ECE 695 Numerical Simulations Lecture 29: Finite-Difference Time Domain in MEEP

Prof. Peter Bermel March 29, 2017

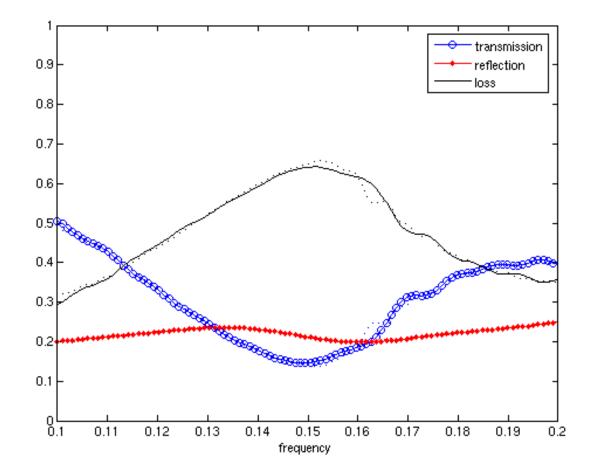
Outline

- MEEP Tutorial examples:
 - Index-guided bent waveguide
 - Multimode ring resonators
 - Isolating individual resonances
 - Kerr nonlinearities
 - Quantifying third-harmonic generation
- Random and correlated random textured structures

Example: Index-Guided Bend

• Can create movie from this (as shown below):

Index-Guided Bend


(define-param no-bend? false) (set! geometry (if no-bend? (list (make block (center 0 wvg-ycen) (size infinity w infinity) (material (make dielectric (epsilon 12)))) (list (make block (center (* -0.5 pad) wvg-ycen) (size (- sx pad) w infinity) (material (make dielectric (epsilon 12)))) (make block (center wvg-xcen (* 0.5 pad)) (size w (- sy pad) infinity) (material (make dielectric (epsilon 12))))))

Index-Guided Bend

```
(define-param nfreq 100)
(define trans; transmitted flux
 (add-flux fcen df nfreq
   (if no-bend?
    (make flux-region
     (center (- (/ sx 2) 1.5) wvg-ycen) (size 0 (* w 2)))
    (make flux-region
     (center wvg-xcen (- (/ sy 2) 1.5)) (size (* w 2) 0))))
(define refl; reflected flux)
 (add-flux fcen df nfreq
    (make flux-region
     (center (+ (* -0.5 sx) 1.5) wvg-ycen) (size 0 (* w 2))))
```

Index-Guided Bend

Transmission, reflection, and loss spectrum for the bend

Example: Ring Resonators

- Ring resonators are essentially index-guided waveguides bent in on themselves
- Discrete resonant frequencies induced by periodicity
- Free spectral range between modes varies inversely with ring radius
- Radiative losses decay exponentially with ring radius

```
(define-param n 3.4); index of waveguide
(define-param w 1); width of waveguide
(define-param r 1); inner radius of ring
(define-param pad 4); padding from waveguide
(define-param dpml 2); thickness of PML
(define sxy (* 2 (+ r w pad dpml))); cell size
(set! geometry-lattice (make lattice (size sxy sxy no-size)))
(set! geometry (list (make cylinder (center 0 0) (height infinity)
                   (radius (+ r w)) (material (make dielectric (index n))))
               (make cylinder (center 0 0) (height infinity)
                  (radius r) (material air))))
(set! pml-layers (list (make pml (thickness dpml)))) (set-param!
resolution 10)
```

(define-param fcen 0.15) ; pulse center frequency

(define-param df 0.1) ; pulse width (in frequency)

(set! sources (list (make source (src (make gaussian-src (frequency fcen) (fwidth df))) (component Ez) (center (+ r 0.1) 0))))

(run-sources+ 300 (at-beginning output-epsilon) (after-sources (harminv Ez (vector3 (+ r 0.1)) fcen df)))

