Development of Real Time
Systems using Simulink/RTW
and RTLinux

MSEE Plan B Project
Steve Goetz
May 2005

Professor Voyles, Advisor

Page 1 of 25

1 PROJECT OVERVIEW 3
1.1 MATLAB - SIMULINK AND REAL TIME WORKSHOP 3
1.2 REAL TIME LINUX (RTLINUX) 4
1.3 INTEGRATION COMPONENTS 4
1.3.1 SIMULINK - RTLINUX 4
1.3.2 SERVOTOGO - RTLINUX 4
2 HOW TO USE 6
2.1 SERVOTOGO LIBRARY 6
2.2 CREATING A MODEL 6
2.3 CONFIGURING THE M ODEL 7
2.4 GENERATING CODE 9
2.5 RESULTS OF CODE GENERATION 10
2.6 TARGET COMPILATION 11
3 HOW TO INSTALL 12
3.1 RTLINUX INSTALL AND BUILD PROCESS 12
3.1.1 STARTRTLINUX 13
3.2 RTLINUX INTEGRATION INSTALL 13
3.3 SERVOTOGO LIBRARY 14
3.4 SERVOTOGO DRIVER INSTALL 15
4 HOW TO EXTEND — CREATING BLOCKS AND LIBRARIES 16

4.1 BLOCK CREATION 16
4.2 LIBRARY CREATION 17
5 APPENDIX 18
5.1 CONTENTS OF ARCHIVE 18
5.2 SERVOTOGO DRIVER DETAILS 18
5.3 SIMULINK BLOCK IMPLEMENTATION 19
5.4 STGLIBRARY DETAIL 20
5.5 TESTING 23

Page 2 of 25

1 Project Overview

The purpose of this project is to provide an integration of the code
generation facilities of Matlab/Simulink with an available real time
execution environment (RTLinux) for the purpose of creating control
systems for robots. This integration was then demonstrated by the
development of a driver, Simulink library, and test models for a
specific interface board (ServoToGo Model 2).

This work consists of 4 main components, each of which is described in
following subsections.

1.1 Matlab - Simulink and Real Time Workshop

Matlab is a mathematical modeling and numerical analysis package
that is commercially available (www.mathworks.com). This tool
provides a block diagram-oriented modeling tool called Simulink as a
key feature. Simulink provides many standard blocks (Figure 1)
allowing basic mathematical operations and signal routing as well as
advanced blocks suitable for control systems and other complex
operations.

&/ Simulink Library Browser [._] O -ﬁ

File Edit Wew Help

[& 4 Find ||
Continuous: simulink/Continuous
= Wb simulink

y Continuous

2+ Discontinuities

y Discrete

3 Look-Up Tables

2] Math Operations

2 Model Verification

2| Model-wide Utilities

y Ports & Subsystermns

| signal Attributes

y Signal Routing -

3 Sinks

y Sources

] User-Defined Functions
+- N Aerospace Blockset

)

2] 2 [FLEZ

I3

Continuous

Discontinities

Discrete

Look-Up Tables

Math Operations

Model Verification

Modeltwide Utiities

Misc |

- | CDMA Reference Blackset |
- N Communications Blockset % # Parts & Subspstems

B Control System Toolbox
+)- Bl D3P Blackset 2 Signal Attributes
- N Dials & Gauges Blockset
o Bl Erebddad Tovonk For Bobovnls MWU

a I | i) Enl Signal Routing

| NI

Ready

Figure 1 — Example of Simulink standard blocks

Models created in Simulink by dragging and dropping appropriate
blocks are very useful for simulating complex systems. An added

Page 3 of 25

feature of Simulink, called Real Time Workshop, extends this
functionality by allowing the generation of executable code from a
block model. This code can then be run on a target and used to
control a physical plant (robot or other system).

