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Abstract
Aim: Establishments	 of	 non‐native	 forest	 pests	 (insects	 and	 pathogens)	 continue	
to	increase	worldwide	with	growing	numbers	of	introductions	and	changes	in	inva‐
sion	pathways.	Quantifying	spatio‐temporal	patterns	in	establishment	locations	and	
subsequent	 invasion	dynamics	can	provide	 insight	 into	the	underlying	mechanisms	
driving	invasions	and	assist	biosecurity	agencies	with	prioritizing	areas	for	proactive	
surveillance	and	management.
Location: United	States	of	America.
Time period: 1794–2018.
Major taxa studied: Insecta,	plant	pathogens.
Methods: Using	locations	of	first	discovery	and	county‐level	occurrence	data	for	101	
non‐native	pests	across	the	contiguous	USA,	we	(a)	quantified	spatial	patterns	in	dis‐
covery	points	and	county‐level	species	richness	with	spatial	point	process	models	and	
spatial	hotspot	analyses,	respectively,	and	(b)	identified	potential	proxies	for	propagule	
pressure	(e.g.,	human	population	density)	associated	with	these	observed	patterns.
Results: Discovery	points	were	highly	aggregated	in	space	and	located	in	areas	with	
high	densities	of	ports	and	roads.	Although	concentrated	in	the	north‐eastern	USA,	
discovery	points	also	occurred	farther	west	and	became	less	aggregated	as	time	pro‐
gressed.	 Invasion	hotspots	were	more	common	 in	the	north‐east.	Geographic	pat‐
terns	of	discovery	points	and	hotspots	varied	substantially	among	pest	origins	(i.e.,	
global	region	of	pests’	native	ranges)	and	pest	feeding	guilds.	Significant	variation	in	
invasion	richness	was	attributed	to	the	patterns	of	first	discovery	locations.	Data	and	
shapefiles	comprising	analyses	are	provided.
Main conclusions: Use	of	spatial	point	pattern	analyses	provided	a	quantitative	charac‐
terization	of	the	central	role	of	human	activities	in	establishment	of	non‐native	pests.	
Moreover,	the	decreased	aggregation	of	discovery	points	through	time	suggests	that	
invasion	pathways	to	certain	areas	in	the	USA	have	either	been	created	or	intensified	
by	human	activities.	Overall,	our	results	suggest	that	spatio‐temporal	variability	in	the	
intensity	of	invasion	pathways	has	resulted	in	marked	geographic	patterns	of	estab‐
lishment	and	contributed	to	current	macroscale	patterns	of	pest	invasion	in	the	USA.
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1  | INTRODUC TION

Biological	invasions	can	be	categorized	into	three	phases:	arrival,	es‐
tablishment	and	spread	(Liebhold	&	Tobin,	2008).	For	invasive	forest	
pests	(insects	and	pathogens),	the	first	phase	is	typically	facilitated	
by	inadvertent	human	transportation,	for	example,	through	importa‐
tion	of	live	plants,	wood	packaging	material,	or	timber	(Brockerhoff	
&	Liebhold,	2017;	Liebhold,	Brockerhoff,	Garrett,	Parke,	&	Britton,	
2012;	Skarpaas	&	Økland,	2009).	The	arrival	of	non‐native	pests	has	
increased	with	 international	 trade	and	 travel	 (Levine	&	D’Antonio,	
2003;	Turbelin,	Malamud,	&	Francis,	2016)	and	more	conspecifics	ar‐
riving	per	unit	of	time	and/or	space	(i.e.,	higher	propagule	pressure)	
increases	the	likelihood	that	a	species	will	locate	resources	and	over‐
come	demographic	barriers	to	establishment	(Lockwood,	Cassey,	&	
Blackburn,	2005;	Simberloff,	2009).	The	final	invasion	phase,	spread,	
is	affected	by	human	activities	(e.g.,	movement	of	pests	within	the	
invaded	range;	Gilbert,	Grégoire,	Freise,	&	Heitland,	2004;	Shigesada	
&	Kawasaki,	1997),	 variation	 in	habitat	quality	 (Hudgins,	 Liebhold,	
&	 Leung,	 2017;	 Liebhold	 et	 al.,	 2013),	 temperature	 (Lantschner	 et	
al.,	2014),	voltinism	(Fahrner	&	Aukema,	2018),	time	since	establish‐
ment	 (Andow,	 Kareiva,	 Levin,	 &	 Okubo,	 1990)	 and	 other	 factors.	
Processes	operating	during	 each	phase	 combine	 to	determine	 the	
extent	of	currently	invaded	ranges.

