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ABSTRACT  
The handling of high-consequence materials is a difficult task requiring safe object manipulation while 

avoiding the risk of contamination or spillage. Specific operations including opening containers, 

segregating the wastes, and repackaging are required to be safely executed inside contained spaces such as 

gloveboxes. However, the workers’ ability and dexterity to manipulate objects through thick protective 

gloves are compromised in many aspects. The fixed position of the glovebox’s arm ports restricts the 

movements of the workers’ arms, which also makes it hard to lift heavy objects. Further, the operational 

workspace inside the glovebox is restricted by the gloves’ reachability. Safety of workers is the paramount 

concern in glovebox operations and the very reason for their existence. Sharp edges and tools increases the 

risk of glove punctures, which may expose the operator to chemicals and radiation and risks contamination 

in the vicinity outside the glovebox. The operators are also affected by ergonomic stressors due to prolonged 

and repetitive operations.  

 
To achieve a high degree of human safety, robotic solutions to handle high-consequence materials inside 

the glovebox are desirable, as they remove the operators from the hazards listed above. However, robots, 

in general, lack the degree of adaptability necessary for most high-consequence material handling tasks as 

these tasks are often unstructured or highly variable. Likewise, most human operators, while highly skilled 

in the tasks at hand (task expertise), lack the robot programming skills necessary to adapt the robot’s 

motions to the variations (programming expertise). A way to bridge this divide is to make robot 

programming more intuitive to human operators. Since humans naturally teach one another through 

demonstration and learning, robotic “programming by demonstration” paradigms have begun to appear to 

reduce the burden of robot reprogramming. Gesture-Based Programming attempts to achieve that by 

enabling a robot to observe the normal actions and affordances of a human performing a task to learn to 

map those onto the skills of the robot. In the end, this approach permits benefits from both the human and 

the robot: the human’s adaptive decision making and the robot’s resilience to high-consequence material.  

 
Robotic solutions assuringly provide protection for the operators, however their autonomy brings about 

other potential risks. Artificial Intelligence is not perfect; it is a black box, which can produce results, but 

the full extent of those results may not be known precisely. In self-driving cars, a hypothetical AI problem 

is the “green man detector.” Since self-driving cars have presumably never seen a green man, how can we 

know it won’t veer toward him the first time it sees a green man? Likewise, even though GbP provides an 

open method for safe task execution replicating a human, incorrect task inferences can lead to potential 

collisions or unintended operations. Thus, a hardware safety measure is proposed to provide reliable 

operation inside the glovebox, and true safe operations are achieved by mechanically limiting the 

operational range of each arm link. The operational range is computed and validated through exhaustive 

offline simulations, which can be streamlined by affordable computing power. 
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Super Baxter is one such robot which incorporates these capabilities. It is a human-like, bimanual robot, 

being developed at the Collaborative Robotics Lab (CRL) in conjunction with the Dept. of 

Energy/Environmental Management, Rethink Robotics, Barrett Technology, and the NSF Center for 

Robots and Sensors for the Human Well-Being (RoSe-HUB). Super Baxter is envisioned to represent the 

next generation of collaborative robots that will be intrinsically human-safe, as well as exceptionally 

human-intuitive.  
 
In summary, Super Baxter will enable safe glovebox operations through low-shot Gesture based 

Programming incorporated with hardware safety measures. Two aspects of safety will be discussed in the 

paper. First, the safety of the operator achieved by allowing him to program Super Baxter remotely through 

Gesture based Programming. Second, the safety of the glovebox, achieved by incorporating hardware safety 

measures using joint limits. Further, the capability of Super Baxter on Gesture based Programming is 

demonstrated through typical object manipulation tasks in glovebox operations. 

 
 

INTRODUCTION 

Gloveboxes have become an integral part of laboratory equipment used for safely handling hazardous 

materials in the nuclear facilities and biological labs. Even though there have been advances in glovebox 

designs to increase the safety and efficiency, they do not completely eliminate the risk of injuries. The 

workers are still affected from handling the hazardous substances, ergonomics injuries, etc. There are 

regulations imposed by the Occupational Safety and Health Administration (OSHA) Standard No. 

