
Global Ecol Biogeogr. 2019;00:1–14.	 wileyonlinelibrary.com/journal/geb�  |  1© 2019 John Wiley & Sons Ltd

 

Received: 7 December 2018  |  Revised: 22 June 2019  |  Accepted: 1 July 2019
DOI: 10.1111/geb.12988  

R E S E A R C H  P A P E R

Spatial patterns of discovery points and invasion hotspots of 
non‐native forest pests

Samuel F. Ward1  |   Songlin Fei1 |   Andrew M. Liebhold2,3

1Department of Forestry and Natural 
Resources, Purdue University, West 
Lafayette, Indiana
2USDA Forest Service, Northern Research 
Station, Morgantown, West Virginia
3Faculty of Forestry and Wood 
Sciences, Czech University of Life Sciences, 
Prague, Czech Republic

Correspondence
Songlin Fei, Department of Forestry and 
Natural Resources, Purdue University, West 
Lafayette, IN 47907.
Email: sfei@purdue.edu

Funding information
National Science Foundation, Grant/Award 
Number: MacroSystems Biology #1638702; 
The Czech Operational Programme 
"Research, Development and Education", 
Grant/Award Number: EVA4.0, No. 
CZ.02.1.01/0.0/0.0/16_019/0000803 

Editor: Petr Keil

Abstract
Aim: Establishments of non‐native forest pests (insects and pathogens) continue 
to increase worldwide with growing numbers of introductions and changes in inva‐
sion pathways. Quantifying spatio‐temporal patterns in establishment locations and 
subsequent invasion dynamics can provide insight into the underlying mechanisms 
driving invasions and assist biosecurity agencies with prioritizing areas for proactive 
surveillance and management.
Location: United States of America.
Time period: 1794–2018.
Major taxa studied: Insecta, plant pathogens.
Methods: Using locations of first discovery and county‐level occurrence data for 101 
non‐native pests across the contiguous USA, we (a) quantified spatial patterns in dis‐
covery points and county‐level species richness with spatial point process models and 
spatial hotspot analyses, respectively, and (b) identified potential proxies for propagule 
pressure (e.g., human population density) associated with these observed patterns.
Results: Discovery points were highly aggregated in space and located in areas with 
high densities of ports and roads. Although concentrated in the north‐eastern USA, 
discovery points also occurred farther west and became less aggregated as time pro‐
gressed. Invasion hotspots were more common in the north‐east. Geographic pat‐
terns of discovery points and hotspots varied substantially among pest origins (i.e., 
global region of pests’ native ranges) and pest feeding guilds. Significant variation in 
invasion richness was attributed to the patterns of first discovery locations. Data and 
shapefiles comprising analyses are provided.
Main conclusions: Use of spatial point pattern analyses provided a quantitative charac‐
terization of the central role of human activities in establishment of non‐native pests. 
Moreover, the decreased aggregation of discovery points through time suggests that 
invasion pathways to certain areas in the USA have either been created or intensified 
by human activities. Overall, our results suggest that spatio‐temporal variability in the 
intensity of invasion pathways has resulted in marked geographic patterns of estab‐
lishment and contributed to current macroscale patterns of pest invasion in the USA.
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1  | INTRODUC TION

Biological invasions can be categorized into three phases: arrival, es‐
tablishment and spread (Liebhold & Tobin, 2008). For invasive forest 
pests (insects and pathogens), the first phase is typically facilitated 
by inadvertent human transportation, for example, through importa‐
tion of live plants, wood packaging material, or timber (Brockerhoff 
& Liebhold, 2017; Liebhold, Brockerhoff, Garrett, Parke, & Britton, 
2012; Skarpaas & Økland, 2009). The arrival of non‐native pests has 
increased with international trade and travel (Levine & D’Antonio, 
2003; Turbelin, Malamud, & Francis, 2016) and more conspecifics ar‐
riving per unit of time and/or space (i.e., higher propagule pressure) 
increases the likelihood that a species will locate resources and over‐
come demographic barriers to establishment (Lockwood, Cassey, & 
Blackburn, 2005; Simberloff, 2009). The final invasion phase, spread, 
is affected by human activities (e.g., movement of pests within the 
invaded range; Gilbert, Grégoire, Freise, & Heitland, 2004; Shigesada 
& Kawasaki, 1997), variation in habitat quality (Hudgins, Liebhold, 
& Leung, 2017; Liebhold et al., 2013), temperature (Lantschner et 
al., 2014), voltinism (Fahrner & Aukema, 2018), time since establish‐
ment (Andow, Kareiva, Levin, & Okubo, 1990) and other factors. 
Processes operating during each phase combine to determine the 
extent of currently invaded ranges.

The number of non‐native forest pests arriving and establishing 
in the USA continues to increase (Aukema et al., 2010). Non‐native 
pests impact forest structure and succession (Liebhold et al., 2017; 
Lovett et al., 2016; Morin & Liebhold, 2015) and cause billions of 
dollars (US$) in economic impacts per annum (Aukema et al., 2011). 
Given that human activity drives pest arrival and establishment, dis‐
covery of pests in densely populated or well‐travelled regions may 
be expected (Huang, Zhang, Kim, & Suarez, 2012). Locations of ar‐
rival and establishment can vary temporally with changes in interna‐
tional trade, such as fluctuations in economic markets that alter the 
intensity of invasion pathways between regions (Everett, 2000) or 
as human population densities change in time and space. However, 
spatial correlates of discovery points for non‐native forest pests in 
the USA have not been quantified.

