ECE 695 Numerical Simulations Lecture 22: Cavity Modeling Framework (CAMFR)

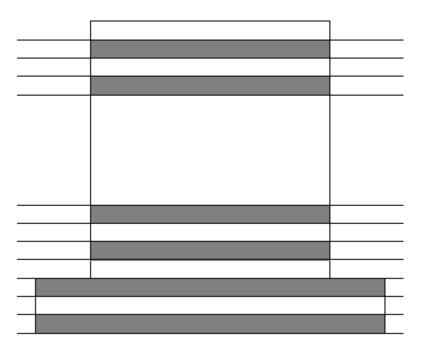
Prof. Peter Bermel March 6, 2017

Outline

- CAMFR
 - Rationale
 - Problem formulation
 - Examples

CAMFR: Rationale

- Many problems consist of layers with varying widths
- Examples:
 - LED stack
 - Rod-hole photonic crystal
- Natural form of solutions is semianalytic, in terms of eigenmodes



P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

CAMFR: Basic Strategy

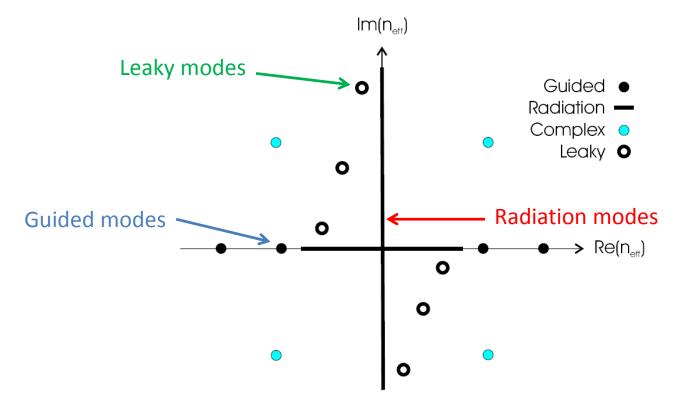
- Break up structure into layers
- Calculate eigenmodes in each layer (of four types)
- Apply Lorentz reciprocity to match BC's
- Propagate within layers using S-matrix method
- Apply inputs to calculate physical outputs

CAMFR: Eigenmode Decomposition

- This stage resembles BPM
- Begin with the Helmholtz equation: $[\nabla_t^2 + \epsilon \mu \omega^2] \psi = \beta^2 \psi$
- Where ψ represents *E*-field or *H*-field, and β is the eigenvalue (wavevector along *z*)
- Write 3D solutions in this form for each layer:

$$\binom{E(r)}{H(r)} = \sum_{k} A_{k} e^{-j\beta_{k}z} \binom{E(r_{t})}{H(r_{t})}$$

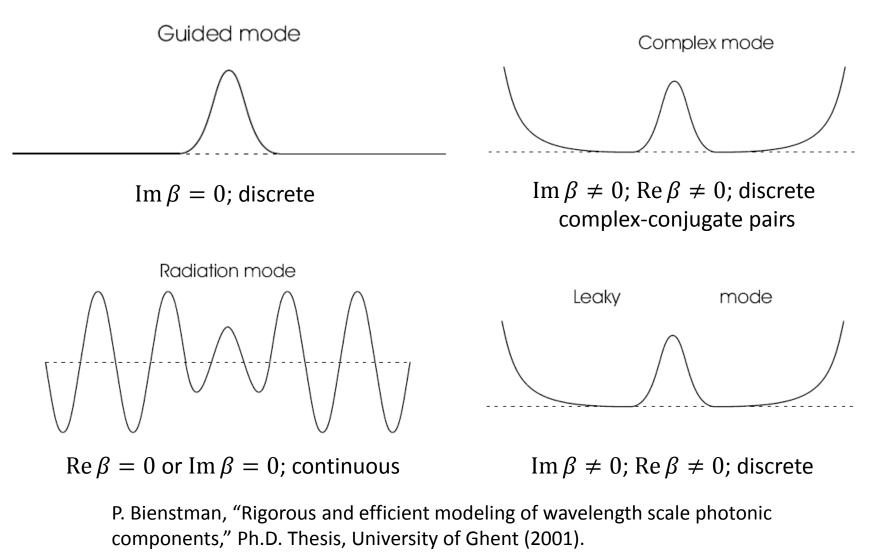
CAMFR: Eigenmode Decomposition



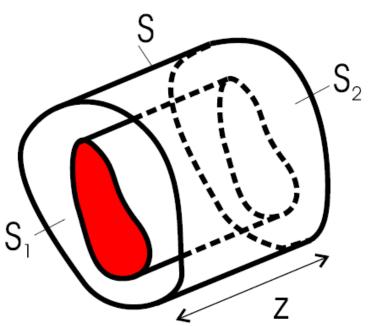
P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