1926.1101, [1] on handling the toxic and hazardous substances. OSHA regulation 1926.1101(g)(9)(iii) 

states that if the operation involves processes that could potentially puncture the glove bag such as cutting, 

drilling, breaking, or sawing, then the operator shall use impermeable protective gear and isolate the 

operation using a mini-enclosure. There is a risk of injury or exposure in spite of the regulations and safety 

procedures.  

 

Investigations and surveys have reported injuries and exposure inside gloveboxes to workers at nuclear 

facilities [2][3]. The reported cases of glovebox related injuries usually resulted from puncture wounds, 

which lead to internal contamination. Cases of ergonomic injuries resulting from repetitive motion in 

glovebox operation have been reported. To eliminate risk of injuries to workers while operating the 

glovebox, it is recommended to evacuate the worker from physical contact with high-consequence material 

handling.    

 

One solution to high-consequence material handling is robotic teleoperation, which allows the worker to 

manipulate the objects in the glovebox without exposing him/her to the internal contamination or radiation. 

There are many examples of using teleoperated robots at nuclear facilities. The workhorse of the nuclear 

industry has been the CRL Model M2 master-slave manipulator system developed by the Central Research 

Laboratory and Oak Ridge National Laboratory [4]. A more modern example is the Industrial 

Reconfigurable Anthropomorphic Dual-arm (IRAD) which is a teleoperated robot designed to manipulate 

high-consequence material inside the glovebox [5]. IRAD is comprised of two Yaskawa Motoman SIA5 

industrial manipulators. It was equipped with the force-torque sensors and 3-fingered adaptive robot 

gripper. The IRAD system can be teleoperated using three different interfaces: Command line, Graphical 

User Interface (GUI), and optical hand tracking. GUI was found to be more effective compared to optical 

hand tracking approach. These teleoperated robots do enhance the safety and efficiency of the workers, but 

there is huge amount of learning and familiarization required to operate the robot. There are also 

correspondence issues between the master interface and the slave robot. 

 

A better solution is fully autonomous robots that tirelessly perform tedious functions with precision, under 

human supervision. Yet, the current state of industrial robots requires highly-structured workcells and 

highly-experienced programmers to program robots.  
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For example, workers at nuclear facilities have implicit knowledge of the performed tasks, but lack the 

necessary syntactic programming skills. Humans are capable of performing complicated tasks like planning 

and manipulation easily, but describing tasks to the robot by syntactic programming is daunting. On the 

other hand, humans are very good in teaching by demonstration or with gestures. Gesture based 

Programming (GbP) is an approach that allows the user to teach the robot by performing the task with 

gestural language. There are many approaches to facilitate robots programming, an overview of these can 

be found in [6]. As a platform to implement GbP, we developed the Super Baxter, a bimanual configuration 

robot with a central head neck system, similar to a human. The reason we integrate the concept of head-

neck mechanism displaying emotions is to introduce a socially driven behavior in the robot, which enables 

the robot to have sustained interaction. Correspondingly, natural communication between the robot and 

human is essential in teaching process; our goal is to have the human teaches Super Baxter on the same 

way as they would teach a fellow human co-worker. Thus, interactive communication, which human uses 

in everyday life, is a natural approach for human co-worker to teach the robot without prior coding 

experience requirement.   

 

SUPER BAXTER 

Super Baxter is designed to be a collaborative robot -- implying it is intrinsically human-safe --- that is 

aware of human actions and human affective state and capable of interacting with humans in a socially-

relevant way. This is important, even in industrial settings, because humans are social animals and have 

been shown to be more efficient learners and performers when engaged in a socially-appropriate manner 

[7]. As such, Super Baxter is approximately human-size and has a human-like shape: two arms, multi-

fingered hands, and a face above the middle of the torso. (See Fig. 1.) This human-like configuration is 

beneficial because it makes the mapping of actions between human and robot more direct and more 

symmetric and the bi-manual aspect allows the robot to provide and control its own fixturing. Moreover, 

this allows humans to intuitively predict the trajectory of Super Baxter, even before it moves, and to guide 

it to correct the trajectory and improve its task performance.  