Меер	🗙 Terminate	Image: which we depend on the output of the second sec
1 Input -> 2 Simulate		About this tool Questions?
Example: Ring-Resonator Modes (Cartesian)		•
<pre>Imput (Calculating 2d ring-resonator modes, from the Meep tutorial. (define-param n 3.4) ; index of waveguide (define-param v 1) ; width of waveguide (define-param v 1) ; inner radius of ring (define-param pad 4) ; padding between waveguide and edge of PML (define sxy (* 2 (+ r w pad dpml))) ; cell size (set! geometry-lattice (make lattice (size sxy sxy no-size))) ; Create a ring waveguide by two overlapping cylinders - later objects ; take precedence over earlier objects, so we put the outer cylinder first ; and the inner (air) cylinder second. (set! geometry (list</pre>		
<pre>(set! pml-layers (list (make pml (thickness dpml)))) (set-param! resolution 10) ; If we don't want to excite a specific mode symmetry, we can just Choose "Upload" to upload your script from local disk</pre>		Z
Options		
Number of processors: 1 Walltime: 2h		
		Simulate >
Storage (manage) 29% of 1GB	1 2	ව ් 780 x 600

Can also access this example on MEEP tool:

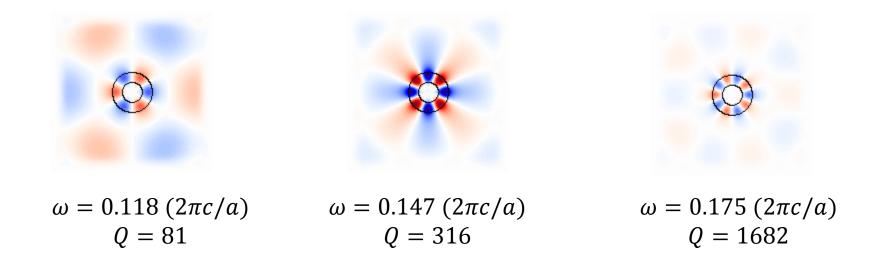
https://nanohub.org/tools/meep

• Filter diagonalization (harminv) extract resonant frequencies and decay rates:

$$f(t) = \sum_{k=1}^{N} a_k e^{-j\omega_k t - \Gamma_k t}$$

- Where: $Q_k = \omega_k / 2\Gamma_k$
- Raw output:

harminv0:, frequency, imag. freq., Q, |amp|, amplitude, error harminv0:, 0.118101575043663, -7.31885828253851e-4, 80.683059081382, 0.00341388964904578, -0.00305022905294175-0.00153321402956404i, 1.02581433904604e-5


harminv0:, 0.147162555528154, -2.32636643253225e-4, 316.29272471914, 0.0286457663908165, 0.0193127882016469-0.0211564681361413i, 7.32532621851082e-7 harminv0:, 0.175246750722663, -5.22349801171605e-5, 1677.48461212767, 0.00721133215656089, -8.12770506086109e-4-0.00716538314235085i, 1.82066436470489e-7 7

• Add the following to ring.ctl:

(run-until (/ 1 fcen) (at-every (/ 1 fcen 20) output-efield-z))

Run the following from command line: unix% meep fcen=0.118 df=0.01 ring.ctl unix% meep fcen=0.147 df=0.01 ring.ctl unix% meep fcen=0.175 df=0.01 ring.ctl unix% h5topng -RZc dkbluered -C ring-eps-000000.00.h5 ring-ez-*.h5 unix% convert ring-ez-*.png ring-ez-0.118.gif

• End result is to create movies of single ring resonator modes:

Example: Kerr Nonlinearities

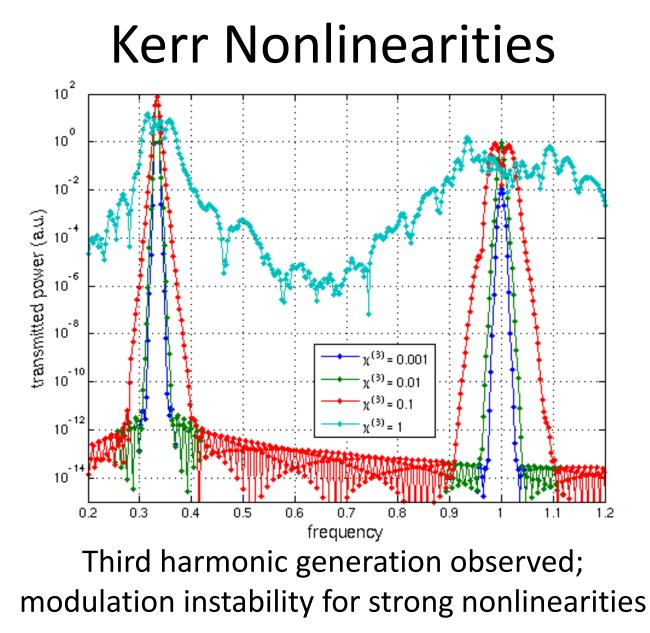
- FDTD can simulate Kerr nonlinear media, where $n = n_o + k |\mathbf{E}|^2$
- Physically, four-wave mixing will result from this. Two key processes:
 - Sum/difference frequency generation
 - Third-harmonic generation
- Relative rates depend on field strengths, input profile overlaps, and output density of modes

Kerr Nonlinearities

```
(define-param sz 100); size of cell in z direction
(define-param fcen (/ 1 3)); center frequency of source
(define-param df (/ fcen 20)); frequency width of source
(define-param amp 1.0); amplitude of source
(define-param k 1e-2) ; Kerr susceptibility
(define-param dpml 1.0); PML layer thickness
(set-param! dimensions 1)
(set! geometry-lattice (make lattice (size no-size no-size sz)))
(set! pml-layers (list (make pml (thickness dpml))))
(set-param! resolution 20)
(set! default-material (make dielectric (index 1) (chi3 k)))
```

Kerr Nonlinearities

(set! sources (list (make source (src (make gaussian-src (frequency fcen) (fwidth df))) (component Ex) (center 0 0 (+ (* -0.5 sz) dpml)) (amplitude amp)))) ; frequency range for flux calculation


(define-param nfreq 400)

```
(define-param fmin (/ fcen 2))
```

(define-param fmax (* fcen 4))

(define trans ; transmitted flux (add-flux (* 0.5 (+ fmin fmax (- fmax fmin) nfreq (make flux-region (center 0 0 (- (* 0.5 sz) dpml 0.5))))) (run-sources+ (stop-when-fields-decayed 50 Ex (vector3 0 0 (- (* 0.5 sz) dpml 0.5)) 1e-6))

(display-fluxes trans)

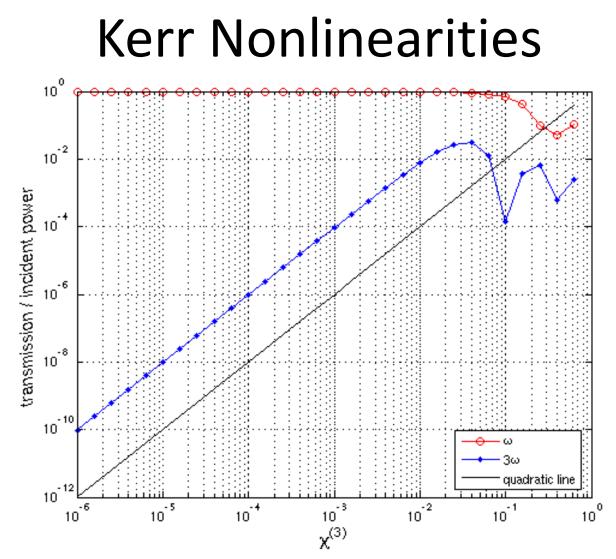
ECE 695, Prof. Bermel

Kerr Nonlinearities

• To quantify THG – add the following to our ctl file:

(define trans1 (add-flux fcen 0 1 (make flux-region (center 0 0 (- (* 0.5 sz) dpml 0.5)))))

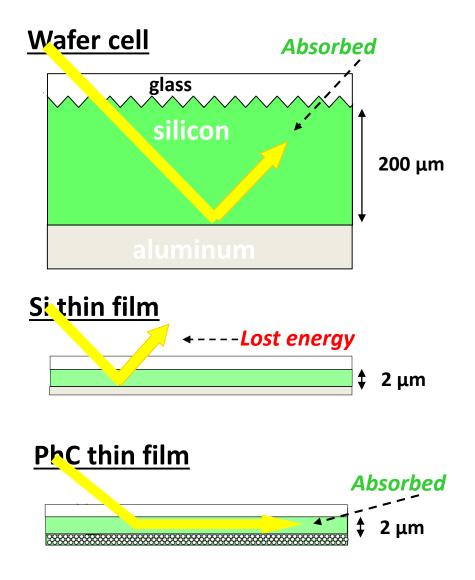
(define trans3 (add-flux (* 3 fcen) 0 1 (make flux-region (center 0 0 (- (* 0.5 sz) dpml 0.5)))))

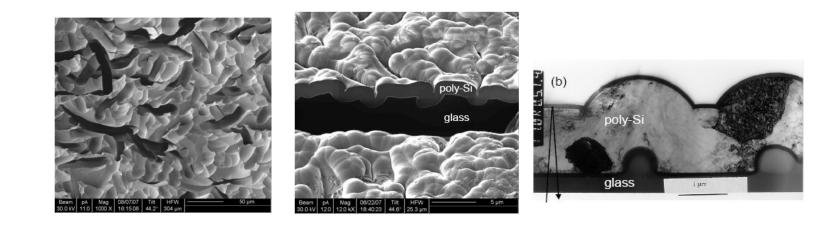

(print "harmonics:, " k ", " amp ", " (first (get-fluxes trans1)) ", " (first (get-fluxes trans3)) "\n")

• From command line:

unix% (for logk in `seq -6 0.2 0`; do meep k="(expt 10 \$logk)" 3rd-harm-1d.ctl |grep harmonics:; done) | tee harmonics.dat

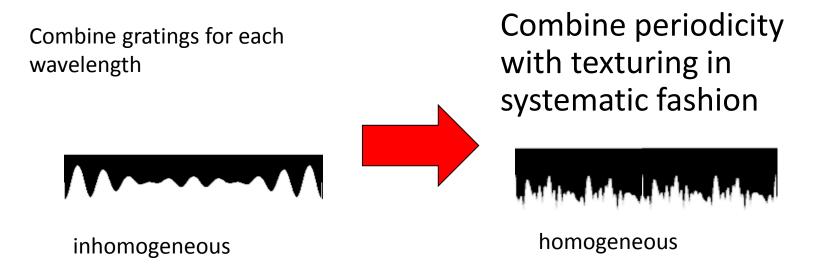
• Resulting output:


harmonics:, 0, 1.0, 112.62889036581, 1.20863942821229e-16

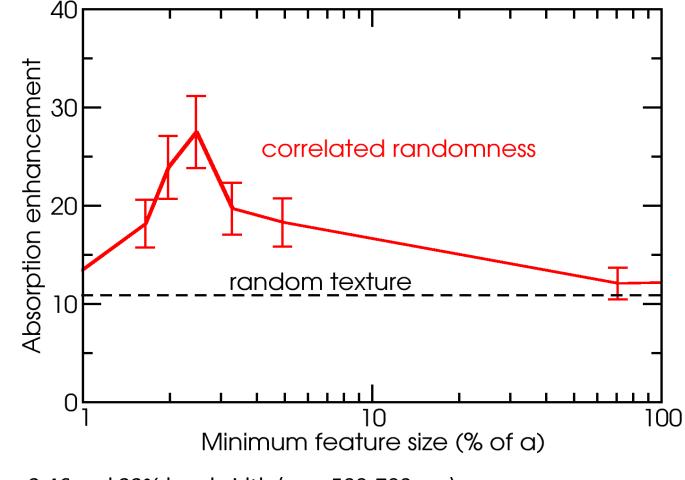

Third harmonic generation rate scales quadratically with nonlinearity

ECE 695, Prof. Bermel

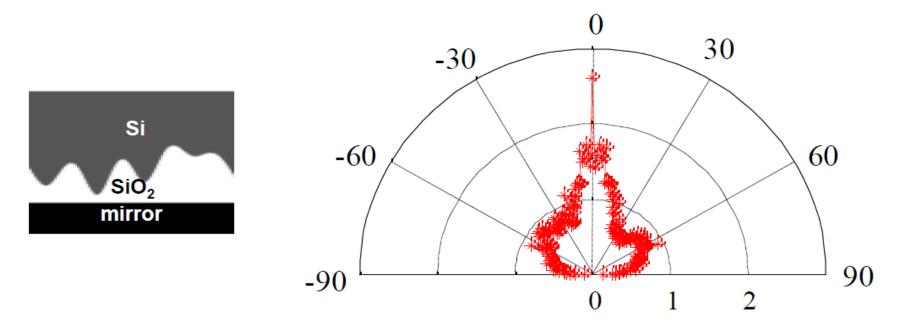
Example: Simulating Si PV Absorption


Different Geometric Light Trapping Approaches for Commercial µc-Si Cells

Treatment #1	Sand blast	Abrasion etch	Bead coat
Treatment #2	HF etch	HF etch	(used in our samples)
Feature depth	10-100 μm	500 nm	500 nm
Feature width	10 μm	1-5 μm	500 nm


M.J. Keevers et al., "10% Efficient CSG Minimodules,"

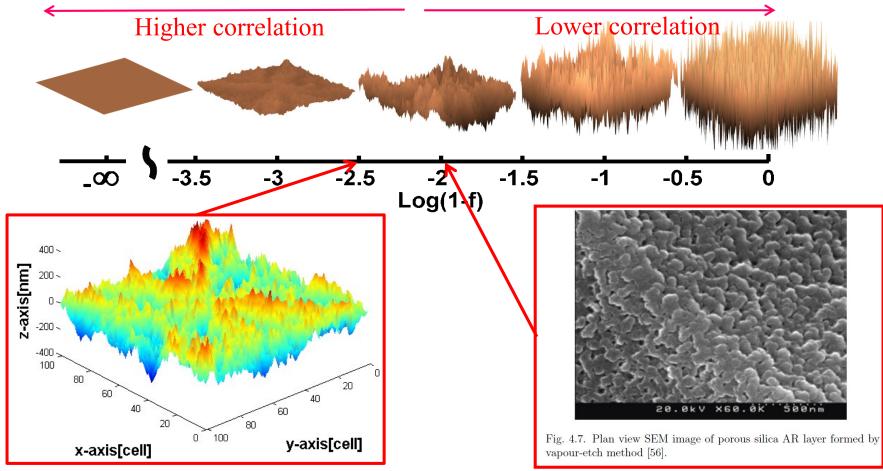
Correlated Randomness


A.N. Bloch & P. Sheng, US Patent 4,683,160 (1987) X. Sheng *et al.*, *Opt. Express* **19**, A841 (2011)