1.2 Real Time Linux (RTLinux)

A second key component of this project is RTLinux. RTLinux is a set of
patches that, when applied to a standard Linux distribution, allow the
operating system to be real time deterministic without sacrificing the
base functionality of the Linux world. This product is available from
FSMLabs (www.fsmlabs.com) in both free (RTLinuxFree) and
commercial versions (RTLinuxPro). This work uses RTLinuxFree with
RedHat Linux 9.0 distribution and kernel version 2.4.20.

1.3 Integration Components

1.3.1 Simulink - RTLinux

Simulink’s Real Time Workshop generates code from a model for a
specific target environment. These can range from bare-board level
(determinism provided via a timer interrupt service) to full RTOS
multitasking support (determinism provided using preemption and
semaphores). Each target is defined by a configuration file (*.tlc).
This work leverages a previously developed integration package by
Raul Murillo Garcia for lab PC process control and measurement at
Glasgow Caledonian University (http://www.sesd.gcal.ac.uk/raulm/St-
rtl.htm#Introduction) that provides the basic execution engine for the
RTW generated code.

1.3.2 ServoToGo - RTLinux

Currently, access to the ServoToGo interface board from the RTLinux
environment is provided via a character device driver developed
specifically for the purpose. This driver provides a very low level
interface to the hardware — taking in address read/write level
commands, performing the actual memory reads/writes, and then
returning the results. A set of utility functions, included as part of the
Simulink generated code, exist to facilitate this interface.

While this architecture has some advantages in ease of development
and portability across platforms, it also has some significant
performance implications. Alternate implementation options include a
driverless architecture, wherein the Simulink generated code directly

Page 4 of 25

accesses hardware, or a more capable driver model, wherein the driver
manages a higher level of functionality, are both possible in order to
improve performance.

Page 5 of 25

2 How to Use

This section describes in detail how to build a model, generate code
from it, compile the code on the target, and execute the model.

2.1 ServoToGo Library

The ServoToGo library developed during this project contains blocks
for analog input and output, encoder reads and writes, and
initialization of the interface board (Figure 2).

I Simulink Library Browser ‘._l D-ﬁ

File Edit Wiew Help

[= 44 Find ||
ServoToGo ADC: ServoToGo_lib/ServoToGo ADC

B Real-Time windows Target (] [
¥ El Real-Time Workshop
& Report Generator
- T 5-fu e | GervoTaolio DAC
B .
+- N| SimMechanics +| ServoToGo Encoder Fead
+- [SimPowerSystems

| ServoToGo ADC

+- W@l Simulink Extras L ServoT oo Encoder wiite
B stateflow 1 .
+- [System 1D Blocks)
o1 Wl Wirknal Realite Tenlhos M |:| ServaTobo It
[(_I I | [l]
Ready Z

Figure 2 - ServoToGo library blocks

Note that, in order for the library to be available, the path of the
library components must be added to the Matlab path prior to opening
the Simulink library browser. This can be accomplished using the
following command from the Matlab command line:

path (path, ‘<matlabroot>\rtw\c\servotogo’)

where <matlabroot> is the root directory for Matlab (c:/matlab6p5)

2.2 Creating a Model

First, one would create a model. An example model is shown in Figure
3.

Page 6 of 25

PID Controller
Block

Scopes displaying

itled *

Hit Wiew Simulation Format Tools Help

output in simulation

[

Signal Source
(Trajectory)

y 4

Initialization

Ready

of target N
hardware \

Initialize ST board

Senro ToGa Init

Floating Floating
Scoope Scopel

sim output

ServoToGo DAC

channe.

Constant! =
sim input

SenoToGoe ADC

Input and
Output blocks
to interact with
target
hardware

|100%% [[|ode4s

Figure 3 — Example model containing a PID controller

2.3 Configuring the Model

Prior to code generation, the model must be appropriately configured.
First, the correct target config file (*.tlc) must be selected (Figure 4).