The	number	of	non‐native	forest	pests	arriving	and	establishing	
in	the	USA	continues	to	increase	(Aukema	et	al.,	2010).	Non‐native	
pests	impact	forest	structure	and	succession	(Liebhold	et	al.,	2017;	
Lovett	 et	 al.,	 2016;	Morin	&	 Liebhold,	 2015)	 and	 cause	billions	of	
dollars	(US$)	in	economic	impacts	per	annum	(Aukema	et	al.,	2011).	
Given	that	human	activity	drives	pest	arrival	and	establishment,	dis‐
covery	of	pests	in	densely	populated	or	well‐travelled	regions	may	
be	expected	(Huang,	Zhang,	Kim,	&	Suarez,	2012).	Locations	of	ar‐
rival	and	establishment	can	vary	temporally	with	changes	in	interna‐
tional	trade,	such	as	fluctuations	in	economic	markets	that	alter	the	
intensity	of	 invasion	pathways	between	regions	 (Everett,	2000)	or	
as	human	population	densities	change	in	time	and	space.	However,	
spatial	correlates	of	discovery	points	for	non‐native	forest	pests	in	
the	USA	have	not	been	quantified.

The	USA	 is	highly	 invaded	by	 forest	pests	with	 the	number	of	
non‐native	 species	 per	 unit	 area	 (“invasion	 richness”)	 distributed	
heterogeneously	 across	 the	 country	 (Liebhold	 et	 al.,	 2013).	 The	
geographic	distribution	of	locations	of	initial	invader	establishment	
likely	 contributes	 to	 macroscale	 patterns	 of	 invasion	 richness,	 as	
pests	 spread	 into	 adjacent	 areas.	However,	 after	 establishment,	 it	
does	not	necessarily	follow	that	areas	surrounding	sites	of	initial	es‐
tablishment	will	be	conducive	to	rapid	population	growth	and	expan‐
sion	of	the	invasive	range.	That	is,	patterns	of	invasion	richness	are	
the	result	of	both	establishment	and	spread	and	therefore	patterns	
of	invasion	richness	may	not	exactly	mirror	those	of	establishment	
locations.

Geographic	variation	in	establishment	and	invasion	richness	may	
be	driven,	in	part,	by	frequent	human‐aided	movement	of	pests	into	
specific	regions	(Brockerhoff,	Kimberley,	Liebhold,	Haack,	&	Cavey,	
2014),	forest	structure	including	host	availability	and/or	apparency	

(Guo,	 Fei,	 Potter,	 Liebhold,	 &	 Wen,	 2019;	 Liebhold	 et	 al.,	 2013),	
and	climate	 (Ward	&	Masters,	2007).	Among	other	 factors,	estab‐
lishment	 and	 invasion	 richness	might	 also	 be	 influenced	 by	 global	
regions	 of	 origin	 and/or	 guilds	 of	 invaders.	 For	 example,	 rates	 of	
establishment	and	 spread	may	be	greatest	when	pests	are	moved	
between	 regions	with	 similar	 climates	 (Roura‐Pascual	 et	 al.,	 2011;	
Venette,	2017)	or	more	wood‐borers	may	arrive	in	areas	with	high	
imports	of	wood	packaging	material	 (Brockerhoff,	Bain,	Kimberley,	
&	Knížek,	 2006;	Haack,	 2006;	Rassati,	 Faccoli,	 Toffolo,	Battisti,	&	
Marini,	2015).	Following	establishment,	spread	may	be	guild	depen‐
dent,	 for	 example,	 if	 firewood,	 a	 major	 pathway	 for	 wood‐boring	
insects	(Koch,	Yemshanov,	Magarey,	&	Smith,	2012),	is	moved	with	
different	frequencies	between	two	regions	than	live	plant	material,	
a	major	pathway	for	foliage‐	and	sap‐feeding	insects	(Liebhold	et	al.,	
2012).	It	is	unclear	if	either	global	region	of	origin	or	guild	mediate	
patterns	in	establishment	locations	or	invasion	richness.

