ECE 695 Numerical Simulations Lecture 15: Advanced Drift-Diffusion Simulations

Prof. Peter Bermel

February 13, 2017

Outline

- Drift Diffusion Model Physical Effects
- Sentaurus
- Applications:
 - Transistor Modeling
 - Introduction of Trap States
 - Effects of Radiation Strikes

Drift-Diffusion Model: Physical Effects

Physics	Models
Mobility	Concentration-dependent mobility (fit to experimental data), Parallel field dependent mobility (fit to experimental saturation velocities)
Generation recombination and trapping	Modified concentration dependent Shockley-Read-Hall Generation/recombination (for treatment of defects)
Impact ionization	Selberherr's impact ionization model
Tunneling	Band-to-band tunneling, Trap-Assisted tunneling
Oxide physics	Fowler-Nordheim tunnelling, interface charge accumulation

Sentaurus Workbench

- Run command: swb
- Graphical user interface to unify all simulation tools into a single experiment project flow
- Used to organize projects and set up experiments for both structure generation and device simulation

<u>Technology Computer-Aided-Design Tools</u>

Unlocking Workbench

- Double click 20nm-NMOS: the simulation modules will show up on the work bench
- If you cannot edit the value in the cell, then Right click 20nm-NMOS→ project→unlock :This will unlock the project for modification of values.

<u>Technology Computer-Aided-Design Tools</u>

Sentaurus Structure Editor

- Recommended to run in workbench
 - Run command (under putty): sde
- Structure Editor (1) generates the device structure (including the doping profiles) (2)
 Defines the electrical contact and (3) generates the meshing for numerical simulations.

Parameters you may need to change/optimize for this project

- Gate oxide thickness (Xo, Units: um)
- MOSFET gate length (Lgate, Units: um)
- Spacer length (Lsp, Units: um)
- Channel Doping Concentration (ChanDoping, Units: cm⁻³)
- Source/Drain extension depth (XjExt, Units: um)

Sentaurus Device

- Recommended to run in workbench
 - Run command (under putty): sdevice
- Sentaurus Device simulates the device performance by solving multiple, coupled physical equations based on the meshing.
- Inputs: gate voltage (V_{gs}) , drain voltage (V_{ds}) , workfunction value

Common Physical models:

- Si band structure ($E_{c/v}$, $N_{c/v}$ and bandgap narrowing)
- Fermi-Dirac Statistics
- Poisson equation, continuity equation
- Band-to-band tunneling, R-G current
- Drift-Diffusion current, carrier mobility, velocity saturation

- Recommended to run in workbench
- Used to automatically extract critical device performance parameters such as:

Vt_lin Id_lin Vt_sat Id_sat I_OFF

Also used to plot the I_d-V_g and I_d-V_d curves

Simulation Status

- Start Sentaurus, first select from the left project column, right-click to "preprocess".
- Then you will find the nodes will display different colors, suggesting they have different properties.
 Here is a summary. Only colorful nodes will give you the simulation output.

- "Ready" means the current tool is free of syntax errors (You should see this since you are not allowed to modify the scripts).
- Right-click a certain Ready nodes to run, after a short period of time, you will find it changes to "done" or "failed".

Basic Operations for Sentaurus Structure Editor

- Now you can view your simulation results if the nodes are done.
- Right-click the node in Structure editor, select Visualize → Tecplot SV (Select File) and choose msh.tdr file to view your device structure.

Basic Operations for Sentaurus Tecplot

 This slide help you familiarize the usage of Sentaurus Tecplot, this tool is for the visualization and profiles/contours extraction purposes.

Export the results from Tecplot:

To get the data field, first, use Y-cut to get the 1-D slice; then select export → Inspect graph

12

Then Inspect will be started.

Select the data field herein; Click File \rightarrow Export \rightarrow txt file

Basic Operations for Sentaurus Device

Right-click the "done" node in Structure Device, select Visualize → Tecplot SV (Select File) and choose des.tdr file to view your device performance contours (vector fields).

2/13/2017

Basic Operations for Sentaurus Device Cont.'d

 Right-click the "done" node in Structure Device, select Visualize → Inspect (Select File) and choose IdVg_des.plt file to view your device performance

Threshold Voltage (V_t)

DIBL and SS

DIBL is defined as the threshold voltage difference divided by the drain bias between linear and saturation region.

