ECE 595, Section 10 Numerical Simulations Lecture 9: Programming for Linear Algebra

Prof. Peter Bermel January 28, 2013

Outline

- Recap from Friday
- Application Examples
 - Electrostatic potential (Poisson's equation)
 - 1D array of charge
 - 2D grid of charge
 - Arrays of interacting spins
 - 1D interaction along a chain
 - 2D nearest-neighbor coupling

Recap from Friday

- Eigenproblem Solution Techniques
 - Power Methods
 - Inverse Iteration
 - Atomic Transformations
 - Factorization Methods
- Linear algebra software packages
 - Basic Linear Algebra Subroutines (BLAS)
 - Linear Algebra Package (LAPACK)

Electrostatic Potential Example

 Consider an array of charges governed by Gauss' law:

$$\nabla \cdot E = \rho / \epsilon_o$$

• Using the definition of potential yields Poisson's equation:

$$-\nabla^2 \varphi = \rho/\epsilon_o$$

 Consider solving this equation for an arbitrary set of charges – what to do?

Electrostatic Potential Example

- Strictly speaking, continuous variables have an uncountable number of possible values, and cannot be evaluated numerically
- Key is to transform from continuous variables to those on a grid
- Increase resolution as needed

Electrostatic Potential Solution: 1D

• Approximate Laplacian in 1D with:

$$\nabla^2 \varphi \approx \frac{\varphi_{i-1} - 2\varphi_i + \varphi_{i+1}}{h^2}$$

- Where *h* is the grid spacing
- Sets up the linear algebra problem:

$$\begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & & \\ 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 1 & -2 & 1 \\ 0 & 0 & 0 & & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \vdots \\ \varphi_{N-2} \\ \varphi_N \end{pmatrix} = \frac{h^2}{\epsilon_o} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \\ \vdots \\ \rho_{N-2} \\ \rho_{N-1} \\ \rho_N \end{pmatrix}$$

Electrostatic Potential Solution: 1D

• In MATLAB, use:

>> N=10; M=-2; J=1; A=diag(M*ones(N,1))+diag(J*ones(N-1,1),1)+diag(J*ones(N-1,1),-1)

A =

-2	1	0	0	0	0	0	0	0	0
1	-2	1	0	0	0	0	0	0	0
0	1	-2	1	0	0	0	0	0	0
0	0	1	-2	1	0	0	0	0	0
0	0	0	1	-2	1	0	0	0	0
0	0	0	0	1	-2	1	0	0	0
0	0	0	0	0	1	-2	1	0	0
0	0	0	0	0	0	1	-2	1	0
0	0	0	0	0	0	0	1	-2	1
0	0	0	0	0	0	0	0	1	-2

>> rho=rand(10,1)

rho =

0.1190
0.4984
0.9597
0.3404
0.5853
0.2238
0.7513
0.2551
0.5060
0.6991

Electrostatic Potential Solution: 1D

• Use backslash operator to solve linear algebra problems of the form $A \cdot x = b$

ECE 595, Prof. Bermel

Electrostatic Potential Solution: 2D

• Connections in two directions creates a total of 5 non-vanishing diagonals in our linear algebra problem:

$$\begin{pmatrix} -4 & 1 & 0 & 1 & 0 & 0 \\ 1 & -4 & 1 & \cdots & 0 & 1 & 0 \\ 0 & 1 & -4 & & 0 & 0 & 1 \\ \vdots & & \ddots & & \vdots & & \\ 1 & 0 & 0 & & -4 & 1 & 0 \\ 0 & 1 & 0 & \cdots & 1 & -4 & 1 \\ 0 & 0 & 1 & & 0 & 1 & -4 \end{pmatrix} \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \vdots \\ \varphi_{N-2} \\ \varphi_N \end{pmatrix} = \frac{h^2}{\epsilon_o} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \\ \vdots \\ \rho_{N-2} \\ \rho_{N-1} \\ \rho_N \end{pmatrix}$$

Electrostatic Potential Solution: 2D

Charge distribution in 2D (7x7 grid)

Electrostatic potential in 2D (7x7 grid)

Spin Array Example

- Consider an array of spins $\{\sigma_i\}$, coupled by an exchange interaction
- Ising-model Hamiltonian is given by:

$$\mathcal{H} = \sum_{i} M_{i}\sigma_{i} + \sum_{\langle ij \rangle} J_{ij}\sigma_{i}\sigma_{j}$$

• The brackets often are interpreted to mean nearest-neighbor interactions only

Spin Array Solution: 1D

• Convert Hamiltonian into matrix, assuming nearest neighbor interaction only:

$$\mathcal{H} = \begin{pmatrix} M & J & 0 & & 0 & 0 & 0 \\ J & M & J & \cdots & 0 & 0 & 0 \\ 0 & J & M & & 0 & 0 & 0 \\ \vdots & & \ddots & & \vdots & & \\ 0 & 0 & 0 & & M & J & 0 \\ 0 & 0 & 0 & \cdots & J & M & J \\ 0 & 0 & 0 & & 0 & J & M \end{pmatrix}$$