Here,	 we	 quantify	 spatial	 patterns	 in	 discovery	 points	 and	 in‐
vasion	 richness	 of	 non‐native	 forest	 pests	 using	 spatial	 point	 pat‐
tern	and	hotspot	analyses,	respectively.	Application	of	spatial	point	
pattern	analyses	to	ecological	data	has	increased	over	the	previous	
~20	 years	 and	 been	 frequently	 used	 to	 quantify	 spatial	 aggrega‐
tion	patterns	 (e.g.,	 compete	spatial	 randomness)	 in	univariate	data	
(Velázquez,	 Martínez,	 Getzin,	 Moloney,	 &	 Wiegand,	 2016).	 Point	
pattern	analyses	may	also	be	used	to	quantify	the	influence	of	spa‐
tial	 heterogeneity	 (e.g.,	 habitat	 features)	 on	 point	 patterns	 (Dodd,	
McCarthy,	Ainsworth,	&	Burgman,	2016;	Li	et	al.,	2017)	and	conduct	
marked	point	pattern	analyses,	which	enable	the	inclusion	of	trait	in‐
formation	(Velázquez	et	al.,	2016).	To	that	end,	we	analysed	changes	
in	first	discovery	points	by	time	period	of	 introduction,	origin,	and	
guild.	 For	 analyses	 of	 invasion	 richness,	 we	 identified	 richness	
hotspots	by	estimating	local	Getis–Ord	statistics	(Getis	&	Ord,	1992)	
at	 the	 county	 level.	 Relationships	 among	 first	 discovery	 locations,	
invasion	richness,	and	richness	hotspots	were	also	investigated.	Our	
intention	was	to	provide	insight	on	underlying	drivers	of	macroscale	
patterns	of	invasion	by	non‐native	forest	pests.	We	anticipate	that	
our	findings	will	assist	management	agencies	in	targeting	areas	for	
increased	monitoring	and	mitigation	efforts.

2  | MATERIAL S AND METHODS

2.1 | Data collection and processing

The	 locations	 of	 first	 detection,	 or	 discovery	 points,	 and	 county‐
level	occurrence	for	101	major	non‐native	pests	(n	=	84	insects,	17	
pathogens)	 of	 trees	were	 compiled	 for	 the	 contiguous	USA.	Data	
were	originally	collected	for	the	Alien	Forest	Pest	Explorer	database.	
Briefly,	locations	(latitude,	longitude)	of	discovery	and	occurrence	at	
the	county	level	were	compiled	from	primary	literature	articles,	sur‐
veys,	and	federal	and	state	governmental	reports.	A	detailed	descrip‐
tion	of	the	database	was	provided	 in	Liebhold	et	al.,	 (2013),	which	
focused	on	mapping	invasion	richness	at	the	county	level	and	iden‐
tifying	terms	for	propagule	pressure	and	habitat	invasibility	that	ex‐
plained	variation	in	invasion	richness.	Here,	we	conducted	analyses	
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to	predict	spatial	patterns	in	discovery	locations	and	quantitatively	
identify	 invasion	hotspots	(see	below).	For	each	pest,	we	obtained	
the	year	of	first	discovery,	global	region	of	origin	or	simply	“origin”	
(Asian	 Palaearctic,	 Australasia,	 European	 plus	 Asian	 Palaearctic,	
European	Palaearctic,	or	Neotropic	Mexico/Central/South	America;	
based	on	a	pest’s	native	range	and	henceforth	referred	to	as	Asia,	
Australasia,	 Eurasia,	 Europe	 and	 Mexico/Central	 America/South	
America	 respectively),	 and	 guild	 (bark/wood‐borer,	 foliage‐feeder,	
sap‐feeder,	 pathogen).	 Pests	 were	 discovered	 between	 1794	 and	
2004.	Most	were	 introduced	 from	Asia	 (33)	 and	 Eurasia	 (33),	 fol‐
lowed	by	Europe	(25),	Australasia	(8)	and	Mexico/Central	America/
South	America	(2).	Of	the	total	pests,	23	were	bark/wood‐borers,	34	
were	foliage‐feeders,	27	were	sap‐feeders	and	17	were	pathogens.

For	analyses	of	discovery	points,	some	pests	were	not	included	
either	 due	 to	 lack	 of	 documentation	 or	 because	 points	were	 only	
traceable	to	the	state	level.	One	pest,	beech	scale	(Cryptoccocus fagi‐
suga	Lind.),	was	removed	from	analysis	of	discovery	points	because	
this	 species	 arrived	 in	 the	 USA	 via	 diffusive	 spread	 from	 Canada	
rather	 than	 as	 a	 point	 introduction.	 Some	 pests	were	 assigned	 to	
county	centroids	and	were	 retained	 for	analyses.	Ten	pests	 (n = 4 
insects,	 6	 pathogens)	 were	 discovered	 in	 two,	 isolated	 locations	
and	were	treated	as	independent	data	points.	In	total,	79	discovery	
points	for	74	pests	(n	=	62	insects,	12	pathogens)	across	62	US	coun‐
ties	were	available	for	analyses	of	discovery	points	(Figure	1).