Correlated Randomness in 2D

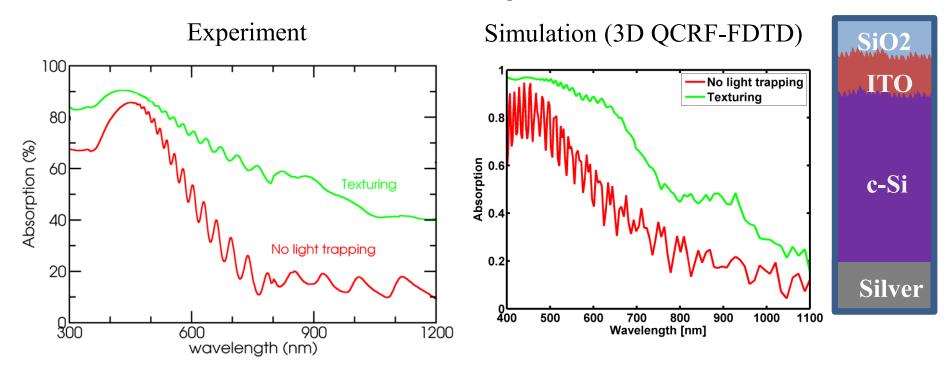
For n=3.46 and 33% bandwidth (e.g., 500-700 nm)

Angle-Sensitive Solar Absorbers



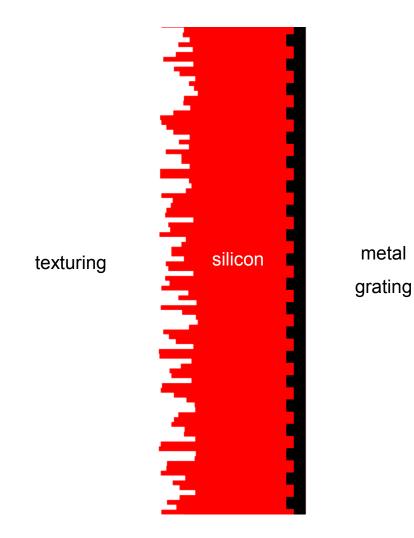
enhancement factor $F/\pi n$

X. Sheng et al., Opt. Express 19, A841 (2011)


X. Wang et al., "Approaching the Shockley-Queisser Limit in GaAs Solar Cells", IEEE J. Photovolt. (2013).

From flat to totally random structures via correlated random textures

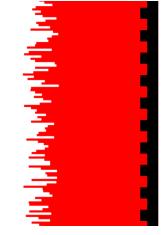
Keevers, M. J., et al. "10% efficiency CSG minimodules." Proceedings of the 22nd European Photovoltaic Solar Energy Conference. (2007).


Experimental absorption versus simulated absorption

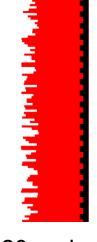
L. T. Varghese, Y. Xuan, B. Niu, L. Fan, P. Bermel, and M. Qi, "Enhanced photon management of thin-film silicon solar cells using inverse opal photonic crystals with 3d photonic bandgaps," *Advanced Optical Materials* **1**, 692– 698 (2013). H. Chung, K-Y. Jung, X. T. Tee, and P. Bermel, "Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function," *Opt. Express* **22**, A818-A832 (2014).

Computational Set-up

metal

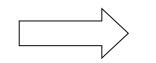


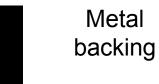
- Thickness of film = our ۲ experimental samples (1.47 μm)
- Four geometries tested •
- Random texturing: ۲
 - Uniform height distribution ____ over 500 nm
 - Distance between features ____ varies
- Photonic crystal: ٠
 - Reflection captured by metal —
 - Diffraction captured by grating — (optimized for this thickness)