Page 7 of 25

B[S %]

Simulation Parameters: untitled

Solver| W’orkspacela’D| Diagnostics| Advanced| Real-Time Workshop

=l Build

Categony: |Target configuration

Configuration
System target file:

L
| ark. te: Bmwse...]

Template makefile: | art_default_tmf

Make command:

| make_rtw

[~ Generate code only

System Target File Browser: untitled

)OS

Systen target file ‘

Description

asapz.tlc

drt. tlc
ert.tlc
ert.tlc
gqre.tlc
grt.tlc
grt_malloc.tlc
grt_malloc.tlc
mpc555exp. tlc
mpc555pil.tlc
mpc555rt. tlc
osek_leo.tleo
rsim. tle

ok, Cancel

ASAM-ASAPZ Data Definition Target
DO3(4GW) Real-Time Target
ETW Embedded Coder

Visual C/C++ Project Makefile
Generic Feal-Time Target
Visual C/C++ Project Makefile
Generic Real-Time Target with dynawmic memory allocation
Visual C/C++ Project Makefile only for the "grt_malloc” target
Emhedded Target for Motorola MPCS555 (algorithm export)
Embedded Target for Motorola MPCS555 (processor-in-the-loop)
Embedded Target for Motorola MPCS555 (real-time target)

(Beta) LE/D (Lynx-Embedded 0SEK) Real-Time Target

Rapid Simulatioh Target

only for the RTW Embedded Coder

only for the "grt” target

rtlinu. tlc

Simulink Target for RTLimu

rtwin. tlc

Select

Real-Time Windows Target

S-function Takget

Target for Texas Instruments(tm) TM33Z0Ce000 DSP
Tornado (VxWorks) Real-Time Target

®XPC Target

rtlinux.tlc

election: ‘ C:\MATLABGpS, row chrtlinuet relinus. tle

oK Cancel

Figure 4 — Selection of rtlinux target

Additionally, the model parameters
options must also be selected (Figu

controlling the step rate and solver
re 5).

Stimulation Parameters: untitled

=)o

Salver

workzpace /0 ‘ Diagno:
Sirmulation time

Start time: | 0.0

Salver optiohs

Stop time: | 10.0 /

stics‘ .-’-‘«dvanced| HeaI-TimeWnrkshopl ‘

Solver choice

=l

Type: |Fi>:ed-step

Type must

|l:u:|85 [Darmand-Prince]

=l

Fived step size: | 0.1

be fixed step

Duydut options

Fixed step

tMode: |auto hd

VS. auto step

[~]

1 Tasking

size

kK | Cancel

option —
auto, single,

Help | Appl

Figure 5 — Model execution options

or multi-
tasking

Page 8 of 25

For RTW code generation to work, the model must use a fixed-step
solver.

A fixed step size is likely preferable (for ease of debugging and
determinism) to an automatically generated step size. Also, this can
be used to control the base rate of the model.

Solver choice is dependent on the type of blocks used in the model. If
only discrete time step blocks are used, the discrete solver can be
used. For models using continuous blocks, one of the other solvers
must be used.

Finally, RTW allows for the specification of a tasking model. Single
tasking runs the model as a single task. This places some limitations
on the base rate of the model (base rate must accommodate worst
case step - all blocks that must execute must execute within the base
period). Multitasking allows additional flexibility, and integrates well
with RTOS execution. The RTLinux system supports multitasking
models.

2.4 Generating Code

With the target and model configured, code can be generated (Figure
6). For execution on the target, it is generally sufficient to generate
code only.

Page 9 of 25

ESimulatiun Parameters: untitled g |

Su:ulverl Wu:urkspau:el.-"[ll Diagnusticsl .-’-'-.dvanu:edl Real-Time Woarkshop

Category: IETarget configuration ;I Generate u:u:u:lel
< .

Configuration

System target file: I i e Browse) .

Termplate makefile: I Hirii. trrf \

Make commarnd: I make_rtw G ene I’ate
v Generate code arly Stateflow op COde

/

Selects code
Only Optlon OF. | Ear‘ll:ell Help | Apply

Figure 6 — Code Generation.