Hotspot	 analyses	 of	 invasion	 richness	 focused	 on	 101	 pests	
across	3,109	counties	and	were	current	as	of	July	2018.	First	dis‐
covery	 locations	were	not	available	 for	all	pests;	hence,	number	
of	 species	 between	 first	 detection	 point	 analyses	 and	 hotspot	
analyses	 differed.	 Two	 pests,	 soapberry	 borer	 (Agrilus prionurus 
Chevrolat)	and	oak	wilt	[Bretziella fagacearum	(T.	W.	Bretz)	J.	Hunt],	
originating	 from	 Mexico/Central	 America/South	 America	 were	
not	 included	 in	 origin‐dependent	 analyses.	 Summaries	 of	 pests	
analysed	for	discovery	points	 (Supporting	 Information	Appendix	
S1:	 Table	 S1.1)	 and	 hotspots	 (Supporting	 Information	 Appendix	
S1:	 Table	 S1.2)	 by	 origin	 ×	 guild	 are	 available	 in	 Supporting	
Information	 Appendix	 S1.	 All	 data	 and	 geographic	 information	
system	 (GIS)	 layers	 used	 in	 analyses	 are	 available	 through	 the	
Purdue	 University	 Research	 Repository	 (PURR)	 (Ward,	 Fei,	 &	
Liebhold,	2019).

2.2 | First discovery points

We	analysed	the	spatial	intensity	of	discovery	locations	(points	per	
km2)	using	spatial	point	pattern	analysis	 (Renner	et	al.,	2015).	Our	
spatial	window	of	analysis	was	the	border	of	the	entire	contiguous	
USA.	All	points	were	projected	using	Albers	equal	area	projection.	
We	then	quantified	Ripley’s	K	function	[K(r);	Ripley,	1976]	for	discov‐
ery	points,	which	provides	inference	on	spatial	clustering	of	points	
within	circles	of	increasing	radii	(i.e.,	at	various	spatial	scales;	Bivand,	
Pebesma,	 &	 Gómez‐Rubio,	 2013).	 The	 estimated	 K(r)	 was	 trans‐
formed	(

√

K(r)∕π− r)	and	compared	visually	to	K(r)	values	simulated	
from	a	random	distribution	of	200	points.	All	point	pattern	analyses	
were	 conducted	 in	R	 statistical	 software	 (R	Core	Team,	 2018)	 via	

the	“spatstat”	package	(Baddeley,	Rubak,	&	Turner,	2015;	Baddeley	
&	Turner,	2005).

We	then	evaluated	the	explanatory	power	of	invasion	pathway	
variables	 for	 the	 log‐transformed	 intensity	 of	 discovery	 locations	
using	point	process	models.	Predictors	considered	were	population	
density	in	1990	(converted	to	10	km	×	10	km	raster;	Falcone,	2016),	
coastal	 port	 density	 (National	 Geospatial‐Intelligence	 Agency,	
2017),	road	density	(primary	roads;	US	Census	Bureau	Department	
of	 Commerce,	 2016),	 and	 first‐	 and	 second‐order	 terms	 for	 the	
west–east	and	south–north	directions.	Non‐directional	terms	were	
converted	 to	 pixel‐images	 for	 analysis	 (Baddeley	&	 Turner,	 2005).	
Note	that	our	analyses	predicted	where	pests	were	discovered,	not	
necessarily	where	they	first	became	established.	The	west–east	and	
south–north	terms	were	included	as	putative	correlates	for	the	ar‐
rival	 of	 pests	 in	 coastal	 areas	 by	means	 not	 accounted	 for	 by	 the	
invasion	pathway	variables.	For	example,	a	positive	correlation	be‐
tween	west–east	 and	 intensity	 of	 first	 discovery	 points	would	 in‐
dicate	 that	 there	 are	 statistically	 higher	 concentrations	 of	 points	
in	 the	 east	 versus	west.	 Approximately	 80,000	 quadrature	 points	
were	selected	to	approximate	the	integral	in	the	log‐likelihood	func‐
tion	that	is	maximized	when	fitting	point	process	models	(Baddeley	
&	Turner,	2005;	Renner	et	al.,	2015).	Diagnostic	plots	of	 residuals	
suggested	that	substantial	unexplained	variation	in	both	the	west–
east	and	south–north	directions	remained	(Supporting	Information	
Appendix	S2).

