alpha \vec{v} + \beta \vec{A} \cdot \vec{w}$
 - Matrix-matrix operations: $\overleftrightarrow{A} \rightarrow \alpha \overleftrightarrow{A} + \beta \overleftrightarrow{B} \cdot \overleftrightarrow{C}$
- Tremendous number of implementations and variations now available

Linear Algebra Package (LAPACK)

- Builds on BLAS to implement many of the linear algebra techniques we discussed in class
 - Linear programming/least squares
 - Matrix decompositions/factorizations
 - Eigenvalues
- Designed in 1992 to deal with special cases efficiently

Matrix type	full	banded	packed	tridiag	generalized problem
general	ge	gb		gt	gg
symmetric	sy	sb	sp	st	
Hermitian	he	hb	hp		
SPD / HPD	ро	pb	рр	pt	
triangular	tr	tb	tp		tg
upper Hessenberg	hs				hg
trapezoidal	tz				
orthogonal	or		op		
unitary	un		up		
diagonal	di				
bidiagonal	bd				

Next Class

- Is on Monday, Jan. 28
- Will discuss numerical tools for simulating eigenproblems further