Can express eigenvalues in terms of $\operatorname{Re} n_{eff}$ and $\operatorname{Im} n_{eff}$

Eigenmode Classification



Lorentz Reciprocity



P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

 Evaluate Maxwell's equations across boundary using this surface

Lorentz Reciprocity

• Starting with Maxwell's equations:

$$\begin{aligned} \nabla \times \mathbf{E}_1 &= -j\omega\mu\mathbf{H}_1 & \nabla \times \mathbf{E}_2 &= -j\omega\mu\mathbf{H}_2 \\ \nabla \times \mathbf{H}_1 &= \mathbf{J}_1 + j\omega\varepsilon\mathbf{E}_1 & \nabla \times \mathbf{H}_2 &= \mathbf{J}_2 + j\omega\varepsilon\mathbf{E}_2 \end{aligned}$$

• Can form the expression:

$$\nabla \cdot (\mathbf{E}_1 \times \mathbf{H}_2 - \mathbf{E}_2 \times \mathbf{H}_1) = \mathbf{J}_1 \cdot \mathbf{E}_2 - \mathbf{J}_2 \cdot \mathbf{E}_1$$

• Integrating over V and using Gauss' theorem:

$$\int \int_{S} \left(\mathbf{E}_{1} \times \mathbf{H}_{2} - \mathbf{E}_{2} \times \mathbf{H}_{1} \right) \cdot d\mathbf{S} = \int \int \int_{V} (\mathbf{J}_{1} \cdot \mathbf{E}_{2} - \mathbf{J}_{2} \cdot \mathbf{E}_{1}) dV$$

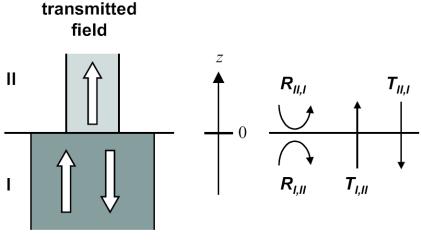
Lorentz Reciprocity

• Lorentz Reciprocity theorem becomes:

$$\int \int_{S} \frac{\partial}{\partial z} \left(\mathbf{E}_{1} \times \mathbf{H}_{2} - \mathbf{E}_{2} \times \mathbf{H}_{1} \right) \cdot \mathbf{u}_{\mathbf{z}} dS = \int \int_{S} (\mathbf{J}_{1} \cdot \mathbf{E}_{2} - \mathbf{J}_{2} \cdot \mathbf{E}_{1}) dS$$

• For *z*-invariant media:

 $\int \int_{S} \left(\mathbf{E}_{m,t} \times \mathbf{H}_{n,t} \right) \cdot \mathbf{u}_{z} dS = 0$



P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components,"Ph.D. Thesis, University of Ghent (2001).

incident reflected field field

Boundary Conditions

• Assuming:

$$\mathbf{E}_{p,t}^{I} + \sum_{i} R_{j,p} \mathbf{E}_{j,t}^{I} = \sum_{i} T_{j,p} \mathbf{E}_{j,t}^{II}$$

- Defining overlap between modes to be: $\langle \mathbf{E}_m, \mathbf{H}_n \rangle \equiv \int \int_s (\mathbf{E}_m \times \mathbf{H}_n) \cdot \mathbf{u}_z dS$
- We obtain the transmission coefficient:

 $\sum_{j} \left[\left\langle \mathbf{E}_{i}^{I}, \mathbf{H}_{j}^{II} \right\rangle + \left\langle \mathbf{E}_{j}^{II}, \mathbf{H}_{i}^{I} \right\rangle \right] T_{j,p} = 2\delta_{ip} \left\langle \mathbf{E}_{p}^{I}, \mathbf{H}_{p}^{I} \right\rangle$