2.5 Results of Code Generation

Code generation results in a set of files describing the model. The
base name for the files is the name of the project - in the example,
‘demopid’.

' demopid_rtl M=) <]

File Edit ‘iew Favorites Tools Help 5','3‘
i ’ . - |‘_. 1 b == -
@ Back __') I? 7 Search = Folders
Address ||'1_"_='| F:\projectsimastersidemopididemopid_rtl Iv] 5o
demopid.c demopid_data.c
File and Folder Tasks S B s

 Source i Source

Z4 KB 1KB

(J Make & new foldsr

@ Publish this Folder ko the
e

et Share this folder

demopid_dt.h
C/C++ Header
ZKB

demopid.h
C/C++ Header
Z5 KB

demopid_tvpes.h
C/C++ Header
1KE

demopid_private.h
C/C++ Header
JKE

Other Places

B

|3 demapid
[} My Documents

[[&
h h
h h
B rtmodelh = demopid. mk
h C/C++ Header ﬂ [akefile
|3 Shared Documents Lk E HiERY
i My Computer demiopid_targ_daka_map.m e A modelsources.kxt

“J My Network Places IATLAE M-file S| Teok Document
4 KB 1KB

rkw_praj. trow
THW File
1KB

4

Details

Figure 7 - Files generated by Real Time Workshop

Page 10 of 25

The key files for execution on the target include only the sources (*.c,
*.h) and the make file (.mk).

2.6 Target Compilation

The sources and the make file can now be transferred to the target
(typically by zipping them and transferring via FTP, although any other
means will work).

Once on the target, unzip the files into a directory. From that
directory, make the executable.

make -f projectname.mk
This will make the generated code and, if successful, start RTLinux and

execute it. Prior to doing this, the driver should be installed and
RTLinux should be started.

Page 11 of 25

3 How to Install

This section describes installation and setup for a system consisting of
a Win32 development machine (Matlab/Simulink) and a Linux target.

3.1 RTLinux Install and Build Process

This work used the RedHat Linux distribution version 9.0. Begin by
installing an appropriate configuration of RH Linux. Most options don't
matter, but do make sure to include the development tools and
libraries for ‘c’, the kernel development tools (which include the ‘tcl’
tools for xconfig), and the kernel source.

Note — much of this must be done from the root account!

Patch Kernel and Build Image
1. Download kernel sources: ftp.kernel.org ->
/pub/linux/kernel/v2.4/linux-2.4.20.tar.gz
2. Make a directory -> mkdir /usr/src/rtlinux
3. Unpack the sources into /usr/src/rtlinux: tar —xfz linux-
2.4.20.tar.gz
. Change to the new linux directory: cd linux-2.4.20
. Unpack the RTLinux archive into /usr/src/rtlinux/rtlinux-
3.1/kernel_patch-2.4.20-rtI3.2pre2: tar —xf rtlinux-3[1].2-
pre2.tar

6. Apply FSM Lab’s RTLinux patch:
patch -p1 < Jusr/src/rtlinux/rtlinux-3.2-
pre2/patches/kernel_patch-2.4.20-rtl3.2pre2

7. In /usr/src there is a link to the kernel directory (linux-2.4).
Change this link to point at the new kernel directory
(/usr/src/rtlinux/linux-2.4.20)

8. It is easiest to start with one of the RedHat .config files. Copy
the most appropriate (for example, kernel-2.4.20-i686.config)
from /usr/src/linux-2.4.20-6/configs to the new linux directory
(/usr/src/rtlinux/linux-2.4.20) and change its name to ‘.config’

9. Make a new config: make xconfig

u pH

10. In the new config, disable APM (under ‘General setup’).
This can interfere with RTLinux.

11. From the new linux directory, /usr/src/rtlinux/linux-2.4.20,
make dependencies: make dep

12. Make the kernel: make bzImage

13. Build any remaining modules: make modules, make
modules_install

14, Make the boot ram disk image: mkinitrd

/boot/initrd_rtlinux.img 2.4.20-rtlI3.2-pre2

Page 12 of 25

15. Move the kernel and associated files to the proper
locations: make install

16. Open grub.conf (at /boot/grub/grub.conf) to verify that the
new kernel is available at boot time. There should be a new
entry for a kernel called Red Hat Linux (2.4.20-rtl3.2-pre2).
Rename this (if desired) to reflect RTLinux appropriately.