Varying spacing between features

5 periods

10 periods

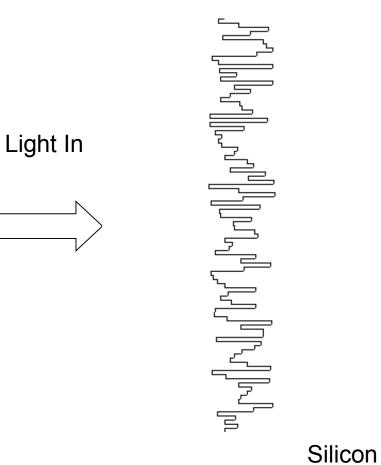



20 periods

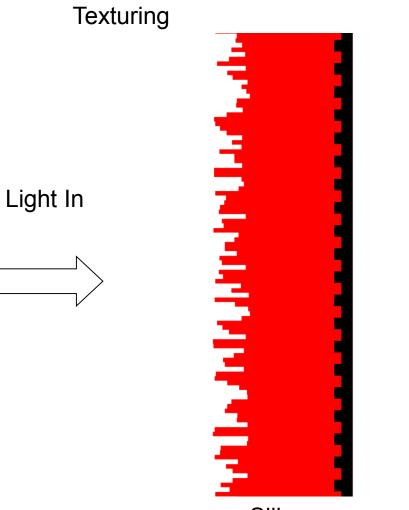
ECE 695, Prof. Bermel

Propagation of Light in Planar Geometry

Light In

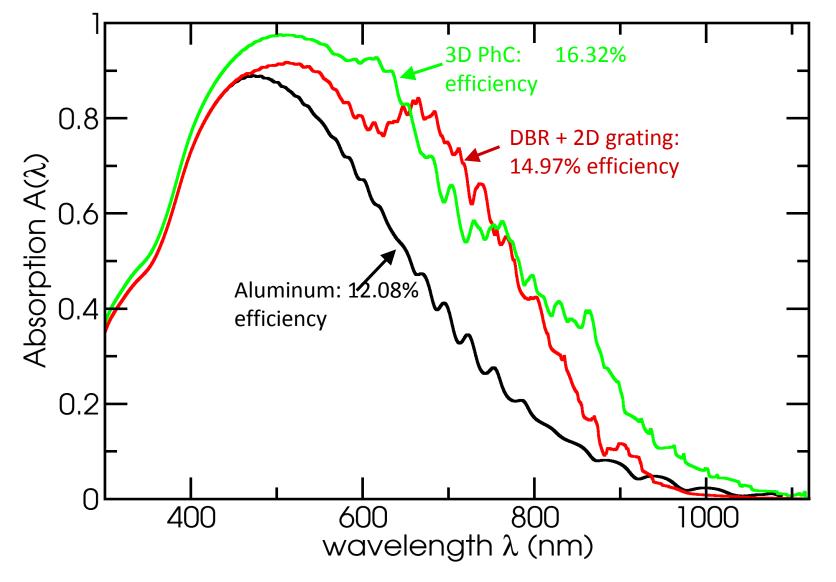


Silicon

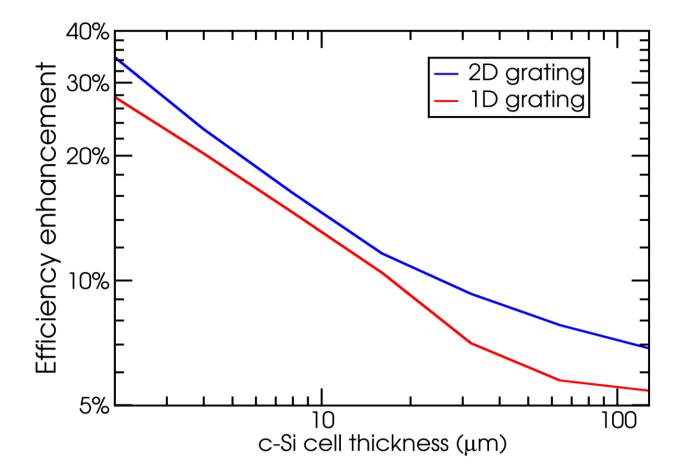

Propagation of Light in Textured Geometry (no backing)

