
Page 1 of 25

Development of Real Time

Systems using Simulink/RTW

and RTLinux

MSEE Plan B Project
Steve Goetz

May 2005

Professor Voyles, Advisor

Page 2 of 25

1 PROJECT OVERVIEW 3

1.1 MATLAB - SIMULINK AND REAL TIME WORKSHOP 3
1.2 REAL TIME L INUX (RTL INUX) 4
1.3 INTEGRATION COMPONENTS 4
1.3.1 SIMULINK - RTLINUX 4
1.3.2 SERVOTOGO - RTLINUX 4

2 HOW TO USE 6

2.1 SERVOTOGO L IBRARY 6
2.2 CREATING A MODEL 6
2.3 CONFIGURING THE MODEL 7
2.4 GENERATING CODE 9
2.5 RESULTS OF CODE GENERATION 10
2.6 TARGET COMPILATION 11

3 HOW TO INSTALL 12

3.1 RTL INUX INSTALL AND BUILD PROCESS 12
3.1.1 START RTLINUX 13
3.2 RTL INUX INTEGRATION INSTALL 13
3.3 SERVOTOGO L IBRARY 14
3.4 SERVOTOGO DRIVER INSTALL 15

4 HOW TO EXTEND – CREATING BLOCKS AND LIBRARIES 16

4.1 BLOCK CREATION 16
4.2 L IBRARY CREATION 17

5 APPENDIX 18

5.1 CONTENTS OF ARCHIVE 18
5.2 SERVOTOGO DRIVER DETAILS 18
5.3 SIMULINK BLOCK IMPLEMENTATION 19
5.4 STG LIBRARY DETAIL 20
5.5 TESTING 23

Page 3 of 25

1 Project Overview
The purpose of this project is to provide an integration of the code
generation facilities of Matlab/Simulink with an available real time

execution environment (RTLinux) for the purpose of creating control
systems for robots. This integration was then demonstrated by the

development of a driver, Simulink library, and test models for a

specific interface board (ServoToGo Model 2).

This work consists of 4 main components, each of which is described in
following subsections.

1.1 Matlab - Simulink and Real Time Workshop
Matlab is a mathematical modeling and numerical analysis package

that is commercially available (www.mathworks.com). This tool
provides a block diagram-oriented modeling tool called Simulink as a

key feature. Simulink provides many standard blocks (Figure 1)
allowing basic mathematical operations and signal routing as well as

advanced blocks suitable for control systems and other complex

operations.

Figure 1 – Example of Simulink standard blocks

Models created in Simulink by dragging and dropping appropriate
blocks are very useful for simulating complex systems. An added

Page 4 of 25

feature of Simulink, called Real Time Workshop, extends this

functionality by allowing the generation of executable code from a
block model. This code can then be run on a target and used to

control a physical plant (robot or other system).

1.2 Real Time Linux (RTLinux)
A second key component of this project is RTLinux. RTLinux is a set of
patches that, when applied to a standard Linux distribution, allow the

operating system to be real time deterministic without sacrificing the
base functionality of the Linux world. This product is available from

FSMLabs (www.fsmlabs.com) in both free (RTLinuxFree) and
commercial versions (RTLinuxPro). This work uses RTLinuxFree with

RedHat Linux 9.0 distribution and kernel version 2.4.20.

1.3 Integration Components

1.3.1 Simulink - RTLinux
Simulink’s Real Time Workshop generates code from a model for a
specific target environment. These can range from bare-board level

(determinism provided via a timer interrupt service) to full RTOS
multitasking support (determinism provided using preemption and

semaphores). Each target is defined by a configuration file (*.tlc).
This work leverages a previously developed integration package by

Raul Murillo Garcia for lab PC process control and measurement at

Glasgow Caledonian University (http://www.sesd.gcal.ac.uk/raulm/St-
rtl.htm#Introduction) that provides the basic execution engine for the

RTW generated code.

1.3.2 ServoToGo - RTLinux
Currently, access to the ServoToGo interface board from the RTLinux

environment is provided via a character device driver developed
specifically for the purpose. This driver provides a very low level

interface to the hardware – taking in address read/write level
commands, performing the actual memory reads/writes, and then

returning the results. A set of utility functions, included as part of the
Simulink generated code, exist to facilitate this interface.