17. Reboot and select RTLinux kernel from the grub startup
menu

Make RTLinux Modules

90
=

1. From rtlinux directory: cd /usr/src/rtlinux/rtlinux-3.2-pre2

2. Create a symbolic link: In = sf /usr/src/rtlinux/linux-2.4.20 linux
3. Remake the config: make xconfig (first accept the license
agreement, then save and exit)

make dependencies: make dep

make RTLinux: make

Run the script: sh /scripts/insrtl

make devices

make install

Start RTLinux

From terminal: rtlinux start
The system should tell you that the RTLinux modules were
successfully started.

NFE = NN A

3.2 RTLinux Integration Install

The target integration package must be installed on the RTLinux
machine and on the development machine.

The package is distributed as a zipped archive STRTL_M65_v1.4.zip,
available from http://www.sesd.gcal.ac.uk/raulm/St-rtl.htm#STRTL.

Ful

| instructions are included in a readme in the distribution. A

summary set of instructions follows:

On

On

the development machine:

1. Unzip distribution in matlab directory structure: \(matlab
root)\rtw\c\rtlinux

2. Add this to matlab search path (‘path’ command)

3. Restart matlab. Rtlinux target (rtlinux.tlc) now shows up in
target selection list.

the RTLinux machine:

Page 13 of 25

1. Uncompress the archive tar -zxvf STRTL_M®65.tar.gz to get
STRTL_M®65 directory
2. Copy this to match location of the macro MATLAB_ROOT in the
template makefile rtlinux.tmf on the development machine
(typically /STRTL_M®6.5).
3. Fix two build issues:
a. In /STRTL_M6.5/rtw/c/src/common.h, fix the #endif on
line 102 by commenting ' COMMON_H" with ‘//’
b. In /STRTL_M6.5/rtw/c/src/knrl_main.c, remove the first **’
(immediately following the ‘(hrtime_t)" cast)

In order to include the servotogo library in the default makefile for the
generated code, the default template make file for the RTLinux
integration must be updated.

On the development machine:
1. Delete the template make file rtlinux.tmf (located in (matlab
root)\rtw\c\rtlinux)
2. Copy the STG variant provided (rtlinux stg.tmf) into this
directory and rename it as rtlinux.tmf

3.3 ServoToGo Library

Code for this library (and other custom libraries) must be located on
both the target and the development machine. On the host, the code
and associated library files are necessary to support the availability of
the blocks in the Simulink library and to allow for simulation of the
model. On the target, the code is compiled as part of the model
compiling process.

Development Machine

1. Unzip the stg_lib_rtl_host.zip archive from the Matlab root
directory (C:\Matlab6p5)

2. Verify that files end up in <matlab root>\rtw\c\servotogo

3. Start Matlab and add this install directory to the path with the
following command:
path (path, 'c:\matlab6p5\rtw\c\servotogo')

4, Start Simulink. ServoToGo library should now be available

Target Machine

1. Unzip stg_lib_rtl_target.zip into /STRTL_M6.5
2. Verify that the files end up in /STRTL_M®6.5/rtw/c/servotogo

Page 14 of 25

3.4 ServoToGo Driver Install
The driver builds and installs as a separate component.

Building the Driver
1. Unzip the driver code into a directory: unzip stg_driver.zip
2. Verify that two files are created - stg_driver.c, stg_driver.mk
3. Make the driver: make -f stg_driver.mk
4. Verify that this results in an object — stg_driver.o

The driver owns the address of the ServoToGo board, and must be
compiled to match the hardware. This can be done by changing a
#define in the stg_driver.c file. Also, a #define exists to
enable/disable logging of reads and writes. Logging is helpful for
debugging, but can be cumbersome for actual execution.