Sub-threshold Swing

Generation/Recombination

- Modified Shockley-Read-Hall G/R
 - A sum of SRH contribution by each trap
 - May be temperature, doping & field dependent
 - Γ is the degeneracy of the trap, n_i the intrinsic concentration of carriers

$$R_{n,p} = \sum R_{i}$$

$$R_{i} = \frac{pn - n_{i}^{2}}{\tau_{ni}(p + \Gamma n_{i}e^{\frac{(Ef - Ei)}{kT}}) + \tau_{pi}(n + \frac{n_{i}e^{\frac{(Ei - Ef)}{kT}}}{\Gamma})}$$

Generation/Recombination

Transient behaviour of traps

ECE 695, Prof. Bermel

 $\sigma_{n,p}$ is trap capture cross-section

 $v_{n,p}$ is thermal velocity

n_i is intrinsic concentration

F_{tA.TD} the probability of ionization

Space charge density

$$\sigma_n = \frac{1}{\rho_{trap} \tau_n \nu_n} \sigma_p = \frac{1}{\rho_{trap} \tau_p \nu_p}$$

20

Radiation damage

P-Type Radiation Damage Model

Impact ionization

Phonon-assisted trap-to-band tunneling

$$R_{i} = \frac{pn - n_{i}^{2}}{\frac{\tau_{n0}}{1 + \Gamma_{n}^{DIRAC}}(p + \Gamma n_{i}e^{\frac{(Ef - Ei)}{kT}}) + \frac{\tau_{p0}}{1 + \Gamma_{p}^{DIRAC}}(n + \frac{n_{i}e^{\frac{(Ei - Ef)}{kT}}}{\Gamma})} \qquad \qquad \text{Depth (microns)}$$

$$\Gamma_{n}^{DIRAC} = \frac{\Delta E_{n}}{kT_{L}} \int_{0}^{1} e^{\frac{\Delta E_{n}u - K_{n}u^{3/2}}{kT_{L}}} du \qquad K_{n} = \frac{4}{3} \frac{\sqrt{2m_{0}m_{tunnel}\Delta E_{n}^{3}}}{3q\hbar|E|}$$

"A New Recombination Model Describing Heavy-Doping Effects and Low Temperature Behaviour", IEDM Technical Digest(1989): 307-310.

$$\Gamma_n^{DIRAC} = \frac{\Delta E_n}{kT_L} \int_{0}^{1} e^{\frac{\Delta E_n}{kT_L} u - K_n u^{\frac{3}{2}}} dt$$

$$\Gamma_{p}^{DIRAC} = \frac{\Delta E_{p}}{kT_{L}} \int_{0}^{1} e^{\frac{(\Delta E_{p}}{kT_{L}} u - K_{p} u^{\frac{3}{2}})} du \qquad K_{p} = \frac{4}{3} \frac{\sqrt{2m_{0}m_{tunnel}} \Delta E_{p}^{3}}{3a\hbar |E|}$$

$$4\sqrt{2m_0m_{tunnel}\Delta E_n^3}$$

$$K_p = \frac{4}{3} \frac{\sqrt{2m_0 m_{tunnel} \Delta E_p^3}}{3q\hbar |E|}$$

Charge Deposition by a Radiation Particle

- Radiation particles protons, neutrons, alpha particles and heavy ions
- Reverse biased p-n junctions are most sensitive to particle strikes
- Charge is collected at the drain node through drift
 and diffusion
- Results in a voltage glitch at the drain node
- System state may change if this voltage glitch is captured by at least one memory element
 - This is called an SEU
 - May cause system failure

2/13/2017

Radiation Particle Strikes

- Radiation particle strike at the output of INV1
- Implemented using 65nm PTM with VDD=1V
- Radiation strike: Q=100fC, τ_{α} =200ps & τ_{β} =50ps

Models Radiation
Particle Strike
2/13/2017

NMOS Device Modeling

SPICE Model

- Constructed NMOS transistors using Sentaurus-Structure editor tool
- Gate length 35nm, $T_{ox} = 1.2$ nm spacer width = 30nm

NMOS Device Characterization

- Characterized the NMOS device using Sentaurus-DEVICE
- Width = 1μ m
- Good MOSFET characteristics

Results and Discussions

- O1 Small devices collect less charge compared to large devices
 - Reverse biased electric field is present for shorter duration in small devices
 - Lower drain area less charge is collected through diffusion
- **G1** If we upsize a gate to harden it, a higher value of Q_{coll} should be used
 - Extremely important for low voltage operation
- **O1.1** For low energy strikes, Q_{coll} remains roughly constant across different gate sizes for nominal voltage operation

Next Class

Will cover band structure theory and modeling techniques