We	further	analysed	the	location	of	discovery	points	in	relation	
to	time	periods	of	discovery,	origins,	and	guilds.	To	investigate	tem‐
poral	 patterns	 in	 aggregation,	 the	 discovery	 point	 data	were	 split	
into	four	groups	using	quartiles	(Q1	=	1794–1907,	Q2	=	1908–1927,	
Q3	=	1928–1991,	Q4	=	1992–2004)	for	year	of	first	discovery	and	
Ripley’s	K	was	then	estimated	separately	for	each	quartile.	Following	
the	approach	of	Bivand,	Pebesma,	et	al.	(2013),	we	also	conducted	
pairwise	comparisons	of	aggregation	between	 time	periods	 to	de‐
termine,	 for	 example,	 if	 discovery	 points	 from	 time	 period	 i were 
more	or	less	aggregated	than	those	of	time	period	j	(graphical	results	

F I G U R E  1   Intensity	of	discovery	points	(points	per	km2)	of	non‐
native	forest	insects	and	pathogens	discovered	in	the	contiguous	
USA	between	1794	and	2004.	Colours	and	scale	bar	indicate	a	
kernel	smoother	fit	to	observed	first	discovery	locations,	indicated	
by	black	circles.	Map	projection:	Albers	equal	area
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of	 pairwise	 comparisons	 are	 provided	 in	 Supporting	 Information	
Appendix	 S3).	We	 then	 conducted	 a	marked	 point	 pattern	 analy‐
sis,	which	enabled	each	point	to	be	assigned	to	a	 level	of	time	pe‐
riod,	by	fitting	a	point	process	model	with	spatial	covariates	for	the	
west–east	 direction,	 south–north	 direction	 and	 each	 direction’s	
interaction	with	 a	 term	 for	 time	period	 (i.e.,	west–east	×	 time	pe‐
riod,	 south–north	×	 time	period;	 time	period	had	 four	 levels,	Q1–
Q4).	Thus,	we	quantified	 (a)	 aggregation	and	 (b)	directional	 trends	
of	points	in	space.	Parallel	analyses	were	conducted	using	origin	and	
guild,	each	a	categorical	variable	with	four	levels	as	described	above,	
instead	of	 time	period.	Trends	were	 assessed	visually	by	graphing	
intensity	of	discovery	points	as	estimated	via	an	isotropic	Gaussian	
smoothing	kernel	fit	via	the	density.ppp()	function	in	R	(Baddeley	&	
Turner,	2005;	Diggle,	1985).	To	determine	robustness	of	full	models,	
individual	models	for	each	level	within	a	predictor	were	constructed	
by	fitting	terms	for	the	west–east	and	south–north	directions	(e.g.,	
assessing	directional	trends	for	pests	introduced	in	Q1)	and	are	pro‐
vided	in	Supporting	Information	Appendix	S4.

Finally,	 to	determine	 if	patterns	associated	with	origin	or	guild	
changed	with	time,	we	fit	two	separate	ANOVAs	assessing	the	role	
of	origin	or	guild	 in	year	of	first	discovery.	When	significant	varia‐
tion	in	discovery	year	was	explained	by	a	predictor	(either	guild	or	
origin),	 we	 conducted	 Tukey’s	 honest	 significant	 difference	 (HSD)	
tests	using	the	“emmeans”	package	(Lenth,	2018)	 in	R	for	pairwise	
comparisons.

2.3 | Current invasion hotspot patterns

Hotspot	 analyses	 compare	 attributes	 of	 spatial	 features,	 such	 as	
the	invasion	richness	of	a	county	and	its	neighbours,	to	the	global	
pattern	across	all	 spatial	 features	 to	 identify	 those	with	attribute	
levels	greater	than	would	be	expected	due	to	random	chance	(Fei,	
2010;	Iannone	et	al.,	2016;	Patil	&	Taillie,	2004).	Invasion	hotspots	
were	identified	by	quantifying	local	Getis–Ord	(G∗

i
)	statistics	(Getis	

&	Ord,	1992)	for	each	county	in	the	data	set.	G∗
i
	is	a	local	neighbour‐

hood	statistic	that	can	account	for	invasion	richness	in	neighbour‐
ing	counties	and	enable	one	to	detect	spatial	patterns	that	may	not	
be	accounted	for	when	using	global	statistics	(Ord	&	Getis,	1995).	
Thus,	a	county	with	low	invasion	richness	could	be	identified	as	a	
hotspot	 if	 it	 is	 surrounded	 by	 counties	 with	 extremely	 low	 inva‐
sion	 richness	values.	Moreover,	estimating	G∗

i
	produces	a	Z‐score,	

which	can	be	used	as	a	threshold	value	for	 identifying	areas	with	
high	invasion	richness,	rather	than	a	scale	of	integer	values	such	as	
invasion	 richness	counts.	That	 is,	 invasion	 richness	counts	do	not	
involve	a	statistical	test	to	determine	which	areas	have	significantly	
higher	richness.