Installing the Driver
1. Start RTLinux: rtlinux start
2. Insert the driver’s module: insmod stg_driver.o (note that
‘insmod’) is only available as a root user)
3. Verify that it inserted correctly: dmesg (log should show
“Servotogo registered with ID” where ID is the assigned driver
ID)

For general debugging, the driver outputs many of its

commands/responses to the system log. dmesg prints the log to the
console, and dmesg —c clears it (after printing it to the console).

Page 15 of 25

4 How to Extend — Creating Blocks and Libraries
Simulink provides tools for creating new blocks and additional libraries.

4.1 Block Creation

Block creation facilities are fully documented in the Matlab help files.
The following is intended only to be a brief overview and how-to.

Simulink provides a method for creating blocks based on Matlab s-
functions. The block basically masks the s-function, passing along
inputs to it and taking outputs and feeding them back into the model.

s-functions themselves are bits of functionality implemented in another
programming language (typically c or c++), and then interfaced to the
Simulink environment through support for a set of standard callback
functions.

There are two versions of s-functions supported - non-inlined and
inlined. These differ in how they are treated on the workstation
(under simulation) and on the target. Inlined functions have separate
implementations — a standard, callback based version used in
simulation and a streamlined implementation appropriate for the
target that is substituted into the target implementation in-line. Non-
inlined versions execute the same standard model in both
implementations. Non-inlined s-functions require more memory and
increase execution overhead when compared to the in-lined version,
but require only a single implementation to be developed and
maintained.

To build a non-inlined block, one can begin with a provided template
that contains all necessary callback functions. This is located in the
standard Matlab install at
C:\MATLAB6p5\simulink\src\sfuntmpl_basic.c (sfuntmpl_doc.c for a
documented version).

Code appropriate to the block functionality can then be added to the
callback functions - typically in the mdIStart(), mdlUpdate(), and
mdlTerminate() functions, but possibly elsewhere.

Code that is only appropriate on the target can be conditionally
included using the following construct:

#ifdef RT

Page 16 of 25

//target code
#endif

With the s-function code complete, a block can be created in Simulink.
In the standard library under ‘User Defined Functions’ there is a basic
s-function block. Add this block to a model, and rename it with the
name of the c-file implementation - the implementation and the block
are linked via this shared name.

Finally, to make simulation possible, a compiled version of the s-
function must exist. Change the working directory to that containing
the c-file implementation and compile using mex -g
sfunctionfilename.c. This creates a .dll version of the s-function.

To make an inlined block, the easiest method is to use the S-Function
builder block provided by simulink under the ‘User Defined Functions’
option in the library. This provides a wizard like interface for defining
a block, and was used to build the ServoToGo blocks for this project.

4.2 Library Creation

A library in Simulink is simply a model containing the blocks in the
library along with an .m file defining the library attributes (s/blocks.m).
Add a group of blocks to a new (empty) model and save the model
with an appropriate name. Copy a version of slblocks.m from an
existing library to the new library, and edit it with the correct file
names and other information. Add the directory containing the model,
the .m file, and the implementations of the blocks (and their mex-
compiled versions) to the matlab path and restart Simulink. The new
library should show up in the browser.