The USA is highly invaded by forest pests with the number of 
non‐native species per unit area (“invasion richness”) distributed 
heterogeneously across the country (Liebhold et al., 2013). The 
geographic distribution of locations of initial invader establishment 
likely contributes to macroscale patterns of invasion richness, as 
pests spread into adjacent areas. However, after establishment, it 
does not necessarily follow that areas surrounding sites of initial es‐
tablishment will be conducive to rapid population growth and expan‐
sion of the invasive range. That is, patterns of invasion richness are 
the result of both establishment and spread and therefore patterns 
of invasion richness may not exactly mirror those of establishment 
locations.

Geographic variation in establishment and invasion richness may 
be driven, in part, by frequent human‐aided movement of pests into 
specific regions (Brockerhoff, Kimberley, Liebhold, Haack, & Cavey, 
2014), forest structure including host availability and/or apparency 

(Guo, Fei, Potter, Liebhold, & Wen, 2019; Liebhold et al., 2013), 
and climate (Ward & Masters, 2007). Among other factors, estab‐
lishment and invasion richness might also be influenced by global 
regions of origin and/or guilds of invaders. For example, rates of 
establishment and spread may be greatest when pests are moved 
between regions with similar climates (Roura‐Pascual et al., 2011; 
Venette, 2017) or more wood‐borers may arrive in areas with high 
imports of wood packaging material (Brockerhoff, Bain, Kimberley, 
& Knížek, 2006; Haack, 2006; Rassati, Faccoli, Toffolo, Battisti, & 
Marini, 2015). Following establishment, spread may be guild depen‐
dent, for example, if firewood, a major pathway for wood‐boring 
insects (Koch, Yemshanov, Magarey, & Smith, 2012), is moved with 
different frequencies between two regions than live plant material, 
a major pathway for foliage‐ and sap‐feeding insects (Liebhold et al., 
2012). It is unclear if either global region of origin or guild mediate 
patterns in establishment locations or invasion richness.

Here, we quantify spatial patterns in discovery points and in‐
vasion richness of non‐native forest pests using spatial point pat‐
tern and hotspot analyses, respectively. Application of spatial point 
pattern analyses to ecological data has increased over the previous 
~20  years and been frequently used to quantify spatial aggrega‐
tion patterns (e.g., compete spatial randomness) in univariate data 
(Velázquez, Martínez, Getzin, Moloney, & Wiegand, 2016). Point 
pattern analyses may also be used to quantify the influence of spa‐
tial heterogeneity (e.g., habitat features) on point patterns (Dodd, 
McCarthy, Ainsworth, & Burgman, 2016; Li et al., 2017) and conduct 
marked point pattern analyses, which enable the inclusion of trait in‐
formation (Velázquez et al., 2016). To that end, we analysed changes 
in first discovery points by time period of introduction, origin, and 
guild. For analyses of invasion richness, we identified richness 
hotspots by estimating local Getis–Ord statistics (Getis & Ord, 1992) 
at the county level. Relationships among first discovery locations, 
invasion richness, and richness hotspots were also investigated. Our 
intention was to provide insight on underlying drivers of macroscale 
patterns of invasion by non‐native forest pests. We anticipate that 
our findings will assist management agencies in targeting areas for 
increased monitoring and mitigation efforts.

2  | MATERIAL S AND METHODS

2.1 | Data collection and processing

The locations of first detection, or discovery points, and county‐
level occurrence for 101 major non‐native pests (n = 84 insects, 17 
pathogens) of trees were compiled for the contiguous USA. Data 
were originally collected for the Alien Forest Pest Explorer database. 
Briefly, locations (latitude, longitude) of discovery and occurrence at 
the county level were compiled from primary literature articles, sur‐
veys, and federal and state governmental reports. A detailed descrip‐
tion of the database was provided in Liebhold et al., (2013), which 
focused on mapping invasion richness at the county level and iden‐
tifying terms for propagule pressure and habitat invasibility that ex‐
plained variation in invasion richness. Here, we conducted analyses 
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to predict spatial patterns in discovery locations and quantitatively 
identify invasion hotspots (see below). For each pest, we obtained 
the year of first discovery, global region of origin or simply “origin” 
(Asian Palaearctic, Australasia, European plus Asian Palaearctic, 
European Palaearctic, or Neotropic Mexico/Central/South America; 
based on a pest’s native range and henceforth referred to as Asia, 
Australasia, Eurasia, Europe and Mexico/Central America/South 
America respectively), and guild (bark/wood‐borer, foliage‐feeder, 
sap‐feeder, pathogen). Pests were discovered between 1794 and 
2004. Most were introduced from Asia (33) and Eurasia (33), fol‐
lowed by Europe (25), Australasia (8) and Mexico/Central America/
South America (2). Of the total pests, 23 were bark/wood‐borers, 34 
were foliage‐feeders, 27 were sap‐feeders and 17 were pathogens.

For analyses of discovery points, some pests were not included 
either due to lack of documentation or because points were only 
traceable to the state level. One pest, beech scale (Cryptoccocus fagi‐
suga Lind.), was removed from analysis of discovery points because 
this species arrived in the USA via diffusive spread from Canada 
rather than as a point introduction. Some pests were assigned to 
county centroids and were retained for analyses. Ten pests (n = 4 
insects, 6 pathogens) were discovered in two, isolated locations 
and were treated as independent data points. In total, 79 discovery 
points for 74 pests (n = 62 insects, 12 pathogens) across 62 US coun‐
ties were available for analyses of discovery points (Figure 1).