While this architecture has some advantages in ease of development
and portability across platforms, it also has some significant

performance implications. Alternate implementation options include a
driverless architecture, wherein the Simulink generated code directly

Page 5 of 25

accesses hardware, or a more capable driver model, wherein the driver

manages a higher level of functionality, are both possible in order to
improve performance.

Page 6 of 25

2 How to Use
This section describes in detail how to build a model, generate code

from it, compile the code on the target, and execute the model.

2.1 ServoToGo Library
The ServoToGo library developed during this project contains blocks

for analog input and output, encoder reads and writes, and
initialization of the interface board (Figure 2).

Figure 2 – ServoToGo library blocks

Note that, in order for the library to be available, the path of the

library components must be added to the Matlab path prior to opening
the Simulink library browser. This can be accomplished using the

following command from the Matlab command line:
 path (path, ‘<matlabroot>\rtw\c\servotogo’)

 where <matlabroot> is the root directory for Matlab (c:/matlab6p5)

2.2 Creating a Model
First, one would create a model. An example model is shown in Figure

3.

Page 7 of 25

Figure 3 – Example model containing a PID controller

2.3 Configuring the Model
Prior to code generation, the model must be appropriately configured.
First, the correct target config file (*.tlc) must be selected (Figure 4).

Signal Source
(Trajectory)

Initialization
of target
hardware

PID Controller
Block

Scopes displaying
output in simulation

Input and
Output blocks
to interact with
target
hardware

Page 8 of 25

Figure 4 – Selection of rtlinux target

Additionally, the model parameters controlling the step rate and solver
options must also be selected (Figure 5).

Figure 5 – Model execution options

Select
rtlinux.tlc

Type must
be fixed step

Solver choice

Fixed step
vs. auto step
size

Tasking
option –
auto, single,
or multi-
tasking

Page 9 of 25

For RTW code generation to work, the model must use a fixed-step
solver.

A fixed step size is likely preferable (for ease of debugging and

determinism) to an automatically generated step size. Also, this can
be used to control the base rate of the model.

Solver choice is dependent on the type of blocks used in the model. If

only discrete time step blocks are used, the discrete solver can be
used. For models using continuous blocks, one of the other solvers

must be used.

Finally, RTW allows for the specification of a tasking model. Single
tasking runs the model as a single task. This places some limitations

on the base rate of the model (base rate must accommodate worst

case step – all blocks that must execute must execute within the base
period). Multitasking allows additional flexibility, and integrates well

with RTOS execution. The RTLinux system supports multitasking
models.

2.4 Generating Code
With the target and model configured, code can be generated (Figure

6). For execution on the target, it is generally sufficient to generate
code only.

Page 10 of 25

Figure 6 – Code Generation.

2.5 Results of Code Generation
Code generation results in a set of files describing the model. The

base name for the files is the name of the project – in the example,
‘demopid’.

Figure 7 – Files generated by Real Time Workshop

Generate
Code

Selects code
only option

Page 11 of 25

The key files for execution on the target include only the sources (*.c,

*.h) and the make file (.mk).

2.6 Target Compilation
The sources and the make file can now be transferred to the target
(typically by zipping them and transferring via FTP, although any other

means will work).

Once on the target, unzip the files into a directory. From that
directory, make the executable.

make –f projectname.mk

This will make the generated code and, if successful, start RTLinux and
execute it. Prior to doing this, the driver should be installed and

RTLinux should be started.

Page 12 of 25

3 How to Install
This section describes installation and setup for a system consisting of

a Win32 development machine (Matlab/Simulink) and a Linux target.

3.1 RTLinux Install and Build Process
This work used the RedHat Linux distribution version 9.0. Begin by
installing an appropriate configuration of RH Linux. Most options don’t

matter, but do make sure to include the development tools and
libraries for ‘c’, the kernel development tools (which include the ‘tcl’

tools for xconfig), and the kernel source.

Note – much of this must be done from the root account!