• And reflection coefficient:

$$R_{i,p} = \frac{1}{2\left\langle \mathbf{E}_{i}^{I}, \mathbf{H}_{i}^{I} \right\rangle} \sum_{j} \left[\left\langle \mathbf{E}_{j}^{II}, \mathbf{H}_{i}^{I} \right\rangle - \left\langle \mathbf{E}_{i}^{I}, \mathbf{H}_{j}^{II} \right\rangle \right] T_{j,p}$$

S-Matrix Solution

• Now we can employ the standard S-matrix scheme from Li '96:

$$\begin{aligned} \mathbf{T}_{1,p+1} &= \mathbf{t}_{p,p+1} \cdot (\mathbf{I} - \mathbf{R}_{p,1} \cdot \mathbf{r}_{p,p+1})^{-1} \cdot \mathbf{T}_{1,p} \\ \mathbf{R}_{p+1,1} &= \mathbf{t}_{p,p+1} \cdot (\mathbf{I} - \mathbf{R}_{p,1} \cdot \mathbf{r}_{p,p+1})^{-1} \cdot \mathbf{R}_{p,1} \cdot \mathbf{t}_{p+1,p} + \mathbf{r}_{p+1,p} \\ \mathbf{R}_{1,p+1} &= \mathbf{T}_{p,1} \cdot (\mathbf{I} - \mathbf{r}_{p,p+1} \cdot \mathbf{R}_{p,1})^{-1} \cdot \mathbf{r}_{p,p+1} \cdot \mathbf{T}_{1,p} + \mathbf{R}_{1,p} \\ \mathbf{T}_{p+1,1} &= \mathbf{T}_{p,1} \cdot (\mathbf{I} - \mathbf{r}_{p,p+1} \cdot \mathbf{R}_{p,1})^{-1} \cdot \mathbf{t}_{p+1,p} \end{aligned}$$

 We can compose the S-matrix starting from the identity matrix until we include all layers

Periodic Eigenproblems

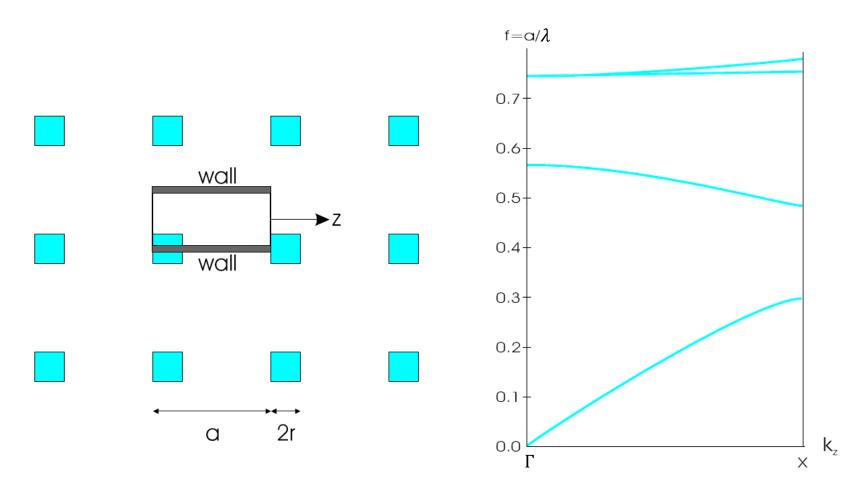
• Periodic layered structures will:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} F \\ B \end{bmatrix} = e^{-jk_z p} \cdot \begin{bmatrix} F \\ B \end{bmatrix}$$

- Since T-matrix is nearly singular, use SVD: $\mathbf{A} = \mathbf{U} \cdot \Sigma \cdot \mathbf{V}^{H}$
- Where **U** and **V** are unitary; Σ diagonal. Then:

$$\mathbf{A}^{-1} = \mathbf{V} \cdot diag\left(\frac{1}{\sigma_i}\right) \cdot \mathbf{U}^H$$