 

Each arm of the Super Baxter is a Rethink Robotics' SawyerTM arm with Barrett Technology's BH-282TM 

gripper as the end effector. A Rethink Robotics' Sawyer has 7 degrees of freedom (DOF) and maximum 

reach of 1.26 m. This large range of reach and 7-DOF give Super Baxter large envelope of reachable 

workspace and ability to freely manipulate the object inside the envelope. The Sawyer Arm has repeatability 

of ± 0.1 mm, which enable Super Baxter to perform repetitive tasks with sufficiently good accuracy. Sawyer 

robot is accredited for ISO 10218-1:2011 to meet international safety requirements for industrial robots. 

This certifies that the robot is safe to perform delicate tasks that require safety to both humans and 

equipments. Each arm has 5 kg payload, which makes Super Baxter suitable for light but repetitive tasks 

performed in the glovebox. In order to increase task manipulation performance, we use a tactile sensing 

end effector on the Barrett Technology's BHTM-282 grippers. Theses hands have three fingers built in with 

tactile sensor arrays on the fingertips and palm of the hand. The tactile sensor arrays provide pressure 

feedback, which enabling Super Baxter to perform tasks like manipulating low stiffness objects or 

confirming contacts. Each hand has 8 DOF, which allows for dexterous manipulation of objects in the 

workspace. Moreover, Super Baxter is equipped with an external KINECTTM to detect the target objects 

and motions in the workspace. 
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Fig. 1. Super Baxter - a dual arm robot with human-aware capabilities for social interaction 

 

Super Baxter has a human-like face with head-neck mechanism named Marni. Marni is a social avatar 

projected onto a human-face shaped translucent mask. The mechanism, which supporting the mask, is a 3-

DOF platform, allowing Marni to perform neck gestures, augmenting the communication with human co-

workers. The head-neck mechanism is controlled using the RecoNode, which is a multi-processor 

architecture VirtexTM 4 FPGA with multiple hardcore PowerPCs [8]. The face projection on the mask allows 

Marni to produce human-accustomed facial expressions and eye gazing through rear projection. The social 

avatar, while aesthetically pleasing, is also more cost-effective [9] and easy to maintain. Super Baxter with 

Marni as a social interface can use intuitive communication dialog and gestures to communicate with the 

worker. This potentially reduce the communication load and appears more friendly and approachable to 

human co-workers.  

 

There is an emerging trend of using social avatar in robots. Rethink Robotics' Baxter and Sawyer are 

examples of the robots, which use a 2D screen to display the social avatar while operating. Using a screen 

to display an emotive face increases engagement and awareness [10]. Marni also uses eye gaze direction to 

improve communication with human co-workers. User studies on 3D physical social avatar show improved 

human perception and engagement with mutual eye gaze and facial expressions on robot [11]. Natural eye 

gaze is an important aspect of interactive communication and elicits a more involved conversation [12]. By 

improving the eye gaze direction perceived by the human co-workers, we can establish more realistic verbal 

communication with human and make Super Baxter more human-friendly.   

 

GESTURE-BASED PROGRAMMING 

The software suite of Super Baxter is what will truly differentiate it as a next-generation collaborative robot. 

To coexist naturally with humans in a way that boosts the performance of human-robot teams, the advanced 

capabilities currently under development include human activity recognition [13], facial expression 

recognition and display [10][14], gesture-recognition for non-verbal communication [15][16][17], natural 

language processing for spoken dialog [18], and intuitive methods for programming and adaptation [19]. 

The focus of this section is on the Gesture-Based Programming (GbP) system that provides a programming 

interface more attuned to task experts rather than programming experts, allowing operators with minimal 

training to safely and reliably re-program the robot by showing it what to do. 

 

GbP uses task demonstrations, performed by the operator, to infer the task and map it onto actions the robot 

already knows. Tasks are assumed to be composed of combinations and sequences of a priori skills, which 

are pre-programmed sensorimotor skills that the robot can perform.  
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Programming by demonstration paradigms generally use the same environment for both human and robot, 

but one of the novelties of this work is that the demonstration of the task can be performed in a simulated 

and inert environment. This allows the human operator to be completely excluded from the glovebox 

operations. 