• Use Schrodinger equation to set up eigenproblem:

$$\mathcal{H}\Psi = E\Psi$$

Choose basis spinor wavefunction :

$$\Psi = (\sigma_1, \sigma_2, \cdots, \sigma_N)^T$$

Spin Array Solution: 1D

• In MATLAB, use the following:

```
>> N=6; M=2; J=1; A=diag(M*ones(N,1))+diag(J*ones(N-1,1),1)+diag(J*ones(N-1,1),-1)
A =
   2
            0
               0
       1
                    0
                         0
   1 2 1 0 0 0
   0 1 2 1 0 0
   0 0 1 2 1 0
0 0 0 1 2 1
             0 1
   0
       0
         0
                      2
```

Spin Array Solution: 1D

```
>> [V,D]=eigs(full(A),N)
Warning: For real symmetric problems, must have number of eigenvalues k < n.
Using eig(full(A)) instead.
> In eigs>checkInputs at 926
 In eigs at 94
V =
   0.2319 -0.4179 0.5211 -0.5211 -0.4179 0.2319
   0.4179 -0.5211 0.2319 0.2319 0.5211 -0.4179
   0.5211 -0.2319 -0.4179 0.4179 -0.2319 0.5211
   0.5211 0.2319 -0.4179 -0.4179 -0.2319 -0.5211
   0.4179 0.5211 0.2319 -0.2319 0.5211 0.4179
   0.2319 0.4179 0.5211 0.5211 -0.4179 -0.2319
D =
           0
   3.8019
                      0
                              0
                                       0
                                                0
           3.2470
                               0
       0
                       0
                                       0
                                                0
               0 2.4450
                              0
                                       0
                                                0
       0
               0
                     0 1.5550
       0
                                       0
                                                0
       0
               0
                      0
                               0 0.7530
                                                0
       0
               0
                       0
                               0
                                       0
                                          0.1981
```

Spin Array Solution: 2D

• Convert Hamiltonian into matrix, assuming nearest neighbor interactions in 2 directions:

$$\mathcal{H} = \begin{pmatrix} M & J & 0 & & J & 0 & 0 \\ J & M & J & \cdots & 0 & J & 0 \\ 0 & J & M & & 0 & 0 & J \\ \vdots & & \ddots & & \vdots & \\ J & 0 & 0 & & M & J & 0 \\ 0 & J & 0 & \cdots & J & M & J \\ 0 & 0 & J & & 0 & J & M \end{pmatrix}$$

• Use Schrodinger equation to set up eigenproblem:

$$\mathcal{H}\Psi = E\Psi$$

• Choose basis spinor wavefunction :

$$\Psi = (\sigma_1, \sigma_2, \cdots, \sigma_N)^T$$

Spin Array Solution: 2D

• In MATLAB, use the following:

```
>> N=9; M=2; J=1; A=diag(M*ones(N,1))+diag(J*ones(N-1,1),1)+diag(J*ones(N-1,1),-1);
>> A=A+diag(J*ones(N-sqrt(N),1), sqrt(N))+diag(J*ones(N-sqrt(N),1),-sqrt(N))
```

```
A =
```

2	1	0	1	0	0	0	0	0
1	2	1	0	1	0	0	0	0
0	1	2	1	0	1	0	0	0
1	0	1	2	1	0	1	0	0
0	1	0	1	2	1	0	1	0
0	0	1	0	1	2	1	0	1
0	0	0	1	0	1	2	1	0
0	0	0	0	1	0	1	2	1
0	0	0	0	0	1	0	1	2

Spin Array Solution: 2D

>> [V,D]=eig(full(A))

V =

-0.2137	-0.4253	-0.2629	-0.1941	0.5774	-0.1941	0.2629	0.4253	0.2137
0.2985	0.4253	-0.2629	0.4011	-0.0000	-0.4011	-0.2629	0.4253	0.2985
-0.3362	-0.2629	0.4253	0.3701	-0.0000	0.3701	-0.4253	0.2629	0.3362
0.4011	0.2629	0.4253	-0.2985	-0.0000	0.2985	0.4253	0.2629	0.4011
-0.4274	0.0000	0.0000	-0.3882	-0.5774	-0.3882	-0.0000	0.0000	0.4274
0.4011	-0.2629	-0.4253	-0.2985	0.0000	0.2985	-0.4253	-0.2629	0.4011
-0.3362	0.2629	-0.4253	0.3701	0.0000	0.3701	0.4253	-0.2629	0.3362
0.2985	-0.4253	0.2629	0.4011	-0.0000	-0.4011	0.2629	-0.4253	0.2985
-0.2137	0.4253	0.2629	-0.1941	0.5774	-0.1941	-0.2629	-0.4253	0.2137

D =

-1.2742	0	0	0	0	0	0	0	0
0	0.3820	0	0	0	0	0	0	0
0	0	1.3820	0	0	0	0	0	0
0	0	0	1.4710	0	0	0	0	0
0	0	0	0	2.0000	0	0	0	0
0	0	0	0	0	2.5290	0	0	0
0	0	0	0	0	0	2.6180	0	0
0	0	0	0	0	0	0	3.6180	0
0	0	0	0	0	0	0	0	5.2742

Next Class

- Is on Wednesday, Jan. 30
- Will discuss numerical tools for simulating eigenproblems further