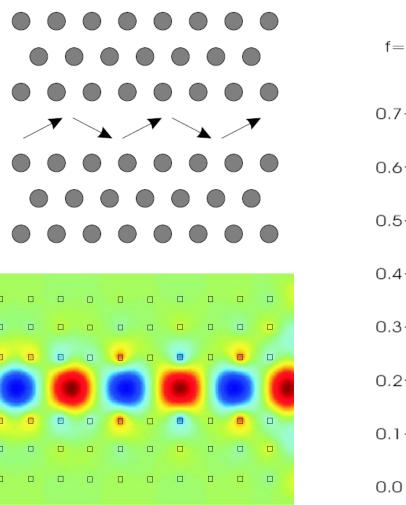
CAMFR: 2D Photonic Crystals

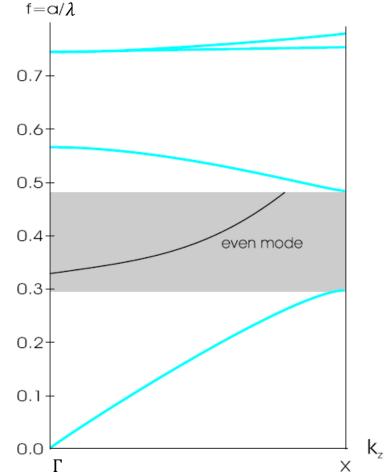


P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

ECE 695, Prof. Bermel

CAMFR: 2D PhC Waveguide



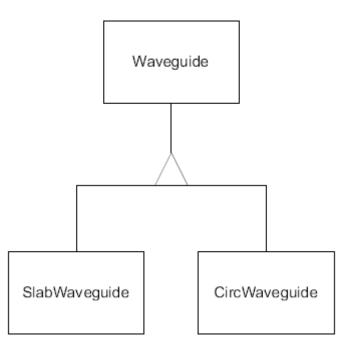


CAMFR Architecture

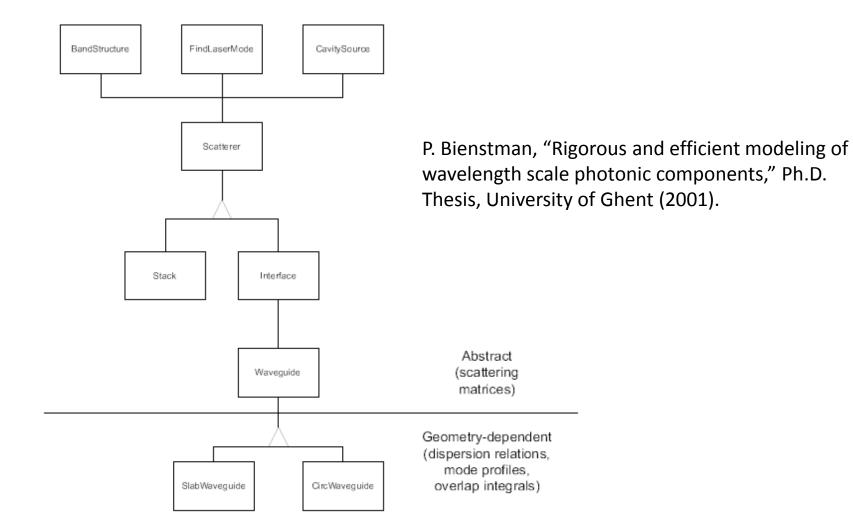
- Three key architectural elements:
 - User interface
 - Core logic
 - Low-level numerical routines
- Basic concept is to make each level independent yet interlocking with the others

CAMFR Architecture

- Built on object-oriented framework:
 - Abstract data types including slabs, waveguides
 - Encapsulated/reusable code
 - Polymorphism
- Implemented as Python library