Page 17 of 25

5 Appendix

5.1 Contents of Archive

STRTL_M65.tzr.gz Archive of Simulink/RTLinux integration

Rtlinux-3[1].2-pre2.tar RTLinux distribution

stg_lib_rtl_target.zip Servotogo simulink block code for target

stg_lib_rtl_host.zip Servotogo library and code on host

rtlinux stg.tmf Template make file to replace that found in
distribution (STRTL_M65)

stg_driver.zip Archive for STG driver

stg_lib_test_mdls.zip Models used to test STG library

5.2 ServoToGo Driver Details

The interface to the ServoToGo board is implemented as an RTLinux
character driver. It implements the following functions and file
operations:

Functions:
init_nmodule(): registers the driver as a character device
cl eanup_nodul e(): unregisters driver

File ops:

rtl _servotogo open(): protects against nultiple opens with a semaphore
rtl _servotogo_rel ease(): rel eases open senaphore

rtl_servotogo_read(): reads either a byte or a word from an address
of f set

rtl_servotogo wite(): wites either a byte or a word to an address
of f set

For reads and writes, the address offset, type of operation (read vs.
write), and data value (writes only) are stuffed as ascii text into the
char buffer sent in the write/read file operation.

For all operations, the driver itself knows the base address of the

board. This is currently compiled in, but could be configurable at
driver installation.

Page 18 of 25

The intention is that this driver contains all of the target specific
hardware detail (address, etc.) and performs all actual hardware
interface (writes and reads).

5.3 Simulink Block Implementation

Each s-function is comprised of a set of callback type functions that
actually implement the block. For this project’s blocks, only the
following subset of callbacks are important:

mdl I nitializeSizes(): sets up number and type of inputs and outputs.
For the initialize block, this also opens the
board driver and stores its handle.

mdl I nitializeSanpl eTines(): sets up nunber and type of sanple tines
mdl Start(): perforns one tinme initialization

mdl Qut puts(): perforns actual work for the block (reads ADC, outputs
DAC vol t age, reads encoder, etc.)

ndl Term nate(): perfornms any clean-up (closes driver, etc.)

Each block’s implementation resides in a pair of .c files as follows:
» blockname.c
e blockname_wrapper.c

The blockname.c file contains the callback functions mentioned above,
and is used to generate the executable block for simulation on the
host. The blockname_wrapper.c module contains wrapped versions of
target specific code. These are called directly on the target machine.

In Simulink, these blocks are each wrapped in a mask (that provides
input/output and block names) and are collected together in a library.

In addition to the blocks’ code, there is a single helper file with various
utility functions ‘drv_utils.c’. This is present only on the target, and
performs the actual interface to the hardware. This contains the
following functions:

/I1i/o witel/read w apper prototypes

int drv_wite byte (int fd, unsigned char data, short address);
int drv_wite word (int fd, short data, short address);

unsi gned char drv_read byte (int fd, short address);

unsi gned short drv_read word (int fd, short address);

// board functions

Page 19 of 25

int init_board (int fd);

int open_board (void);

void close_board (int fd);

voi d output_dac (int gFD, int channel, double voltage);

doubl e input_adc (int fd, int channel);

doubl e output _encoder (int fd, int chan, short *val);

doubl e input _encoder (int fd, int chan);

void config_dio (int fd, int dirA int dirB, int dirQ0,
int dirCl, int dirDO, int dirDl);

void wite_dio (int fd, int channel, unsigned char val ue);

unsi gned char read dio (int fd, int channel);

The drv_write/drv_read functions wrap the writes/reads to the actual
I/O driver. The other functions wrap the details of their respective
functions (ADC reads and scaling/conversion, etc.) and are the only
things actually called in the s-function code.

5.4 STG library detail

Page 20 of 25

= il
W servotogo_lib g@
File Edit WYiew Sinmulation Format Tools Help
O EEd&| & 2B) llNormaI
channel|
woltage
sim_input Configure Y0
SewoToGo ADE ServoToGo DIO Config
channel|
sim_output et
woltage
sim_out
SenoToGo DAC dio_write
ServoToGo DIO Write
channel
counts_out channel)
sim_in dio_read
=im_in
5 ToGo Encodar Read
Erealote Encader Red SenvoToGo D10 Read
channel|
sim_out
counts_in
SerroToGo Encoder Wirite
senvotogo_init
ServoTodo Init
<] | Il >
F|100% [| |odeds v

Details of the ServoToGo library.
All blocks take a channel input.
The ADC returns a voltage read from the ADC channel as a double.