A	first‐order	spatial	neighbourhood	was	constructed	for	calcu‐
lating	G∗

i
	statistics.	Separate	analyses	were	conducted	for	all	pests	

combined,	origins,	and	guilds.	For	origin	and	guild,	we	quantified	G∗
i
 

statistics	both	among	(i.e.,	to	identify	counties	with	significantly	more	
origins	 or	 guilds)	 and	within	 (i.e.,	 to	 identify	 counties	with	 signifi‐
cantly	more	species	belonging	to	a	specific	origin	or	guild)	groupings.	
Calculating	G∗

i
	 statistics	 results	 in	 a	Z‐score	 that	 can	be	 compared	

to	a	standard	normal	distribution	to	obtain	a	p‐value.	We	defined	a	
hotspot	as	any	Z	≥	4.16	(i.e.,	p	<	.05/3,109	or	<	.00002),	equivalent	to	
a	Bonferroni	correction,	to	protect	against	inflated	type	I	error	rates	
from	calculating	3,109	Z‐values	(one	for	each	county).

2.4 | Current invasion hotspot patterns and first 
discovery locations

To	 quantify	 the	 effect	 of	 discovery	 locations	 on	 invasion	 rich‐
ness,	we	first	estimated	the	intensity	of	discovery	points	at	county	
centroids	 from	 observed	 discovery	 point	 data	 using	 an	 isotropic	
Gaussian	 smoothing	kernel	 fit	 using	 the	density.ppp()	 function	 in	
R	(Baddeley	&	Turner,	2005;	Diggle,	1985)	See	Figure	1	for	a	rep‐
resentation	 of	 the	 smoothed	 surface.	 Estimated	 intensities	were	
between	0.0000001	to	0.00011	pests	per	km2.	We	then	fit	three	
spatial	 simultaneous	 autoregressive	 error	 (SAR)	 models.	 For	 the	
first	two,	we	predicted	invasion	richness	and	hotspots,	using	esti‐
mated	Z‐values,	as	a	function	of	estimated	intensities	of	discovery	
points.	For	the	third	model,	we	regressed	hotspot	Z‐values	on	inva‐
sion	richness.	Model	residuals	for	each	analysis	were	weighted	by	
second‐order	spatial	neighbourhoods	to	account	for	spatial	auto‐
correlation,	which	was	assessed	by	quantifying	Moran's	I.	The	SAR	
models	were	fit	and	Moran’s	I	estimated	using	the	“spdep”	package	
in	R	(Bivand,	Hauke,	&	Kossowski,	2013;	Bivand	&	Piras,	2015).	GIS	
analyses	 relied	 on	 the	 “geosphere”	 (Hijmans,	 2017),	 “geostatsp”	
(Brown,	2015,	2018),	“maptools”	(Bivand	&	Lewin‐Koh,	2017)	and	
“rgdal”	 (Bivand,	Keitt,	&	Rowlingson,	2018)	packages	 in	R	(R	Core	
Team,	2018).