Hotspot analyses of invasion richness focused on 101 pests 
across 3,109 counties and were current as of July 2018. First dis‐
covery locations were not available for all pests; hence, number 
of species between first detection point analyses and hotspot 
analyses differed. Two pests, soapberry borer (Agrilus prionurus 
Chevrolat) and oak wilt [Bretziella fagacearum (T. W. Bretz) J. Hunt], 
originating from Mexico/Central America/South America were 
not included in origin‐dependent analyses. Summaries of pests 
analysed for discovery points (Supporting Information Appendix 
S1: Table S1.1) and hotspots (Supporting Information  Appendix 
S1: Table S1.2) by origin  ×  guild are available in Supporting 
Information Appendix S1. All data and geographic information 
system (GIS) layers used in analyses are available through the 
Purdue University Research Repository (PURR) (Ward, Fei, & 
Liebhold, 2019).

2.2 | First discovery points

We analysed the spatial intensity of discovery locations (points per 
km2) using spatial point pattern analysis (Renner et al., 2015). Our 
spatial window of analysis was the border of the entire contiguous 
USA. All points were projected using Albers equal area projection. 
We then quantified Ripley’s K function [K(r); Ripley, 1976] for discov‐
ery points, which provides inference on spatial clustering of points 
within circles of increasing radii (i.e., at various spatial scales; Bivand, 
Pebesma, & Gómez‐Rubio, 2013). The estimated K(r) was trans‐
formed (

√

K(r)∕π− r) and compared visually to K(r) values simulated 
from a random distribution of 200 points. All point pattern analyses 
were conducted in R statistical software (R Core Team, 2018) via 

the “spatstat” package (Baddeley, Rubak, & Turner, 2015; Baddeley 
& Turner, 2005).

We then evaluated the explanatory power of invasion pathway 
variables for the log‐transformed intensity of discovery locations 
using point process models. Predictors considered were population 
density in 1990 (converted to 10 km × 10 km raster; Falcone, 2016), 
coastal port density (National Geospatial‐Intelligence Agency, 
2017), road density (primary roads; US Census Bureau Department 
of Commerce, 2016), and first‐ and second‐order terms for the 
west–east and south–north directions. Non‐directional terms were 
converted to pixel‐images for analysis (Baddeley & Turner, 2005). 
Note that our analyses predicted where pests were discovered, not 
necessarily where they first became established. The west–east and 
south–north terms were included as putative correlates for the ar‐
rival of pests in coastal areas by means not accounted for by the 
invasion pathway variables. For example, a positive correlation be‐
tween west–east and intensity of first discovery points would in‐
dicate that there are statistically higher concentrations of points 
in the east versus west. Approximately 80,000 quadrature points 
were selected to approximate the integral in the log‐likelihood func‐
tion that is maximized when fitting point process models (Baddeley 
& Turner, 2005; Renner et al., 2015). Diagnostic plots of residuals 
suggested that substantial unexplained variation in both the west–
east and south–north directions remained (Supporting Information 
Appendix S2).

We further analysed the location of discovery points in relation 
to time periods of discovery, origins, and guilds. To investigate tem‐
poral patterns in aggregation, the discovery point data were split 
into four groups using quartiles (Q1 = 1794–1907, Q2 = 1908–1927, 
Q3 = 1928–1991, Q4 = 1992–2004) for year of first discovery and 
Ripley’s K was then estimated separately for each quartile. Following 
the approach of Bivand, Pebesma, et al. (2013), we also conducted 
pairwise comparisons of aggregation between time periods to de‐
termine, for example, if discovery points from time period i were 
more or less aggregated than those of time period j (graphical results 

F I G U R E  1   Intensity of discovery points (points per km2) of non‐
native forest insects and pathogens discovered in the contiguous 
USA between 1794 and 2004. Colours and scale bar indicate a 
kernel smoother fit to observed first discovery locations, indicated 
by black circles. Map projection: Albers equal area



4  |     WARD et al.

of pairwise comparisons are provided in Supporting Information 
Appendix S3). We then conducted a marked point pattern analy‐
sis, which enabled each point to be assigned to a level of time pe‐
riod, by fitting a point process model with spatial covariates for the 
west–east direction, south–north direction and each direction’s 
interaction with a term for time period (i.e., west–east ×  time pe‐
riod, south–north ×  time period; time period had four levels, Q1–
Q4). Thus, we quantified (a) aggregation and (b) directional trends 
of points in space. Parallel analyses were conducted using origin and 
guild, each a categorical variable with four levels as described above, 
instead of time period. Trends were assessed visually by graphing 
intensity of discovery points as estimated via an isotropic Gaussian 
smoothing kernel fit via the density.ppp() function in R (Baddeley & 
Turner, 2005; Diggle, 1985). To determine robustness of full models, 
individual models for each level within a predictor were constructed 
by fitting terms for the west–east and south–north directions (e.g., 
assessing directional trends for pests introduced in Q1) and are pro‐
vided in Supporting Information Appendix S4.

Finally, to determine if patterns associated with origin or guild 
changed with time, we fit two separate ANOVAs assessing the role 
of origin or guild in year of first discovery. When significant varia‐
tion in discovery year was explained by a predictor (either guild or 
origin), we conducted Tukey’s honest significant difference (HSD) 
tests using the “emmeans” package (Lenth, 2018) in R for pairwise 
comparisons.