Patch Kernel and Build Image
1. Download kernel sources: ftp.kernel.org ->

/pub/linux/kernel/v2.4/linux-2.4.20.tar.gz
2. Make a directory -> mkdir /usr/src/rtlinux

3. Unpack the sources into /usr/src/rtlinux: tar –xfz linux-
2.4.20.tar.gz

4. Change to the new linux directory: cd linux-2.4.20
5. Unpack the RTLinux archive into /usr/src/rtlinux/rtlinux-

3.1/kernel_patch-2.4.20-rtl3.2pre2: tar –xf rtlinux-3[1].2-

pre2.tar
6. Apply FSM Lab’s RTLinux patch:

patch –p1 < /usr/src/rtlinux/rtlinux-3.2-
pre2/patches/kernel_patch-2.4.20-rtl3.2pre2

7. In /usr/src there is a link to the kernel directory (linux-2.4).
Change this link to point at the new kernel directory

(/usr/src/rtlinux/linux-2.4.20)
8. It is easiest to start with one of the RedHat .config files. Copy

the most appropriate (for example, kernel-2.4.20-i686.config)
from /usr/src/linux-2.4.20-6/configs to the new linux directory

(/usr/src/rtlinux/linux-2.4.20) and change its name to ‘.config’
9. Make a new config: make xconfig

10. In the new config, disable APM (under ‘General setup’).

This can interfere with RTLinux.
11. From the new linux directory, /usr/src/rtlinux/linux-2.4.20,

make dependencies: make dep
12. Make the kernel: make bzImage

13. Build any remaining modules: make modules, make
modules_install

14. Make the boot ram disk image: mkinitrd
/boot/initrd_rtlinux.img 2.4.20-rtl3.2-pre2

Page 13 of 25

15. Move the kernel and associated files to the proper

locations: make install
16. Open grub.conf (at /boot/grub/grub.conf) to verify that the

new kernel is available at boot time. There should be a new
entry for a kernel called Red Hat Linux (2.4.20-rtl3.2-pre2).

Rename this (if desired) to reflect RTLinux appropriately.
17. Reboot and select RTLinux kernel from the grub startup

menu

Make RTLinux Modules
1. From rtlinux directory: cd /usr/src/rtlinux/rtlinux-3.2-pre2

2. Create a symbolic link: ln – sf /usr/src/rtlinux/linux-2.4.20 linux
3. Remake the config: make xconfig (first accept the license

agreement, then save and exit)
4. make dependencies: make dep

5. make RTLinux: make

6. Run the script: sh /scripts/insrtl
7. make devices

8. make install

3.1.1 Start RTLinux
1. From terminal: rtlinux start
2. The system should tell you that the RTLinux modules were

successfully started.

3.2 RTLinux Integration Install
The target integration package must be installed on the RTLinux

machine and on the development machine.

The package is distributed as a zipped archive STRTL_M65_v1.4.zip,

available from http://www.sesd.gcal.ac.uk/raulm/St-rtl.htm#STRTL.

Full instructions are included in a readme in the distribution. A
summary set of instructions follows:

On the development machine:

1. Unzip distribution in matlab directory structure: \(matlab
root)\rtw\c\rtlinux

2. Add this to matlab search path (‘path’ command)
3. Restart matlab. Rtlinux target (rtlinux.tlc) now shows up in

target selection list.

On the RTLinux machine:

Page 14 of 25

1. Uncompress the archive tar -zxvf STRTL_M65.tar.gz to get

STRTL_M65 directory
2. Copy this to match location of the macro MATLAB_ROOT in the

template makefile rtlinux.tmf on the development machine
(typically /STRTL_M6.5).

3. Fix two build issues:
a. In /STRTL_M6.5/rtw/c/src/common.h, fix the #endif on

line 102 by commenting ‘_COMMON_H’ with ‘//’
b. In /STRTL_M6.5/rtw/c/src/knrl_main.c, remove the first ‘*’

(immediately following the ‘(hrtime_t)’ cast)

In order to include the servotogo library in the default makefile for the
generated code, the default template make file for the RTLinux

integration must be updated.

On the development machine:

1. Delete the template make file rtlinux.tmf (located in (matlab
root)\rtw\c\rtlinux)

2. Copy the STG variant provided (rtlinux stg.tmf) into this
directory and rename it as rtlinux.tmf

3.3 ServoToGo Library
Code for this library (and other custom libraries) must be located on

both the target and the development machine. On the host, the code
and associated library files are necessary to support the availability of

the blocks in the Simulink library and to allow for simulation of the
model. On the target, the code is compiled as part of the model

compiling process.