 

GbP is more intuitive to human and can be performed with little to nil training. It is not based on record 

and playback methods, but it is a learning method and thus implies generalization. The robot identifies the 

task and performs it rather than trying to replicate the human motion recorded by demonstration. GbP 

enables the robot to derive task inferences and perform the task by observing the human performing it, 

rather than requiring the end user to break down the task and program the robot. The task is identified as a 

composition of pre-learnt tasks or a priori skills. The aim of GbP is to easily extend the capabilities of robot 

and make it more adaptable to new situations or tasks. In case the robot is unable to perform the task, the 

user just needs to provide more demonstrations of the task to improve the task-learning of the robot.  

 

Literature Review 

Early works on learning by demonstration or programming by demonstration were approached based on 

symbolic reasoning with processes like playback methods [20]. The demonstration was broken down into 

a sequence of state-action-state transitions, which was further converted to if-then rules. These rules 

described the states and corresponding actions to be performed. In addition, machine learning based 

approaches have been used as methods for task inference and identification [21]. The approach identified 

basic operations to define a set of motor skills required for industrial robots. Later approaches incorporating 

neural mechanisms in animals and children have also been proposed [22], [23]. These approaches lead to 

robot programming by demonstration being referred to as ‘imitation learning’. These early works determine 

issues related to programming by demonstration such as generalization of task and reproduction of a 

completely new task. 

 

Some of these issues can be solved by choosing the right interface for programming by demonstration. 

Multiple interfaces have been suggested for GbP like sensorized gloves to estimate the pose of the hand 

[24], vision [25], speech command, and kinesthetic teaching [26] where the user manually holds the robot 

hand guides it to perform the task. GbP has progressed from simply copying the kinematics to generalizing 

across several demonstrated tasks. Mapping tasks and motions observed to the robot, which has a different 

physical structure, has a lot of problems [27]. These problems are broadly referred to as correspondence 

issues. To overcome correspondence issues, Super Baxter is pre-trained to learn the correspondences 

between human motion, task kinematics, and its own motion. 

 

Gesture-Based Programming Architecture 

In this section we describe the architecture for GbP.  the This involves two main steps; human task 

inference, Task Representation, and robot task planning. Human task inference infer the task based on the 

demonstration and then robot task planning converts the task to robot executable sequence. This is followed 

by execution of the task with data from sensors to augment the task execution. Fig. 2 shows the data flow 

diagram for GbP.  
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Fig. 2. Software data flow 

 

Human Task Inference and Task Representation 

Human task inference is the process of inferring the task demonstrated. The first step is the observation of 

human skeletal motion, object motion, and task kinematics. We use KINECTTM to get information regarding 

the human skeleton motion, visual scene, and kinematics of the object using the camera and depth sensors 

in KINECTTM. This information along with the a priori skills is used to infer the task intent and 

composition. 

 

The task generalization is based on the representation of a priori skills. The relative motion between the 

hand and task objects are used as the basis for the representation. A priori skills are represented as a set of 

variables 𝜎. Where 𝜎 is {𝑟̇, 𝑟, 𝑚, 𝑠 }, 𝑟 denotes the set of relative positions {𝑟1, 𝑟2, . . . . 𝑟𝑛}, where 𝑟𝑘 is the 

relative position between the hand and object 𝑘. 𝑟̇ = { 𝑟̇1, 𝑟̇2, … , 𝑟𝑛̇  } is the rate of change of relative position 

which is relative motion. 𝑚 is set of additional miscellaneous variables like the start position, end position, 

relative position between objects, object orientations, etc. The variables in 𝑚. 𝑠 is the previous state of the 

robot, i.e. the previous a priori inferred. Each a priori is based on conditions on {𝑟̇, 𝑟} 

 

For example, a priori 'transport' of kth object is identified by {𝑟𝑘̇ = 0, 𝑟𝑘 < 𝜖, 𝑚 = {}}. 𝜖 is a small threshold 

on position to detect whether the hand and object are very close. If the variable 𝑚 is null set, it implies the 

start and end points are not important, which is the case for “transport” task. The variables in 𝑚 are 

determined using few repeated demonstrations to arrive at correct inferences. For example, if the objects 

have to be placed at a specific position, the significance of the position is identified using multiple 

demonstration of the same task. In this case 𝑚 will contain an end position variable. If the end position is 

not important, but the objects have to be moved to an area in general, such as any point on conveyor, then 

the end point is not important. In this case 𝑚 will not contain any end position variable. 

