ECE 695 Numerical Simulations Lecture 3: Practical Assessment of Code Performance

Prof. Peter Bermel January 13, 2017

Outline

- Time Scaling
- Examples
- General performance strategies
- Computer architectures
- Measuring code speed
 - Reduce strength
 - Minimize array writes
- Profiling

Time Scaling for Algorithms

Complexity	Examples
1	Arithmetic
Log(N)	Search binary tree
N	Iterate over N elements
N log(N)	Quicksort; mergesort; FFT
N ²	Allocate N x N (2D) array
N ³	Matrix operations (Multiply / invert matrices)
2 ^{<i>N</i>}	Towers of Hanoi
N!	Traveling salesman problem

Binary Tree Search

Successful (left) and unsuccessful (right) search in a BST

Quicksort

Matrix Multiplication

$$C[i][j] = \sum_{k=1}^{n} A[i][k] * B[k][j]$$

Towers of Hanoi

General Performance Strategies

- Choose the best algorithm for each job
- Consider Ahmdal's law:

Speedup
$$= \frac{t_{old}}{t_{new}} = \frac{1}{(1-f) + f/N}$$

- Make common case fastest (e.g., eliminate unnecessary steps at inner loops)
- Make rare case correct (e.g., avoid mistakes in less frequent functions)

Ahmdal's law

San Diego Supercomputer Center, Summer Institute Tutorial

ECE 695, Prof. Bermel

Gustafson's Law

Instead of running the same size problem for all *N*, we can also consider running larger problems with better code or greater resources, which leads to Gustafson's law

Testing Gustafson's and Amdahl's Law

Gustafson's law and Amdahl's law at f=0.95 v. observed values

Garrison Prinslow (Washington University-St. Louis), Overview of Performance Measurement for Multicore Processors

ECE 695, Prof. Bermel

General Performance Strategies

- Minimize jumps/branches
- Consider array index order and operation choices
- Reduce local variables/parameters (especially arrays)
- Minimize dynamic memory allocation

General Performance Strategies

- A few good, but less known, things to do for fast code:
 - Prefer static linking and position-dependent code (as opposed to PIC, position-independent code).
 - Prefer 64-bit code and 32-bit data.
 - Prefer array indexing to pointers
 - Prefer regular memory access patterns.
 - Minimize control flow.
 - Avoid data dependencies.

Computer Architectures

- Old paradigm: predictable performance (clock frequency, each operation takes a fixed number of cycles)
- New paradigm: statistically optimal performance (deep cache hierarchies, pipelines, speculative execution)
- Implication: must now <u>measure</u> all important operations

Computer Architectures

Chip Level Architecture

- Ring Interconnect:
 - Dedicated "stops": each CPU Core, Graphics, & System Agent
 - Bi directional, 32 Bytes wide
 - Shared Last Level Cache (LLC)
 - Both Graphics & CPU cores
 - Cache slices act like a single monolithic albeit distributed cache
 - 2-8MB, depending on product

9

Measuring Code Speed

Accurate benchmarking requires:

- Not measuring the speed of debug builds.
- Using the baseline and the benchmarked code under the same conditions.
- Not including ancillary work in measurement, particularly in an imbalanced fashion.
- Focusing on common cases instead of rare ones

Reduce Strength

- When implementing an algorithm, use operations of the minimum strength possible.
- The speed hierarchy of operations is (fast to slow):
 - comparisons
 - (u)int add, subtract, bitops, shift
 - floating point add, sub (separate unit!)
 - indexed array access (caveat: cache effects)
 - (u)int32 mul
 - FP mul
 - FP division, remainder
 - (u)int division, remainder

Reduce Strength: digits10

```
uint32_t digits10(uint64_t v) {
    uint32_t result = 0;
    do {
        ++result;
        v /= 10;
    } while (v);
    return result;
}
```

```
uint32_t digits10(uint64_t v) {
    uint32_t result = 1;
    for (;;) {
        if (v < 10) return result;
        if (v < 100) return result + 1;
        if (v < 1000) return result + 2;
        if (v < 10000) return result + 3;
        v /= 10000U;
        result += 4;
    }
}</pre>
```