Development Machine

1. Unzip the stg_lib_rtl_host.zip archive from the Matlab root
directory (C:\Matlab6p5)

2. Verify that files end up in <matlab root>\rtw\c\servotogo
3. Start Matlab and add this install directory to the path with the

following command:
path (path, 'c:\matlab6p5\rtw\c\servotogo')

4. Start Simulink. ServoToGo library should now be available

Target Machine
1. Unzip stg_lib_rtl_target.zip into /STRTL_M6.5
2. Verify that the files end up in /STRTL_M6.5/rtw/c/servotogo

Page 15 of 25

3.4 ServoToGo Driver Install
The driver builds and installs as a separate component.

Building the Driver

1. Unzip the driver code into a directory: unzip stg_driver.zip
2. Verify that two files are created – stg_driver.c, stg_driver.mk

3. Make the driver: make –f stg_driver.mk
4. Verify that this results in an object – stg_driver.o

The driver owns the address of the ServoToGo board, and must be

compiled to match the hardware. This can be done by changing a
#define in the stg_driver.c file. Also, a #define exists to

enable/disable logging of reads and writes. Logging is helpful for

debugging, but can be cumbersome for actual execution.

Installing the Driver
1. Start RTLinux: rtlinux start
2. Insert the driver’s module: insmod stg_driver.o (note that

‘insmod’) is only available as a root user)

3. Verify that it inserted correctly: dmesg (log should show
“Servotogo registered with ID” where ID is the assigned driver

ID)

For general debugging, the driver outputs many of its
commands/responses to the system log. dmesg prints the log to the

console, and dmesg –c clears it (after printing it to the console).

Page 16 of 25

4 How to Extend – Creating Blocks and Libraries
Simulink provides tools for creating new blocks and additional libraries.

4.1 Block Creation
Block creation facilities are fully documented in the Matlab help files.
The following is intended only to be a brief overview and how-to.

Simulink provides a method for creating blocks based on Matlab s-

functions. The block basically masks the s-function, passing along
inputs to it and taking outputs and feeding them back into the model.

s-functions themselves are bits of functionality implemented in another

programming language (typically c or c++), and then interfaced to the
Simulink environment through support for a set of standard callback

functions.

There are two versions of s-functions supported – non-inlined and
inlined. These differ in how they are treated on the workstation

(under simulation) and on the target. Inlined functions have separate

implementations – a standard, callback based version used in
simulation and a streamlined implementation appropriate for the

target that is substituted into the target implementation in-line. Non-
inlined versions execute the same standard model in both

implementations. Non-inlined s-functions require more memory and
increase execution overhead when compared to the in-lined version,

but require only a single implementation to be developed and
maintained.

To build a non-inlined block, one can begin with a provided template

that contains all necessary callback functions. This is located in the
standard Matlab install at

C:\MATLAB6p5\simulink\src\sfuntmpl_basic.c (sfuntmpl_doc.c for a
documented version).

Code appropriate to the block functionality can then be added to the
callback functions – typically in the mdlStart(), mdlUpdate(), and

mdlTerminate() functions, but possibly elsewhere.

Code that is only appropriate on the target can be conditionally
included using the following construct:

#ifdef RT

Page 17 of 25

//target code

#endif

With the s-function code complete, a block can be created in Simulink.
In the standard library under ‘User Defined Functions’ there is a basic

s-function block. Add this block to a model, and rename it with the
name of the c-file implementation – the implementation and the block

are linked via this shared name.

Finally, to make simulation possible, a compiled version of the s-
function must exist. Change the working directory to that containing

the c-file implementation and compile using mex –g
sfunctionfilename.c. This creates a .dll version of the s-function.

To make an inlined block, the easiest method is to use the S-Function

builder block provided by simulink under the ‘User Defined Functions’

option in the library. This provides a wizard like interface for defining
a block, and was used to build the ServoToGo blocks for this project.

4.2 Library Creation
A library in Simulink is simply a model containing the blocks in the
library along with an .m file defining the library attributes (slblocks.m).

Add a group of blocks to a new (empty) model and save the model
with an appropriate name. Copy a version of slblocks.m from an

existing library to the new library, and edit it with the correct file
names and other information. Add the directory containing the model,

the .m file, and the implementations of the blocks (and their mex-
compiled versions) to the matlab path and restart Simulink. The new

library should show up in the browser.