2.3 | Current invasion hotspot patterns

Hotspot analyses compare attributes of spatial features, such as 
the invasion richness of a county and its neighbours, to the global 
pattern across all spatial features to identify those with attribute 
levels greater than would be expected due to random chance (Fei, 
2010; Iannone et al., 2016; Patil & Taillie, 2004). Invasion hotspots 
were identified by quantifying local Getis–Ord (G∗

i
) statistics (Getis 

& Ord, 1992) for each county in the data set. G∗
i
 is a local neighbour‐

hood statistic that can account for invasion richness in neighbour‐
ing counties and enable one to detect spatial patterns that may not 
be accounted for when using global statistics (Ord & Getis, 1995). 
Thus, a county with low invasion richness could be identified as a 
hotspot if it is surrounded by counties with extremely low inva‐
sion richness values. Moreover, estimating G∗

i
 produces a Z‐score, 

which can be used as a threshold value for identifying areas with 
high invasion richness, rather than a scale of integer values such as 
invasion richness counts. That is, invasion richness counts do not 
involve a statistical test to determine which areas have significantly 
higher richness.

A first‐order spatial neighbourhood was constructed for calcu‐
lating G∗

i
 statistics. Separate analyses were conducted for all pests 

combined, origins, and guilds. For origin and guild, we quantified G∗
i
 

statistics both among (i.e., to identify counties with significantly more 
origins or guilds) and within (i.e., to identify counties with signifi‐
cantly more species belonging to a specific origin or guild) groupings. 
Calculating G∗

i
 statistics results in a Z‐score that can be compared 

to a standard normal distribution to obtain a p‐value. We defined a 
hotspot as any Z ≥ 4.16 (i.e., p < .05/3,109 or < .00002), equivalent to 
a Bonferroni correction, to protect against inflated type I error rates 
from calculating 3,109 Z‐values (one for each county).

2.4 | Current invasion hotspot patterns and first 
discovery locations

To quantify the effect of discovery locations on invasion rich‐
ness, we first estimated the intensity of discovery points at county 
centroids from observed discovery point data using an isotropic 
Gaussian smoothing kernel  fit using the density.ppp() function in 
R (Baddeley & Turner, 2005; Diggle, 1985) See Figure 1 for a rep‐
resentation of the smoothed surface. Estimated intensities were 
between 0.0000001 to 0.00011 pests per km2. We then fit three 
spatial simultaneous autoregressive error (SAR) models. For the 
first two, we predicted invasion richness and hotspots, using esti‐
mated Z‐values, as a function of estimated intensities of discovery 
points. For the third model, we regressed hotspot Z‐values on inva‐
sion richness. Model residuals for each analysis were weighted by 
second‐order spatial neighbourhoods to account for spatial auto‐
correlation, which was assessed by quantifying Moran's I. The SAR 
models were fit and Moran’s I estimated using the “spdep” package 
in R (Bivand, Hauke, & Kossowski, 2013; Bivand & Piras, 2015). GIS 
analyses relied on the “geosphere” (Hijmans, 2017), “geostatsp” 
(Brown, 2015, 2018), “maptools” (Bivand & Lewin‐Koh, 2017) and 
“rgdal” (Bivand, Keitt, & Rowlingson, 2018) packages in R (R Core 
Team, 2018).

3  | RESULTS

3.1 | First discovery points: Population density, 
ports, and roads

Discovery points were concentrated in the north‐east and west‐
ern coastal areas except for c. 10 points (c. 12%) distributed across 
the inland and southern USA (Figure 1). Owing to a total of 79 
discoveries across the entire contiguous USA, the mean intensity 
was low (0.00001 points per km2). Discoveries were highly ag‐
gregated in space at both local and continental scales (Figure 2a). 
In point process models, first‐ and second‐order terms for west–
east (west–east2) were significantly, positively correlated with 
the intensity of discovery points, indicating that more pests ini‐
tially invaded on both the east and west coasts (Table 1). Neither 
a first‐ nor second‐order term for south–north was significant. 
After accounting for these directional trends in discovery points, 
the density of ports and roads, proxies for invasion pathway in‐
tensity (propagule pressure), were positively correlated with the 
intensity of discovery points (Table 1). Human population density 
was not significantly correlated with intensity of discovery points 
in our full model (Table 1), but was significantly, positively cor‐
related when fit alone with the directional predictors (Supporting 
Information Appendix S5).
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F I G U R E  2  Transformed Ripley’s K (y axis) for discovery points of non‐native forest insects and pathogens discovered in the contiguous 
USA between 1794 and 2004 as a function of scale (radius of circles in km, x axis). Panels display discovery point patterns across (a) all pests, 
(b) time period of discovery, (c) origins or (d) guilds. Solid lines indicate observed, transformed K(r) at a radius r km from each discovery point. 
The dashed line provides an estimate of complete spatial randomness and the grey area represents 95% confidence limits for K(r) simulated 
from a theoretical, random distribution of discovery points. Lines above grey areas are significantly aggregated at the scale of analysis. For 
example, discoveries of all pests (panel a) are highly aggregated, regardless of scale
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Covariate Estimatea SE |Z|b p

Intercept −14.12 0.39 36.39 < .0001

Population density 0.00006 0.00007 0.81 .29

Port density 0.37 0.15 2.57 .0149

Road density 0.00704 0.00081 8.68 < .0001

West–east 0.00041 0.00008 5.01 < .0001

West–east2 10.2 × 10–7 1.3 × 10–7 8.00 < .0001

South–north 0.00009 0.00027 0.35 .38

South–north2 −2.0 × 10–7 3.5 × 10–7 −0.58 .34

aExponentiated coefficients for point process models indicate the factor by which density of 
discovery locations would increase per unit area with a one‐unit increase in the density of a covari‐
ate. For example, holding all else equal, an increase in 1 port per km2 was associated with a 1.4× 
[= exp(0.37)] increase in discovery points per km2. 
bZ statistics indicating whether coefficients estimated using spatial point process models are 
significantly different from 0. 