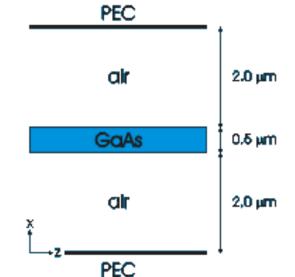


CAMFR Architecture



Code: 1D Waveguide

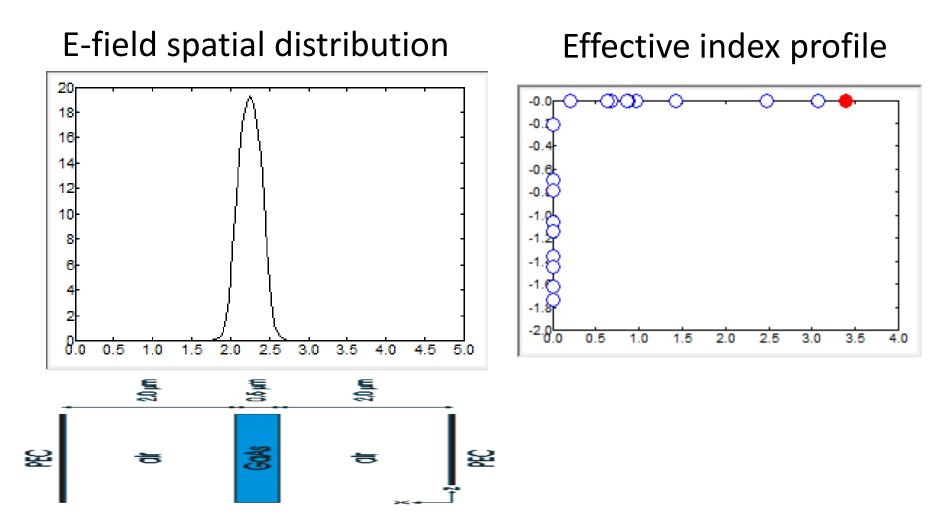
#!/usr/bin/env python from camfr import * set lambda(1) **set** N(20) set polarisation(TE) GaAs = Material(3.5)air = Material(1.0)slab = Slab(air(2) + GaAs(0.5) + air(2))slab.calc()



slab.plot()

....

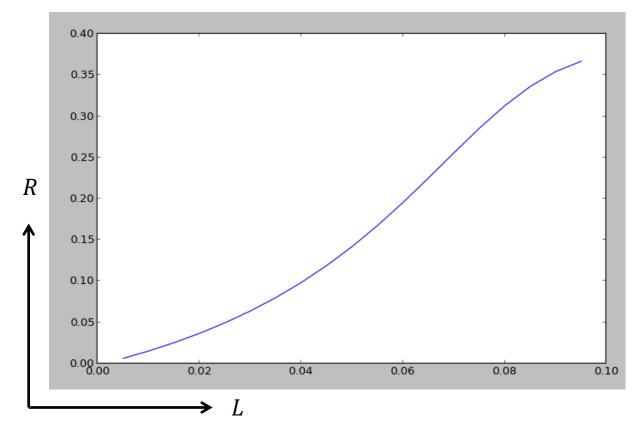
Results: 1D Waveguide



Code: 2D Waveguide

112 GaAs R21 R12 . . . slab = Slab(air(2) + GaAs(0.5) + air(2))2 T21 space = Slab(air(4.5))for L in arange(.005,.1,.005): Ω . stack = Stack(space(0) + slab(L) + space(0))stack.calc() print L, abs(stack.R12(0,0))

Results: 2D Waveguide



• Can see smooth increase from 0, with nonlinearities at larger L's from interference

Code: Cylindrical Stack

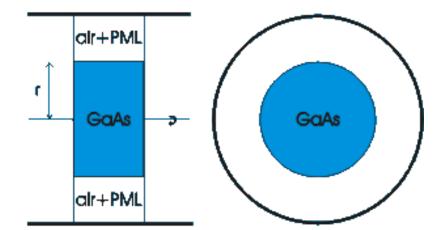
set_circ_order(0)
set_polarisation(TE)

. . .

...

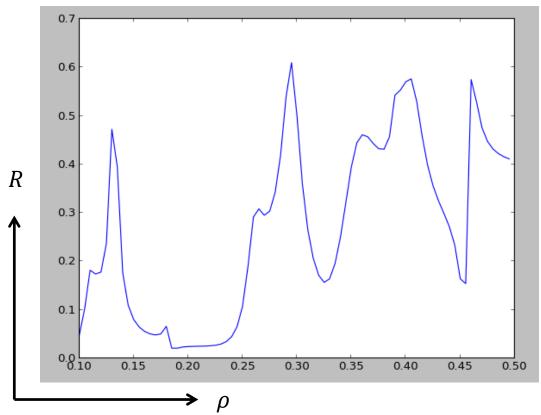
Set_circ_PML(-0.1)
Space = Circ(air(1))

for r in arange(.1,.5,.05):



circ = Circ(GaAs(r) + air(1-r))
stack = Stack(space(0) + circ(0.5) + space(0))
stack.calc()
print r, abs(stack.R12(0,0))

Results: Cylindrical Stack



Can see heightened sensitivity to details of cylindrical geometry, with multiple reflection peaks