 

Another example of a priori skill is retract which is identified by {𝑟𝑘̇ > 0, 𝑟𝑘 > 𝜖, 𝑚 = {}}.. For a priori 

skill like stack 𝑚 will contain the variables for relative positions between objects. 

 

Here we present the task inference for a simple pick and place task. Super Baxter identifies a simple pick 

and place task as a composition of observable a priori skills as shown in Fig. 3. The human skeleton 

information and object detection from visual sensor can be used to identify the task gestures. These gestures 

can be recognized as approaching, transporting, releasing the object, or others pre-learnt robot skills (a 

priori skills). The basis for this inference is the representation of the a priori skills.  

 
Fig. 3. Observable a priori skills from human demonstrator in pick and place task.  
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Robot Task Planning 

Robot Task Planning generates the task models, which is a sequence of  a priori skills to complete the task. 

This is different from task inference. Here we use the outputs of task inference to generate a sequence of a 

priori skills to be executed to accomplish the task. The differences are demonstrated using example of the 

pick and place task in Fig. 4. Some of the a priori skills have required conditions to be fulfilled before 

executing, such as “approach the object” requires the position of the targeted object, and “transport the 

object” requires the hand to be pre-shaped first and then a grasp to be performed to pick up the object. Thus 

robot task planning is generating this complete task model, by incorporating the ‘transition a priori skills’. 

  
Fig. 4. Pick and place task execution sequence with transition a priori skills. 

 

To show the scalability of the task inference and planning, an example of scooping / unscooping task model 

is shown in Fig. 5. This task is comparatively more complex than pick and place task as it has more steps 

to complete the task and requires tool manipulation.  

 

 
Fig. 5. Scooping / unscooping task execution sequence. 

 

A Priori Skills Database 

The a priori skills are defined as the basic robot skills or capabilities. These a priori skills are used to 

assemble the ‘task model,’ which is the representation for a particular task. The a priori skills database is 

the set of these pre-learnt a priori skills. The skill’s database is also used for developing the task execution 

sequence, defined as the set of state-action transitions the robot has to perform to execute the task. 

 

The a priori skills are separated into two sets, the observable a priori skills and the transition a priori skills. 

The observable a priori skills are those that can be observed/inferred by using the data from the 

demonstration. These skills can be observed as well as executed by the robot. The sequence of these skills 

observed forms the task model. The transition a priori skills are robot capabilities that are not observable 

but are required to execute the task.  

These are used to control or execute the transitions in the task model. To execute an inferred task, the task 

has to be represented in a sequence of executable robot skills. The task execution sequence is developed by 

combining the task model and the transition a priori skills. 
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The observable a priori skills can be expanded based on sensors used for observing the demonstration. This 

provides a scalable method to expand the observable skill database. Using sensorized gloves for force-based 

gestures as shown in [24] provides additional informations for the demonstrations which can be used to 

extend the observable a priori skill database. 

 

Examples of observable a priori skills are moving, setting specific joint positions, opening/closing the end 

effector, transporting an object (the movement with the object held in the end effector). Examples of 

transition a priori skills are picking, visual servoing, scooping, and placing. The robot has a pre-

programmed database of these a priori skills. This database is queried for both the Human Task Inference 

and Robot Task Planning process. 

 

GLOVEBOX SAFETY MEASURE THROUGH HARDWARE IMPLEMENTATION 

Super Baxter enabled with PbD is susceptible to improper demonstrations or false task interpretation, and 

might result in breaking the glovebox. To ensure the safety of the glovebox, a fail-safe hardware joint limits 

are implemented on Super Baxter. These hardware joint limits are used to restrain the operational range of 

each arm using mechanical buffers, enabling the safe operations inside the glovebox. The joint limits are 

derived from exhaustive offline simulations. 

 

Methodology 

Mechanical limitation on the joints angles are defined in consideration with the position of Super Baxter 

inside glovebox. All possible trajectories within the joint limits, required for the task completion, are to be 

verified such that no part of the robot can hit the glovebox enclosure. An exhaustive offline simulation is 

proposed to determine joint limits and evaluate multiple scenarios before the physical implementation.  