TA B L E  1  Summary statistics from a 
spatial point process model evaluating 
the role of invasion pathway variables and 
terms for cardinal directions in intensity 
of first detection points, log(points per 
km2), of non‐native forest insects and 
pathogens discovered in the contiguous 
USA between 1794 and 2004. The 
terms west–east and south–north 
represent geographic coordinates in 
Albers projection (km). Model Akaike’s 
information criterion (AIC): 1,571
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TA B L E  2  Spatial covariates of the intensity of first detection points, log(points per km2), of non‐native forest insects and pathogens 
discovered in the contiguous USA between 1794 and 2004. Trends were analysed using marked spatial point process models. Three 
separate analyses were conducted in which points were marked by time period of discovery (a), origin (b) or guild (c). The terms west–east 
and south–north represent geographic coordinates in Albers projection (km)

Covariatea Estimateb SE |Z|c p

a. Time period of discovery (AIC: 2,120)    

Intercept (Q1, 1974–1907) −13.48 0.35 38.93 < .0001

Q2 (1908–1927) −0.19 0.52 0.37 .37

Q3 (1928–1991) 0.51 0.43 1.19 .20

Q4 (1992–2004) 0.45 0.43 1.06 .23

West–east 0.00117 0.00025 4.76 < .0001

South–north 0.00110 0.00041 2.66 .0116

Q2 × west–east 0.00022 0.00037 0.60 .33

Q3 × west–east −0.00076 0.00031 2.45 .0200

Q4 × west–east −0.00113 0.00034 3.35 .0014

Q2 × south–north 0.00001 0.00059 0.02 .40

Q3 × south–north −0.00001 0.00057 0.02 .40

Q4 × south–north −0.00116 0.00056 2.05 .0484

b. Origin (AIC: 1,994)    

Intercept (Asia) −12.62 0.21 61.29 < .0001

Australasia −29.11 9.12 3.19 .0024

Eurasia −0.64 0.37 1.73 .09

Europe −2.08 0.66 3.15 .0028

West–east 0.00053 0.00018 2.99 .0046

South–north 0.00051 0.00031 1.63 .11

Australasia × west–east −0.01497 0.00419 3.57 .0007

Eurasia × west–east 0.00044 0.00026 1.68 .10

Europe × west–east 0.00147 0.00046 3.20 .0024

Australasia × south–north −0.00945 0.00288 3.28 .0018

Eurasia × south–north 0.00106 0.00051 2.08 .0463

Europe × south–north 0.00082 0.00060 1.36 .16

c. Guild (AIC: 2,089)        

Intercept (foliage‐feeders) −15.05 0.78 19.39 < .0001

Borers 2.00 0.82 2.45 .0198

Pathogens 1.50 0.86 1.75 .09

Sap‐feeders 2.18 0.81 2.70 .0104

West–east 0.00265 0.00052 5.06 < .0001

South–north 0.00065 0.00041 1.57 .12

Borers × west–east −0.00230 0.00057 4.06 .0001

Pathogens × west–east −0.00210 0.00057 3.71 .0004

Sap‐feeders × west–east −0.00262 0.00056 4.64 < .0001

Borers × south–north −0.00005 0.00057 0.09 .40

Pathogens × south–north 0.00097 0.00066 1.46 .14

Sap‐feeders × south–north −0.00056 0.00054 1.03 .23

Abbreviation: AIC, Akaike’s information criterion.
aModels predict the intensity of discovery points as a function of variables for west–east and south–north directions and a categorical predictor 
(each with four levels). For example, in model (a), the model reference level is Q1 (1974–1907), and thus the interaction of other levels of the variable 
time period with west–east and south–north are each compared to the slope coefficients of west–east and south–north associated with level Q1 
(i.e., 0.00117 and 0.00110, respectively). In models (b) and (c), the reference levels for the variables origin and guild are Asia and foliage‐feeders, 
respectively. 
bExponentiated coefficients for point process models indicate the factor by which density of discovery locations would increase per unit area with 
either a change between levels of a factor or a one‐unit increase in the density of a covariate. For example, for model (a) and holding all else equal, a 
shift 500 km west between Q1 and Q4 was associated with 1.76× [= exp(0.00113 × 500 km)] increase in the number of discovery points per km2. 
cZ statistics indicating whether coefficients estimated using spatial point process models are significantly different from 0. 
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3.2 | First discovery points: Time period

When modelling the intensity of discovery points using marked 
point pattern analysis, we found that spatial patterns in discoveries 
varied among time periods. Pests discovered between 1794–1907 
(Q1) and 1908–1927 (Q2) were significantly more aggregated than 
pests discovered between 1928–1991 (Q3) and 1992–2004 (Q4) 
(all p <  .01; Figure 2b). There were no statistical differences be‐
tween Q1 versus Q2 and Q3 versus Q4. When analysing how di‐
rectional trends and time period of introduction (Q1–Q4) jointly 
influence discovery point intensity, there was a statistically sig‐
nificant interaction between both directional predictors and time 
(Table 2a, west–east  ×  time period and south–north  ×  time pe‐
riod). Pests discovered between 1794–1927 (Q1–Q2) were more 
likely to be discovered in eastern and northern regions of the USA 
(Table 2a, Figure 3a,b). Pests discovered from 1928–1991 (Q3) 
were more likely to be discovered farther west than pests from Q1 
(Table 2a, Figure 3c). Pests discovered from 1992–2004 (Q4) were 
more likely to be discovered farther south and west than pests 

from Q1 (Table 2a, Figure 3d). Individual fits by time period con‐
firmed that discoveries were more likely to occur father west and 
south as time progressed (Supporting Information Appendix S4: 
Table S4.1).