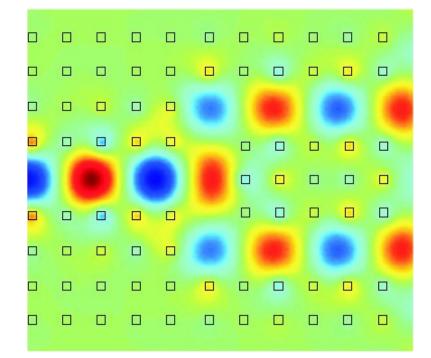
Code: Photonic Crystal Splitter

set_lower_wall(slab_H_wall)

...

```
periods = 3 # periods above outer waveguide
sections = 1 # intermediate 90 deg sections
no rods = Slab(air(a-r+(sections+1+periods)*a+cl))
cen = Slab(air(a-r)+(sections+1+periods)*(GaAs(2*r) +
air(a-2*r))+air(cl)) # Central waveguide
ver = Slab(air(a-r + (sections+1)*a) + periods*(GaAs(2*r))
+ air(a-2*r))+air(cl)) # Vertical section.
\operatorname{arm} = \operatorname{Slab}(\operatorname{GaAs}(r) + \operatorname{air}(a-2*r) + \operatorname{sections}^*(\operatorname{GaAs}(2*r) +
air(a-2*r))+air(a)+periods*(GaAs(2*r) + air(a-
2*r))+air(cl) ) # Outer arms.
wg = BlochStack(cen(2*r) + no rods(a-2*r))
wg.calc() # Find lowest order waveguide mode.
```

Results: Photonic Crystal Splitter



P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

 Can demonstrate a low loss (3 dB) split within wavelength scale – compares favorably with index-guided fibers

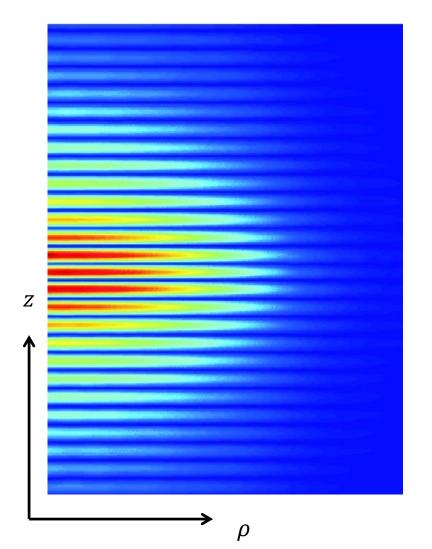
Code: Vertical Cavity Surface Emitting Lasers (VCSELs)

set_N(100) set_circ_order(1) set_circ_PML(-0.1) GaAs=Circ (GaAs_m(r+d_cladding)) AlGaAs=Circ(AlGaAs_m(r+d_cladding))

top = Stack((GaAs(0) + AlGaAs(x)) + ox(.2*d_AlGaAs) + (AlGaAs(.8*d_AlGaAs - x) + GaAs(d_GaAs) + 24*(AlGaAs(d_AlGaAs) + GaAs(d_GaAs)) + air(0))) bottom = Stack(GaAs(.13659) + QW(.00500) \ + (GaAs(.13659) + 30*(AlGaAs(d_AlGaAs) + GaAs(d_GaAs) + GaAs(0)))) cavity = Cavity(bottom, top) cavity.find_mode(.980, .981)

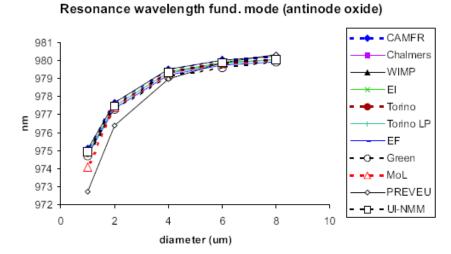
...

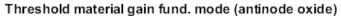
Results: VCSEL

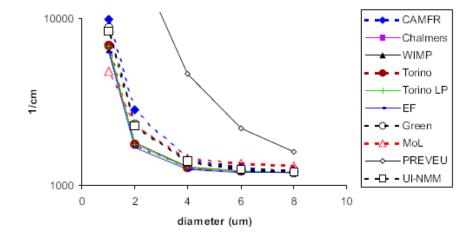


 Field profile resulting from this design (in ρ-z plane)

Results: VCSEL







Next Class

- Is on Wednesday, March 8
- Will discuss CAMFR interface: http://camfr.sourceforge.net