 

Initially, the simulation procedure is demonstrated with manipulators on a planar workspace, followed by 

3D workspace. In a planar workspace, target points, 𝑃𝑖, can be objectively determined by task locations 

(𝑥𝑖, 𝑦𝑖) and tooltip orientations (𝜙𝑖 ). Each target point has J sets of joint angle (𝜃) solutions, 𝑚𝑖𝑗 as 

represented in eq. (3), and is computed by solving Inverse Kinematics (𝐼𝐾(𝑃𝑖)), which satisfy the following 

equations: 

𝑃𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝜙𝑖) = (𝛴𝑞=1
𝑄 𝐿𝑞 cos(𝜃𝑞) , 𝛴𝑞=1

𝑄 𝐿𝑞 sin(𝜃𝑞) , 𝛴𝑞=1
𝑄 𝜃𝑞)    (Eq. 1) 

𝐼𝐾(𝑃𝑖) ∈ {𝑚𝑖1, 𝑚𝑖2, … , 𝑚𝑖𝐽}     (Eq. 2) 

      𝑚𝑖𝑗 = {𝜃1, 𝜃2, … , 𝜃𝑞}              (Eq. 3) 

Where 𝑞 is the number of independent joint and 𝜃 is constrained by the respective motor limits  

 

Usually, there are multiple inverse kinematic solutions for a given target location. A set of arm 

configurations covering all target locations provides the joint limit range with upper/lower bound. The joint 

limit range is then used in exhaustive search via “what-if” analysis for possible collisions to the glovebox.  

 

For a 2-DOF arm, the target points in the robot workspace and the two joint configurations to reach target 

points are shown in Fig. 6a and Fig. 6b. For simplicity, we consider a task that requires to move around 

four target positions. Green lines indicate elbow-up arm configuration, and red lines indicate elbow-down 

arm configuration to reach target positions. From Fig. 6a, the workspace enclosure of the 2-DOF arm is 

represented as a circle. The graph clearly shows that the 2-DOF manipulator arm has high chance of hitting 

the glovebox enclosure; the cyan circle is not contained within glovebox perimeter (thick red line). After 

mechanical limit is applied, the reach of each link and the end effector will be contained within the 

glovebox, thus eliminate possibility of breaking through the wall, as shown in Fig. 6b. 
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Fig. 6a. 2-DOF planar with joint solutions to reach 4 

destination points 
Fig. 6b. Workspace of each link with joint 

angle limits 

 
In some case of different target positions, elbow-up arm configuration can hit the wall. Fig. 7a shows the 

target positions moved with an offset in upper-left direction, which prevent the elbow-up arm configuration 

to safely operate in the workspace, as the elbow link penetrates through the wall. So, the elbow-down arm 

configuration is used to determine the joint angle limits to enable safe operations. This configuration will 

still ensure that the target position can be reached and not penetrate through glovebox enclosure, but it will 

result in different workspace enclosure comparing to elbow up configuration (as shown in Fig. 7b. 
 

       

Fig. 7a. Target locations change, arm movement is restricted 

to elbow-down configuration 
Fig. 7b.  Workspace of each link with 

joint angle limits 

 
To demonstrate the scalability of the above mentioned simulation approach, the scenario for 3-DOF 

manipulator in planar workspace is discussed further. In general, the 3-DOF manipulator has infinitely 

many joint configurations for a target position. Therefore, choosing the appropriate orientation out of 

infinite solutions is critical and task specific.  
 
The equation of 3-DOF manipulator in planar workspace case is, 

𝑃𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝜙𝑖) = (𝛴𝑞=1
3 𝐿𝑞 cos(𝜃𝑞) , 𝛴𝑞=1

3 𝐿𝑞 sin(𝜃𝑞) , 𝛴𝑞=1
3 𝜃𝑞)    (Eq. 4) 

Let’s consider the pipetting task to simulate the 3-DOF manipulator to determine the joint angle limits for 

safe operations inside the glovebox.  

In pipetting task, the robot must be able to move in a straight trajectory and maintain orientation of the 

tool’s endpoint. The endpoints’ coordinates and orientations are empirically chosen, as shown in Fig. 8a. 