3.3 | First discovery points: Origin

Marked point pattern analyses demonstrated that, in addition 
to changes with time period, spatial patterns of discovery points 
were mediated by pests’ global region of origin. Within an origin, 
all pests were aggregated in space (e.g., pests from Asia were likely 
to be discovered near other pests from Asia), although discovery 
points of pests from Australasia, Eurasia and Europe were more 
aggregated than those from Asia (Figure 2c). There were no dif‐
ferences in aggregation among discovery points of pests from 
Australasia, Eurasia and Europe. Pests from Asia were more likely 
to be discovered in the east versus the west (Table 2b, Figure 3e). 
Pests originating in Australasia were more likely to be discov‐
ered in the south‐western USA than those from Asia (Table 2b, 

F I G U R E  3  Discovery locations of non‐native forest insects and pathogens discovered in the contiguous USA between 1794 and 2004 
displayed by time period (a–d; quartiles of introduction year), world region of origin (e–h) and feeding guild (i–l). Models comparing changes 
in the distribution of points by time period (row 1 of figure), origin (row 2) and guild (row 3) are provided in Table 2. Changes in aggregation 
between groupings are presented in Figure 2. Map projection: Albers equal area

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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Figure 3f), whereas pests from Eurasia and Europe were typically 
discovered in the north‐eastern USA, similarly to pests from Asia 
(Table 2b, Figure 3g,h). Individual fits by origin confirmed that 
pests from Asia, Eurasia and Europe were generally discovered in 
the east whereas pests from Australasia were discovered in the 
south‐west (Supporting Information Appendix S4: Table S4.2).

3.4 | First discovery points: Guild

We also found that spatial patterns in discovery points differed 
among guilds. Discoveries of foliage‐feeders were significantly more 
aggregated than borers, sap‐feeders and pathogens (all p  <  .01; 
Figure 2d). There were no other differences detected in aggrega‐
tion among guilds (all p >  .05). Foliage‐feeders were more likely to 
be discovered in the north‐eastern USA (Figure 3i), whereas bor‐
ers (Figure 3j), sap‐feeders (Figure 3k) and pathogens (Figure 3l) 
were more likely to be discovered farther west than foliage‐feeders 
(Table 2c). Higher densities of discovery points of pathogens were 
observed at higher latitudes, although this trend was not statistically 
significant (Table 2c). Individual fits by guild confirmed conclusions 
from full models, except that the positive trend of discoveries of 
pathogens in the y‐direction was statistically significant in the model 

evaluating pathogens alone (Supporting Information Appendix S4: 
Table S4.3).

3.5 | First discovery points: Origin and guild by 
time period

Year of first discovery did not vary with region of origin (F4,74 = 2.10, 
p = .09). Pests from Australasia were the most recently discovered 
group on average, with a mean discovery year of 1973 (±18 years 
SE), followed by pests from Asia (1943 ± 8), Eurasia (1928 ± 11) and 
Europe (1923 ± 12). Year of first discovery varied significantly among 
guilds. The means for year of first discovery of borers and pathogens 
were 1981 (±8 years SE) and 1949 (± 9), respectively, and did not 
differ significantly (Tukey’s HSD, t75 = 2.08, p = .17). Foliage‐feeders 
and sap‐feeders were discovered, on average, in 1916 (± 9 SE) and 
1918 (±  11), respectively, significantly earlier than borers (Tukey’s 
HSD, all t75  >  4.3 and p  <  .0004). No differences were detected 
among foliage‐feeders, sap‐feeders and pathogens (Tukey’s HSD, all 
t75 < 2.29 and p > .10).

3.6 | Current invasion hotspot patterns: All pests

Of the 3,109 counties comprising our analysis, 89% were invaded 
by at least one species (Figure 4a). The average number of species 
per county was 4.88 (± 0.09 SE; maximum = 36 species) and 6.3% of 
counties were identified as hotspots (i.e., Z ≥ 4.16, p < .00002) as es‐
timated by Getis–Ord (G∗

i
) statistics (Figure 4b). Most hotspots were 

in the north‐eastern USA except for one county in south‐eastern 
Wisconsin (Figure 4b).

3.7 | Current invasion hotspot patterns: Origin

Species region of origin was associated with distinct geographic pat‐
terns. The average county had pests belonging to 1.62 (± 0.018 SE) 
origins. Pests from Asia were the most widespread and established 
in 80% of counties. Pests from Eurasia (50% of counties infested) 
were the second most widespread, followed by pests from Europe 
(28%) and Australasia (4%). Several counties in California and one 
county each in Idaho, Massachusetts and Montana were hotspots 
for the number of different origins represented (Figure 5a). That 
is, those counties had more origins represented than would be 
expected due to random chance. Hotspots based on origin were 
relatively limited in spatial extent for pests from Asia, Australasia, 
Eurasia and Europe, covering 7, 2, 6 and 5% of counties, respec‐
tively (Figure 5b–e). Hotspots for pests from Asia (Figure 5b) and 
Eurasia (Figure 5d) were concentrated in eastern counties, although 
two hotspots for Eurasian pests were identified in Washington 
state. Hotspots of pests from Australasia were concentrated in the 
south‐west and Florida (Figure 5c), whereas hotspots for pests from 
Europe were located in several coastal and inland western coun‐
ties, some counties in the upper Midwest and several north‐eastern 
counties (Figure 5e).