Page 18 of 25

5 Appendix

5.1 Contents of Archive

STRTL_M65.tzr.gz Archive of Simulink/RTLinux integration

Rtlinux-3[1].2-pre2.tar RTLinux distribution

stg_lib_rtl_target.zip Servotogo simulink block code for target

stg_lib_rtl_host.zip Servotogo library and code on host

rtlinux stg.tmf Template make file to replace that found in

distribution (STRTL_M65)

stg_driver.zip Archive for STG driver

stg_lib_test_mdls.zip Models used to test STG library

5.2 ServoToGo Driver Details
The interface to the ServoToGo board is implemented as an RTLinux
character driver. It implements the following functions and file

operations:

Functions:
init_module(): registers the driver as a character device
cleanup_module(): unregisters driver

File ops:
rtl_servotogo_open(): protects against multiple opens with a semaphore
rtl_servotogo_release(): releases open semaphore

rtl_servotogo_read(): reads either a byte or a word from an address

offset

rtl_servotogo_write(): writes either a byte or a word to an address

offset

For reads and writes, the address offset, type of operation (read vs.

write), and data value (writes only) are stuffed as ascii text into the
char buffer sent in the write/read file operation.

For all operations, the driver itself knows the base address of the
board. This is currently compiled in, but could be configurable at

driver installation.

Page 19 of 25

The intention is that this driver contains all of the target specific

hardware detail (address, etc.) and performs all actual hardware
interface (writes and reads).

5.3 Simulink Block Implementation

Each s-function is comprised of a set of callback type functions that
actually implement the block. For this project’s blocks, only the

following subset of callbacks are important:

mdlInitializeSizes(): sets up number and type of inputs and outputs.

For the initialize block, this also opens the
board driver and stores its handle.

mdlInitializeSampleTimes(): sets up number and type of sample times

mdlStart(): performs one time initialization

mdlOutputs(): performs actual work for the block (reads ADC, outputs

DAC voltage, reads encoder, etc.)

mdlTerminate(): performs any clean-up (closes driver, etc.)

Each block’s implementation resides in a pair of .c files as follows:

• blockname.c
• blockname_wrapper.c

The blockname.c file contains the callback functions mentioned above,

and is used to generate the executable block for simulation on the
host. The blockname_wrapper.c module contains wrapped versions of

target specific code. These are called directly on the target machine.

In Simulink, these blocks are each wrapped in a mask (that provides
input/output and block names) and are collected together in a library.

In addition to the blocks’ code, there is a single helper file with various
utility functions ‘drv_utils.c’. This is present only on the target, and

performs the actual interface to the hardware. This contains the
following functions:

//i/o write/read wrapper prototypes
int drv_write_byte (int fd, unsigned char data, short address);
int drv_write_word (int fd, short data, short address);
unsigned char drv_read_byte (int fd, short address);
unsigned short drv_read_word (int fd, short address);

//board functions

Page 20 of 25

int init_board (int fd);
int open_board (void);
void close_board (int fd);
void output_dac (int gFD, int channel, double voltage);
double input_adc (int fd, int channel);
double output_encoder (int fd, int chan, short *val);
double input_encoder (int fd, int chan);
void config_dio (int fd, int dirA, int dirB, int dirC0,
 int dirC1, int dirD0, int dirD1);
void write_dio (int fd, int channel, unsigned char value);
unsigned char read_dio (int fd, int channel);

The drv_write/drv_read functions wrap the writes/reads to the actual
I/O driver. The other functions wrap the details of their respective

functions (ADC reads and scaling/conversion, etc.) and are the only
things actually called in the s-function code.

5.4 STG library detail

Page 21 of 25

Details of the ServoToGo library.

All blocks take a channel input.

The ADC returns a voltage read from the ADC channel as a double.

The DAC outputs a voltage input as a double to the specified DAC

channel.

The Encoder read currently returns the counts it reads (not radians).

The Encoder write block presets one of the encoder channels to a
specified offset (in counts).

The Config DIO block has parameters that set up the DIO ports as

either inputs or outputs. DIO read reads a value from a port

Page 22 of 25

configured as an input, DIO write writes a value to a port set as an

output.

The initialize block opens the board driver and performs initialization.
This initialization currently consists of setting up the encoder registers,

but could include digital I/O configuration as well.

Some blocks also support simulation. When running in Simulink (not
on the target), they use the ‘sim input’ and ‘sim output’ connections to

pass data through.

Page 23 of 25

5.5 Testing
Models were created to test the functionality of each part of the

system. These models are included below for reference.

testadcs.mdl

Page 24 of 25

testdacs.mdl

testencoder.mdl

Page 25 of 25

testdio.mdl