The reach of each joint is shown in Fig. 8b.  
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Fig. 8a. 3-DOF planar with joint solution to reach 

destination points 
Fig. 8b. Workspace of each link with joint 

angle limits 

 
A common issue with serial chain manipulators is with the manufacturing limit on the joint motors and 

could contribute to collision. Once the robot reaches the motor joint limit, it will move the joint to the 

opposite direction and attempt to reach the designated joint angle. We will demonstrate the effect of joint 

motor limit in the following Fig. 9a. and Fig. 9b., which compares endpoint trajectory of the 3-DOF 

manipulator with and without the motor joint limit. Without the joint motor limit, the arm manipulator will 

be able to move from point a to b without any issue with operational range on joint1 (base joint) = 63.64 

degrees, joint2 = 43.94 degrees, and joint3 = 24.99 degrees. On the other hand, with motor joint limit, the 

joint operational range has to increase to cope with the motor limit and thus will enlarge the workspace 

enclosure with operational range on joint1 (base joint) = 63.64 degrees, joint2 = 343.6083 degrees, and 

joint3 = 24.99 degrees. 
 

      

Fig. 9a. 3R planar following a straight line 

trajectory without motor joint limits.  
Fig. 9b. 3R planar following a straight line 

trajectory with motor joint limit  

The similar idea can be implemented on Super Baxter, which has 14 degree of freedom, which can be 

developed based on the same method and principle, only different is that it takes more computation time to 

iterate through all the possible scenario.  

 

 
 

EXPERIMENTS 

Applied Gesture Based Programming to Perform Tasks 

The usual glovebox tasks performed in the nuclear facilities are packaging of nuclear materials such as dry 

plutonium powder into containers, and pick & place the containers onto and off conveyor belts while 
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transferring them. With that in mind, we design our simulated glovebox environment with the pick and 

place task from the conveyor belt next to Super Baxter. In our scenario, the demonstrator performs a pick 

and place task. In this task, the demonstrator picks up blocks from the conveyor and put them out of the 

conveyor belt (Fig. 14). During the human demonstration of the task, the object and hand movements are 

used to infer the task. The information about this task is then used for generating the task model from the 

task representation obtained by the inference phase. Super Baxter then learns the pick and place task from 

the demonstration and performs it (Fig. 15). The Super Baxter uses visual servoing to control the end-

effector to perform the task.  

 

 
Fig. 14. Using the skeleton data (specifically hand position) and the position of the object to infer tasks 

such as approach and transport. 

 

 
Fig. 15. Pick and place task performed by Super Baxter with visual servoing 

 

In our next scenario, the demonstrator performs a scooping task. In this task, the demonstrator picks up the 

shovel and use them to scoop up metal pellets. As described previously in Robot Task Planning section, 

Super Baxter performs the scooping and un-scooping by inferring task learned from human demonstrator 

(Fig. 16.), and mapped the task to the robot workspace (Fig. 17.).  

 

 
Fig. 16. Scoop / unscoop task performed by demonstrator 
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Fig. 17. Scoop / unscoop task performed by Super Baxter 

 

CONCLUSION 

This paper presents the preliminary work on teaching tasks to a robot through gesture based 

programming. Here we show feasibility of tasks similar to those performed in a glovebox. Super Baxter 

can be used to safely manipulate hazardous material inside the glovebox. Super Baxter can learn tasks to 

be performed by observing human gestures during a demonstration outside the glovebox. This eliminates 

the risks of operating in the glovebox. The GbP approach also enables the worker who has implicit 

knowledge of the task to easily program the robot to perform the task outside the glovebox without 

needing any expertise in programming. Safety of the glovebox is achieved by incorporating hardware 

safety measures on joint limits. These limits are obtained by exhaustive offline simulation. The joint 

limits computed from the simulation will be used to implement mechanical limit on the operational range 

of each arm. 

 

FUTURE WORK 

We aim to evaluate Super Baxter’s performance using a glovebox. Additionally, we will develop a 

method for improving task performance by incorporating user inputs during task execution by Super 

Baxter. The user can provide more demonstrations of sub-parts of the task or can use audio cues to 

improve the task performance. This is similar to coaching. This provides a means for workers to improve 

the efficiency of task execution by providing feedback through communication or gesture cues. 
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