Basic algorithm using division

Reduced strength algorithm using comparison with division fallback

}

Reduce Strength: digits10 relative speedup

Minimize Array Writes

- To be faster, code should reduce the number of array writes, and more generally, writes through pointers.
- On modern machines having large register files and ample register renaming hardware, most named individual variables (numbers, pointers) end up sitting in registers – which are fast
- Avoid array writes wherever possible: array operations (and other indirect accesses) are less natural across the entire compiler-processor-cache hierarchy because:
 - Array accesses are not registered
 - Whenever pointers are involved, the compiler must assume the pointers could point to global data, meaning any function call may change pointed-to data arbitrarily.
 - Array writes are the worst: writing one word to memory is essentially a cache line read followed by a cache line write.

Minimize Array Writes: Integer to String Conversion

```
uint32 tu64ToAsciiClassic(uint64 tvalue,
char* dst) {
  // Write backwards.
  auto start = dst;
  do {
    *dst++ = '0' + (value \% 10);
    value = 10;
  } while (value != 0);
  const uint32 t result = dst - start;
  // Reverse in place.
  for (dst--; dst > start; start++, dst--) {
    std::iter swap(dst, start);
  }
  return result;
```

```
uint32_t uint64ToAscii(uint64_t v, char *const
buffer) {
  auto const result = digits 10(v);
  uint32 t pos = result - 1;
  while (v >= 10) {
    auto const q = v / 10;
     auto const r = static cast<uint32 t>(v %
10);</uint32 t>
    buffer[pos--] = '0' + r;
    v = q;
    assert(pos == 0); // Last digit is trivial to
handle
  *buffer = static cast<uint32 t>(v) +
'0';</uint32 t>
  return result;
}
```

Revised algorithm with less array writes

}

1/13/2017

Minimize Array Writes: Integer to String Conversion Relative Speedup

ECE 695, Prof. Bermel

Code Optimization Links

• Basic concepts for C/C++ code optimization:

http://www.eventhelix.com/realtimemantra/basics/optimizingcandcppcode.htm

 Vectorization on modern Intel Core processors:

https://software.intel.com/en-us/articles/practical-intelavx-optimization-on-2nd-generation-intel-core-processors

• Optimized subroutines in C/C++ (advanced):

http://www.agner.org/optimize/

Profiling with gprof

- gprof is a profiling tool for UNIX/Linux applications.
 First developed in 1982, it is still extremely popular and widely used.
- Universally supported by all major C/C++ and Fortran compilers
- Extremely easy to use
 - Compile code with -pg option: adds instrumentation to executable
 - Run application: file named gmon.out will be created.
 - Run gprof to generate profile: gprof a.out gmon.out
- Introduces virtually no overhead
- Output is easy to interpret

Flat Profile View

🖌 Flat Profi	e						
<u>F</u> ile	<u>C</u> ode Dis	play	Utility				Help
c %time	umulative seconds	self seconds	calls	self ms/call	total ms/call	name	
84.2	36.48	36.48	1	36480.00	36480.00	.unroll [3]	tuned.c
8.7	40.24	3.76	1	3760.00	3760.00	.pipe [4]	tuned.c
4.6	42.23	1.99	1	1990.00	1990.00	.strength.GL [5]	tuned.c
2.1	43.14	0.91				.datb [6]	datb.f
0.2	43.21	0.07	1	70.00	70.00	.block [7]	tuned.c
0.2	43.28	0.07				.dtrsa [8]	dtrsa.f
0.1	43.31	0.03				.dtrca [9]	dtrca.f
0.0	43.31	0.00	50000	0.00	0.00	.sin [10]	//////si
0.0	43.31	0.00	64	0.00	0.00	.pthread_self [11]	
0.0	43.31	0.00	1	0.00	42300.00	.main [1]	tuned.c
0.0	43.31	0.00				start [2]	crtQmain.s
⊲							\$
Search Ei	ngine: (re	gular exp	ressions	supported)		
I							