3  | RESULTS

3.1 | First discovery points: Population density, 
ports, and roads

Discovery	points	were	concentrated	 in	the	north‐east	and	west‐
ern	coastal	areas	except	for	c. 10	points	(c. 12%)	distributed	across	
the	 inland	 and	 southern	USA	 (Figure	 1).	 Owing	 to	 a	 total	 of	 79	
discoveries	across	the	entire	contiguous	USA,	the	mean	intensity	
was	 low	 (0.00001	 points	 per	 km2).	 Discoveries	 were	 highly	 ag‐
gregated	in	space	at	both	local	and	continental	scales	(Figure	2a).	
In	point	process	models,	first‐	and	second‐order	terms	for	west–
east	 (west–east2)	 were	 significantly,	 positively	 correlated	 with	
the	 intensity	of	 discovery	points,	 indicating	 that	more	pests	 ini‐
tially	invaded	on	both	the	east	and	west	coasts	(Table	1).	Neither	
a	 first‐	 nor	 second‐order	 term	 for	 south–north	 was	 significant.	
After	accounting	for	these	directional	trends	in	discovery	points,	
the	density	of	ports	 and	 roads,	proxies	 for	 invasion	pathway	 in‐
tensity	 (propagule	pressure),	were	positively	 correlated	with	 the	
intensity	of	discovery	points	(Table	1).	Human	population	density	
was	not	significantly	correlated	with	intensity	of	discovery	points	
in	 our	 full	 model	 (Table	 1),	 but	 was	 significantly,	 positively	 cor‐
related	when	fit	alone	with	the	directional	predictors	(Supporting	
Information	Appendix	S5).
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F I G U R E  2  Transformed	Ripley’s	K	(y	axis)	for	discovery	points	of	non‐native	forest	insects	and	pathogens	discovered	in	the	contiguous	
USA	between	1794	and	2004	as	a	function	of	scale	(radius	of	circles	in	km,	x	axis).	Panels	display	discovery	point	patterns	across	(a)	all	pests,	
(b)	time	period	of	discovery,	(c)	origins	or	(d)	guilds.	Solid	lines	indicate	observed,	transformed	K(r)	at	a	radius	r	km	from	each	discovery	point.	
The	dashed	line	provides	an	estimate	of	complete	spatial	randomness	and	the	grey	area	represents	95%	confidence	limits	for	K(r)	simulated	
from	a	theoretical,	random	distribution	of	discovery	points.	Lines	above	grey	areas	are	significantly	aggregated	at	the	scale	of	analysis.	For	
example,	discoveries	of	all	pests	(panel	a)	are	highly	aggregated,	regardless	of	scale
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Covariate Estimatea SE |Z|b p

Intercept −14.12 0.39 36.39 < .0001

Population	density 0.00006 0.00007 0.81 .29

Port	density 0.37 0.15 2.57 .0149

Road	density 0.00704 0.00081 8.68 < .0001

West–east 0.00041 0.00008 5.01 < .0001

West–east2 10.2	×	10–7 1.3	×	10–7 8.00 < .0001

South–north 0.00009 0.00027 0.35 .38

South–north2 −2.0	×	10–7 3.5	×	10–7 −0.58 .34

aExponentiated	coefficients	for	point	process	models	indicate	the	factor	by	which	density	of	
discovery	locations	would	increase	per	unit	area	with	a	one‐unit	increase	in	the	density	of	a	covari‐
ate.	For	example,	holding	all	else	equal,	an	increase	in	1	port	per	km2	was	associated	with	a	1.4×	
[=	exp(0.37)]	increase	in	discovery	points	per	km2. 
bZ	statistics	indicating	whether	coefficients	estimated	using	spatial	point	process	models	are	
significantly	different	from	0.	

TA B L E  1  Summary	statistics	from	a	
spatial	point	process	model	evaluating	
the	role	of	invasion	pathway	variables	and	
terms	for	cardinal	directions	in	intensity	
of	first	detection	points,	log(points	per	
km2),	of	non‐native	forest	insects	and	
pathogens	discovered	in	the	contiguous	
USA	between	1794	and	2004.	The	
terms	west–east	and	south–north	
represent	geographic	coordinates	in	
Albers	projection	(km).	Model	Akaike’s	
information	criterion	(AIC):	1,571
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TA B L E  2  Spatial	covariates	of	the	intensity	of	first	detection	points,	log(points	per	km2),	of	non‐native	forest	insects	and	pathogens	
discovered	in	the	contiguous	USA	between	1794	and	2004.	Trends	were	analysed	using	marked	spatial	point	process	models.	Three	
separate	analyses	were	conducted	in	which	points	were	marked	by	time	period	of	discovery	(a),	origin	(b)	or	guild	(c).	The	terms	west–east	
and	south–north	represent	geographic	coordinates	in	Albers	projection	(km)

Covariatea Estimateb SE |Z|c p

a.	Time	period	of	discovery	(AIC:	2,120)   

Intercept	(Q1,	1974–1907) −13.48 0.35 38.93 < .0001

Q2	(1908–1927) −0.19 0.52 0.37 .37

Q3	(1928–1991) 0.51 0.43 1.19 .20

Q4	(1992–2004) 0.45 0.43 1.06 .23

West–east 0.00117 0.00025 4.76 < .0001

South–north 0.00110 0.00041 2.66 .0116

Q2	×	west–east 0.00022 0.00037 0.60 .33

Q3	×	west–east −0.00076 0.00031 2.45 .0200

Q4	×	west–east −0.00113 0.00034 3.35 .0014

Q2	×	south–north 0.00001 0.00059 0.02 .40

Q3	×	south–north −0.00001 0.00057 0.02 .40

Q4	×	south–north −0.00116 0.00056 2.05 .0484

b.	Origin	(AIC:	1,994)   