Texturing

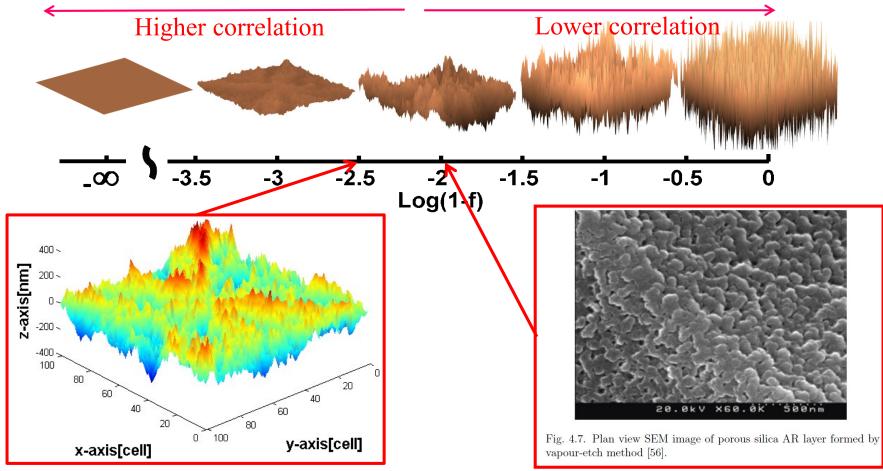
ECE 695, Prof. Bermel


Propagation of Light in Textured Geometry + Metal Grating

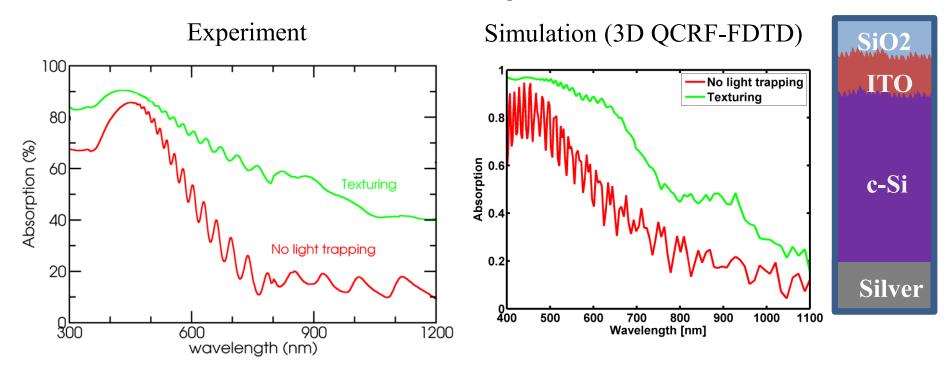
FC


Silicon 695, Prof. Bermel

Calculated Absorption Spectrum for 2 μ m μ c-Si


P. Bermel et alge Opt. PExpresse 15, 16986 (2007)

Efficiency Enhancement of Period Structures


For optimized parameters, 2D grating efficiency enhancement ranges from 7% at 128 μ m up to 35% at 2 μ m

From flat to totally random structures via correlated random textures

Keevers, M. J., et al. "10% efficiency CSG minimodules." Proceedings of the 22nd European Photovoltaic Solar Energy Conference. (2007).

Experimental absorption versus simulated absorption

L. T. Varghese, Y. Xuan, B. Niu, L. Fan, P. Bermel, and M. Qi, "Enhanced photon management of thin-film silicon solar cells using inverse opal photonic crystals with 3d photonic bandgaps," *Advanced Optical Materials* **1**, 692– 698 (2013). H. Chung, K-Y. Jung, X. T. Tee, and P. Bermel, "Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function," *Opt. Express* **22**, A818-A832 (2014).

Next Class

- Next time: we will continue finitedifference time domain techniques
- Suggested reference: S. Obayya's book, Chapter 5, Sections 4-6