Call Graph

-				Call Gra	ph Profile	•
<u>F</u> ile						Help
index	%time	self des	cendents	called/total called+self called/total	parents name index children	
[1]	99.0	0.01 0.01 6.07 5.72 2.81 2.42 0.36 0.03	$17.54 \\ 17.54 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.05 \\ 0.08 $	1/1 1 101/101 101/101 101/101 101/101 1/1 1/	start [2] .qmfd2 [1] .xsolve [3] .ysolve [4] .yrhs [5] .xrhs [6] .setup_matrix [7] .init_psi [9]	
[2]	99.0	0.00 0.01	17.55 17.54	1/1	<spontaneous> start [2] .qmfd2 [1]</spontaneous>	
[3]	34.2	6.07 6.07	0.00 0.00	101/101 101	.qmfd2 [1] .xsolve [3]	
[4]	32.3	5.72 5.72	0.00 0.00	101/101 101	.qmfd2 [1] .ysolve [4]	
[5]	15.8	2.81 2.81	0.00 0.00	101/101 101	.qmfd2 [1] .yrhs [5]	
[6]	13.6	2.42 2.42	0.00 0.00	101/101 101	.qmfd2 [1] .xrhs [6]	
1						
earch	Engine:	(regular e	expression	s supported)		

Limitations of gprof

- gprof only measures time spent in user-space code; does not account for system calls or time waiting for CPU or I/O
- gprof has limited utility for threaded applications (e.g. parallelized using OpenMP or Pthreads) and will normally only report usage for thread 0
- gprof can be used for MPI applications and will generate a gmon.out.id file for each MPI process. But it will not give an accurate picture of the time spent waiting for communications
- gprof will not report usage for un-instrumented library routines
- By default, gprof only gives function level rather than statement level profile information (requires debug mode + gprof –l). But once a function has been identified as a hotspot, it's usually obvious where the time is being spent (e.g. statements in innermost loop)

MATLAB profiler

profile on profile clear calcRate(Y(1:75000),N(1:75000)); profreport('calcRate')

									(
Desktop	Window Help								
44									
this cod	e:							*	🔴 Profile
		ı cpu time.							
<u>Calls</u>	<u>Total Time</u>	Self Time*	Total Time Plot (dark band = self time))					
1	27.529 s	27.529 s							
	this cod mary -2011	this code: mary -2011 17:30:52 using Calls Total Time	this code: mary -2011 17:30:52 using cpu time. Calls Total Time Self Time*	Mary -2011 17:30:52 using cpu time. Calls Total Time Self Time* Total Time Plot (dark band = self time)	Mary -2011 17:30:52 using cpu time. Calls Total Time Self Time* Total Time Plot (dark band = self time)	Mary -2011 17:30:52 using cpu time. Calls Total Time Self Time* Total Time Plot (dark band = self time)	Mary -2011 17:30:52 using cpu time. Calls Total Time Self Time* Total Time Plot (dark band = self time)	Mary /-2011 17:30:52 using cpu time. Calls Total Time Self Time* Total Time Plot (dark band = self time)	this code: mary -2011 17:30:52 using cpu time. Calls Total Time Self Time* Total Time Plot (dark band = self time)

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from the process of profiling.

MATLAB Optimization

- MATLAB's Techniques for Improving Performance
 - <u>http://www.mathworks.com/help/techdoc/matlab</u> prog/f8-784135.html#f8-793781
- MATLAB's What things can I do to increase the speed and memory performance of my MATLAB code?
 - <u>http://www.mathworks.com/support/solutions/en/</u> <u>data/1-15NM7/?solution=1-15NM7</u>
- Improving the Speed of MATLAB Calculations
 - <u>http://web.cecs.pdx.edu/~gerry/MATLAB/program</u> <u>ming/performance.html</u>

Next Class

- Formulating eigenproblems for electro-optic systems
- See <u>Joannopoulos, Chapter 2 and</u> <u>Appendix D</u>