The DAC outputs a voltage input as a double to the specified DAC
channel.

The Encoder read currently returns the counts it reads (not radians).
The Encoder write block presets one of the encoder channels to a
specified offset (in counts).

The Config DIO block has parameters that set up the DIO ports as
either inputs or outputs. DIO read reads a value from a port

Page 21 of 25

configured as an input, DIO write writes a value to a port set as an
output.

The initialize block opens the board driver and performs initialization.
This initialization currently consists of setting up the encoder registers,
but could include digital I/O configuration as well.

Some blocks also support simulation. When running in Simulink (not

on the target), they use the ‘sim input’ and ‘sim output’ connections to
pass data through.

Page 22 of 25

5.5 Testing

Models were created to test the functionality of each part of the
system. These models are included below for reference.

W testadcs g@

Ele Edit Yiew 3Simulstion Format Tools Help

OhhEE » Normal -

& RE @

E

E_Mmm mm\
Constant woltage —— constantd voltage —
sim_input sim_input
SenaToGo ADC SennToGo ADCA
3 channel
z channel
o Constants uoltage | —
Constant1 veltage —
sim_input

sim_input

SenaToGo ADCS

ServaToGo ADCT

E_Nmm

mm‘
Constant? veltage o | | et veltags o
sim_input sim_input
ServaToGo ADCZ SeroToGo ADCE
chanr\e\ channe‘
e voltags Constant? voltage

sim_input sim_input

ServaToGo ADCE SenaToGo ADCT

ServaToGo Init

100% FizedStepDiscrete

testadcs.mdl

Ready

Page 23 of 25

W testdacs E]@
File Edit Wew Simulation Formatb Tools Help
=== » Moarmal MR = E &
-
B‘—bchannel channel
Constant sim_output e sim_output
E—'—>“°""ge \roltage
Constantt ServaToGo DAC Commants SeroToGo DACS
channel channel
S sim_output Constants sim_output
woltage woltage
:
e e SenoToGo DACY Constanta SenoToGo DACS
|Z|_|—bchannel
5 channel
Constantd sim_output .
woltage Constanti0 sim_sutput
woltage
Constant? ServaToGo DACZ
Constant? 1 SenoToGo DACE
channel channel
Constant12 Sl CTET Constant14 SIECTET
\roltage woltage
Constanti SenoToGo DACS Constantls SenoToGo DACT
senrotogo_init
SenoToGo Init hdl
Ready 100% FixedStepDiscrete
testdacs.mdl
W testencoder * E]@.ﬁ
File Edit Yiew Simulation Farmat Tools Help
u ; L
O=E&E & B 2 3 Narmal ~|| g =h &
s [e channel 1 Pe{ chiannel
-
Constant sim_out Canstants sim_out
| ri={counts_in counts_in
11 2a ™
SerwoToGo Encoder Write SernvoTobko Encoder Write
Constantd Constantd
0 P channel
L [L channel
Constant? counts_out
- Constants
sim_in counts_out
sim_in
SenoToGo Encoder Read
ServoToGo Encoder Readt
sanmotogo_init
SenmaTaGa Init
Ready 100%: FixedstepDiscrete

testencoder.md|

Page 24 of 25

B testdio

MEX

File Edit

Wiews Simulation Format Tools

Help

O SES| =22 = » =N -l w2

REC®

[=]

channel
Configure 140
Consztant sim_out
255 dio_turite
SenoToGo DO Config
Constant? ServoTodo DIO Wirite
channel
dio_read
Constantt L
sim_in
senrotogo_init SenmTo&o DIO Read
SenoTaGo Init
Ready |100% [[[FixedstepDiscrete v
testdio.mdl

Page 25 of 25