F I G U R E  4  County‐level (a) invasion richness and (b) hotspots 
for non‐native forest insects and pathogens as of 2018 in the 
contiguous USA. Hotspot analyses enable comparisons of invasion 
richness of a county and its neighbours to the global richness 
patterns across all counties to identify counties with richness levels 
greater than would be expected due to random chance. Invasion 
hotspots were identified by quantifying local Getis–Ord (G∗

i
) 

statistics, which produces a Z‐score. Counties with Z‐scores ≥ 4.16 
were considered invasion hotspots. Map projection: Albers equal 
area

(a)

(b)
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3.8 | Current invasion hotspot patterns: Guild

Counts and distributions of guilds exhibited considerable geographic 
variation. The average county contained 2.22 (0.023  ± SE) guilds. 
Pathogens were the most widespread and were detected in 76% of 
counties, followed by foliage‐feeders (64% of counties), borers (49%) 
and sap‐feeders (34%). Hotspots for numbers of different guilds rep‐
resented occurred in few counties (< 1%) and were concentrated in 
the north‐east (Figure 6a). Hotspots for borers, foliage‐feeders, sap‐
feeders and pathogens were limited in their spatial extent, covering 
4.7, 5.2, 4.6 and 7.1% of counties, respectively (Figure 6b‐e). Despite 
hotspots for borers (Figure 6b) and sap‐feeders (Figure 6d) being 
the least geographically widespread, hotspots for both guilds were 
identified in the north‐east and south‐west. Additional hotspots for 
borers were found in Michigan and Wisconsin, with one hotspot in 
north‐western Utah. Several counties throughout California were 

identified as hotspots for sap‐feeders. Hotspots of foliage‐feeders 
(Figure 6c) and pathogens (Figure 6e) were distributed similarly and 
concentrated in the north‐east and some Midwestern states.

3.9 | Current invasion hotspot patterns and first 
discovery locations

Both county‐level invasion richness (Figure 7a) and hotspot Z‐val‐
ues (Figure 7b) were positively correlated with estimated inten‐
sities of first discovery locations. That is, invasion richness was 
higher in counties located in areas with higher densities of first 
discovery points. Similarly, hotspot Z‐values were significantly, 
positively correlated with invasion richness (Figure 7c). The si‐
multaneous autoregressive error models used to regress invasion 
richness and hotspot Z‐values on estimated intensities of discov‐
ery points sufficiently accounted for spatial autocorrelation (both 

F I G U R E  5  County‐level invasion hotspots for non‐native forest insects and pathogens as of 2018 in the contiguous USA based on pest 
origin: (a) numbers of origins, (b) Asia, (c) Australasia, (d) Eurasia and (e) Europe. A hotspot is defined as any county where Getis–Ord (G∗

i
) 

statistics (Z‐scores) are ≥ 4.16. See Figure 4 and main text for description of G∗
i
. Map projection: Albers equal area

(a) (b)

(c) (d)

(e)
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Moran’s I < −.10, p = .99). There remained some spatial autocorrela‐
tion in the model regressing hotspot Z‐values on invasion richness 
(Moran’s I = .02, p < .05).

4  | DISCUSSION

Our finding that discovery locations of forest pests are associated 
with human activity provides quantitative support for the role hu‐
mans have in facilitating invasions. Movement of non‐native spe‐
cies by humans has long been recognized (Hulme, 2009); however, 
we found that proxies for human activity, such as density of ports 
and roads, were more correlated with the intensity of discovery 
points than human population density itself (Table 1). Such findings 
may be indicative of frequent pest arrival in cargo imports (Aukema 
et al., 2010; Work, McCullough, Cavey, & Komsa, 2005). The final 

destination of contaminated cargo is not necessarily near the port 
of entry (Rassati et al., 2015) and areas with high densities of roads 
may contain many final destinations for cargo. The predictive ability 
of human population density may have been improved by considering 
population densities at earlier time periods (e.g., prior to the 1920s), 
given the relatively wide temporal window of our first discovery 
point data (1794–2004). Human population density, ports, and roads 
are also correlated in space, which may have masked the predictive 
power of population density (Supporting Information Appendix S5). 
Nonetheless, there remained unexplained variation in locations of ini‐
tial establishment, as indicated by the strong association of discovery 
points with coastal regions after accounting for the densities of ports, 
roads and humans (Table 1), which may be attributable to habitat in‐
vasibility (e.g., tree diversity) (Guo et al., 2019; Liebhold et al., 2013).

The spatial distribution of discovery points differed between 
time periods and was dependent on pest origin and feeding guild, 

F I G U R E  6  County‐level invasion hotspots for non‐native forest insects and pathogens as of 2018 in the contiguous USA based on pest 
guild: (a) numbers of guilds, (b) bark/wood‐borers, (c) foliage‐feeders, (d) sap‐feeders and (e) pathogens. A hotspot is defined as any county 
where Getis–Ord (G∗

i
) statistics (Z‐scores) are ≥ 4.16. See Figure 4 and main text for description of G∗

i
. Map projection: Albers equal area

(a) (b)

(c)

(e)

