academic working in the field. In places, the book is outstanding. The chapter covering coronal heating is exceptionally good, combining an excellent overview of the physics involved in this complex and difficult area with a discussion of recent results and outstanding questions. Some other chapters are equally compelling: I was particularly impressed with those covering coronal mass ejections and space weather. Elsewhere, however, are chapters that—although providing excellent treatments of the physics involved—could almost have been written at any time during the past 30 years, with little reference to current outstanding issues or recent observations. The contrast between the more and less compelling chapters is striking.

Nonetheless, the book, while somewhat disappointing, is worthwhile for working solar-terrestrial physicists because there is nothing else like it available.

For that reason alone, Handbook would be useful for a working solar-terrestrial physicist (particularly one supervising graduate students). Handbook is currently unique among books in print covering the entire field of solar-terrestrial science at a level more comprehensive than that of an undergraduate textbook.

The book is valuable on its own merits as well. It provides a thorough treatment of underlying physics and, in some chapters, blossoms forth with a fine treatment on the current state of the field, complete with recent results and currently open questions. These chapters are in the minority, but they show what can be done in terms of communicating the rapid evolution of modern solar-terrestrial physics.

As a working solar-terrestrial physicist, it is likely that you may refer to this book again and again and that it will prove a valuable resource. If you are an ambitious graduate student and have decided you want to make a career in solar-terrestrial physics, then you might consider it too, despite the price. The book will not, however, convince scientists from other fields who wander into your office and start perusing your bookshelf to throw away their current field of research and turn to solar-terrestrial physics. That book has yet to be written.

—ANDY BRENN, Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth, UK; Email: abz@aber.ac.uk

Correction

In the first paragraph of the feature article “Global methane emissions from wetlands, rice paddies, and lakes,” published in the 3 February issue (Eos, 2009), the word “nitrous” should have been “nitrogen.” The sentence should read, “Atmospheric methane is 22 times more effective, on a per-unit-mass basis, than carbon dioxide in absorbing long-wave radiation on a 100-year time horizon, and it plays an important role in atmospheric ozone chemistry (e.g., in the presence of nitrogen oxides, tropospheric methane oxidation will lead to the formation of ozone).”

Eos regrets this error.

NEW BOOKS

This column lists recently published books that have been received by Eos.

PAGE 95

- **The Rotation of Sun and Stars, Jean-Pierre Rozelot and Coralie Neiner (Eds.), Springer, 2009, ISBN 978-3-540-87830-8, $89.95

PAGE 92

In the first paragraph of the feature article “Global methane emissions from wetlands, rice paddies, and lakes,” published in the 3 February issue (Eos, 2009), the word “nitrous” should have been “nitrogen.” The sentence should read, “Atmospheric methane is 22 times more effective, on a per-unit-mass basis, than carbon dioxide in absorbing long-wave radiation on a 100-year time horizon, and it plays an important role in atmospheric ozone chemistry (e.g., in the presence of nitrogen oxides, tropospheric methane oxidation will lead to the formation of ozone).”

Eos regrets this error.