(d)
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likely reflecting changes in the intensity of invasion pathways, 
prevention/management efforts at ports of entry, or composition/
volume of imports. For example, the historically dominant inva‐
sion pathway for foliage‐feeders is the movement of live plants 
(Liebhold et al., 2012). Prior to 1918, imports of plants to the USA 

were largely unregulated but subsequent implementation of quar‐
antine practices greatly diminished accidental introductions of in‐
sects on commercial plant imports (Liebhold & Griffin, 2016). We 
found that discoveries of foliage‐feeders occurred the earliest on 
average (1916) and were concentrated in the north‐eastern USA. 
Thus, the concentration of human populations in the north‐east 
in the early 1900s coupled with unregulated importation of live 
plants likely drove the high aggregation of discovery points for fo‐
liage‐feeders (Figure 2d). It follows that increased population den‐
sity in the western USA would increase propagule pressure in the 
west and spread the risk of non‐native pest establishment across 
a larger area, thus decreasing aggregation; indeed, we observed 
a decrease in aggregation through time (Figure 2b). Patterns of 
borer discovery also suggest that intensity of invasion pathways 
change with time. The average introduction year for borers was 
1981, which may reflect temporal changes in their dominant in‐
vasion pathway, solid wood packaging material (Brockerhoff et 
al., 2006; Brockerhoff & Liebhold, 2017). Imports to the USA 
have risen dramatically over the last 100  years and widespread 
adoption of containerized cargo has led to increased movement 
of wood packaging and associated increases in borer invasions 
(Aukema et al., 2010).

We note that patterns in discovery points may be a function 
of sampling bias, with more pests discovered in areas of human 
activity due to survey efforts. However, invaders often arrive 
via pathways such that they typically establish in populated 
areas (Colunga‐Garcia, Haack, & Adelaja, 2009; Paap, Burgess, & 
Wingfield, 2017) and thus first establishments in rural areas are 
generally low. Conspicuousness of impacts may also be an import‐
ant determinant of first discovery point patterns. For example, 
there may be shorter time‐lags between establishment and detec‐
tion for pests with immediately visible impacts when at low den‐
sities. Variability in detection and/or imperfect detection may be 
able to be accounted for using occupancy models (Dorazio, 2014; 
MacKenzie et al., 2017). However, data on impact detectability, 
particularly when at low densities as is observed immediately fol‐
lowing introduction, were not available and thus not accounted for 
in our analyses.

Hotspot analyses using all pest species indicated that hotspots 
were concentrated in the north‐eastern USA, corroborating findings 
by Liebhold et al., (2013), but striking differences emerged when 
viewing hotspots by pest origin and guild. Hotspot patterns could 
be driven in part by the origin × guild composition of invasive for‐
est pests. Hotspots of Australasian pests (Figure 5c) and sap‐feed‐
ers (Figure 6d) were present in California and Florida, and 4/8 pests 
from Australasia were sap‐feeders (only 4/27 sap‐feeders were from 
Australasia; Supporting Information Appendix S1). Thus, the number 
of species per guild arriving from a place of origin could have con‐
tributed to some of the patterns in both first discovery points and 
hotspots observed here.

Invasion pathways begetting higher rates of establishment per 
unit area may, in part, drive subsequent patterns in invasion richness. 
That is, numbers of invasive forest pest species establishing in an area 

F I G U R E  7   (a) Number of non‐native pests per county as of 
2018 in the contiguous USA (y axis; invasion richness) as a function 
of kernel estimated discovery points per km2 at county centroids 
(estimated discovery density, x axis). The kernel smoother was fit to 
observed first discovery locations for non‐native forest pests in the 
contiguous USA (1794–2004) and estimated discovery density for 
each county was obtained from that interpolated surface. Intercept 
(± 0.22 SE, Z = 13.46, p < .0001) and slope (± 7,816.57 SE, Z = 17.92, 
p < .0001) of fit line significantly differ from 0. (b) Z‐values from 
hotspot analyses of invasion richness (richness hotspots, y axis) 
as a function of estimated discovery density at the county level. 
Intercept (± 0.14 SE, Z = −3.18, p = .0015) and slope (± 5,773.40 SE, 
Z = 5.64, p < .0001) of fit line significantly differ from 0. (c) Richness 
hotspots as a function of invasion richness. Intercept (± 0.02 SE, Z = 
−132.48, p < .0001) and slope (± 0.002 SE, Z = 182.05, p < .0001) of 
fit line significantly differ from 0.

(a)

(b)

(c)
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appeared to be associated with pest accumulation (Figure 7a) and inva‐
sion richness hotspots (Figure 7b) in surrounding areas. Quantification 
of spatio‐temporal import trends may provide further insights, for ex‐
ample, if certain regions and time periods are associated with guild‐
dependent invasion pathways and associated establishments. We 
caution that our hotspot results may be scale‐dependent; analysing 
data at the county level was ideal, however, given that (a) these data 
were recorded and quarantines are often imposed (e.g., emerald ash 
borer Agrilus planipennisi Fairmaire) at the county level and (b) hotspot 
analyses at the state level may have been limited by too few data 
points (i.e., 3,000 + counties versus 48 states).

Future analyses encompassing more discovery points, including 
those of pests of agricultural, rangeland and/or other ecosystems, 
may exhibit different patterns and/or provide insight into the be‐
haviour of different invasion pathways. Patterns described here 
may not reflect the patterns of all non‐native forest insects and 
pathogens, as our data are limited to tree insects and pathogens 
having some detectable impacts. Further analyses are also needed 
to examine the role of biotic resistance, the ecological character‐
istics of a community that decrease invasibility, in patterns of first 
discovery locations. Investigations of how diversity and structure of 
urban and rural forests affect pest establishment might help man‐
agers promote more pest‐resistant landscapes (Jactel et al., 2009; 
Raupp, Cumming, & Raupp, 2006; Santamour, 1990). Nonetheless, 
our findings highlight the central role humans play in the movement 
and establishment of non‐native forest pests and suggest continued 
monitoring near ports and highly populated areas to maximize early 
detection of new invaders.
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