Intercept	(Asia) −12.62 0.21 61.29 < .0001

Australasia −29.11 9.12 3.19 .0024

Eurasia −0.64 0.37 1.73 .09

Europe −2.08 0.66 3.15 .0028

West–east 0.00053 0.00018 2.99 .0046

South–north 0.00051 0.00031 1.63 .11

Australasia	×	west–east −0.01497 0.00419 3.57 .0007

Eurasia	×	west–east 0.00044 0.00026 1.68 .10

Europe	×	west–east 0.00147 0.00046 3.20 .0024

Australasia	×	south–north −0.00945 0.00288 3.28 .0018

Eurasia	×	south–north 0.00106 0.00051 2.08 .0463

Europe	×	south–north 0.00082 0.00060 1.36 .16

c.	Guild	(AIC:	2,089)     

Intercept	(foliage‐feeders) −15.05 0.78 19.39 < .0001

Borers 2.00 0.82 2.45 .0198

Pathogens 1.50 0.86 1.75 .09

Sap‐feeders 2.18 0.81 2.70 .0104

West–east 0.00265 0.00052 5.06 < .0001

South–north 0.00065 0.00041 1.57 .12

Borers	×	west–east −0.00230 0.00057 4.06 .0001

Pathogens	×	west–east −0.00210 0.00057 3.71 .0004

Sap‐feeders	×	west–east −0.00262 0.00056 4.64 < .0001

Borers	×	south–north −0.00005 0.00057 0.09 .40

Pathogens	×	south–north 0.00097 0.00066 1.46 .14

Sap‐feeders	×	south–north −0.00056 0.00054 1.03 .23

Abbreviation:	AIC,	Akaike’s	information	criterion.
aModels	predict	the	intensity	of	discovery	points	as	a	function	of	variables	for	west–east	and	south–north	directions	and	a	categorical	predictor	
(each	with	four	levels).	For	example,	in	model	(a),	the	model	reference	level	is	Q1	(1974–1907),	and	thus	the	interaction	of	other	levels	of	the	variable	
time	period	with	west–east	and	south–north	are	each	compared	to	the	slope	coefficients	of	west–east	and	south–north	associated	with	level	Q1	
(i.e.,	0.00117	and	0.00110,	respectively).	In	models	(b)	and	(c),	the	reference	levels	for	the	variables	origin	and	guild	are	Asia	and	foliage‐feeders,	
respectively.	
bExponentiated	coefficients	for	point	process	models	indicate	the	factor	by	which	density	of	discovery	locations	would	increase	per	unit	area	with	
either	a	change	between	levels	of	a	factor	or	a	one‐unit	increase	in	the	density	of	a	covariate.	For	example,	for	model	(a)	and	holding	all	else	equal,	a	
shift	500	km	west	between	Q1	and	Q4	was	associated	with	1.76×	[=	exp(0.00113	×	500	km)]	increase	in	the	number	of	discovery	points	per	km2. 
cZ	statistics	indicating	whether	coefficients	estimated	using	spatial	point	process	models	are	significantly	different	from	0.	
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3.2 | First discovery points: Time period

When	modelling	 the	 intensity	 of	 discovery	 points	 using	marked	
point	pattern	analysis,	we	found	that	spatial	patterns	in	discoveries	
varied	among	time	periods.	Pests	discovered	between	1794–1907	
(Q1)	and	1908–1927	(Q2)	were	significantly	more	aggregated	than	
pests	discovered	between	1928–1991	 (Q3)	and	1992–2004	 (Q4)	
(all	p	<	 .01;	Figure	2b).	There	were	no	statistical	differences	be‐
tween	Q1	versus	Q2	and	Q3	versus	Q4.	When	analysing	how	di‐
rectional	 trends	and	 time	period	of	 introduction	 (Q1–Q4)	 jointly	
influence	 discovery	 point	 intensity,	 there	was	 a	 statistically	 sig‐
nificant	interaction	between	both	directional	predictors	and	time	
(Table	 2a,	 west–east	 ×	 time	 period	 and	 south–north	 ×	 time	 pe‐
riod).	Pests	discovered	between	1794–1927	 (Q1–Q2)	were	more	
likely	to	be	discovered	in	eastern	and	northern	regions	of	the	USA	
(Table	 2a,	 Figure	 3a,b).	 Pests	 discovered	 from	 1928–1991	 (Q3)	
were	more	likely	to	be	discovered	farther	west	than	pests	from	Q1	
(Table	2a,	Figure	3c).	Pests	discovered	from	1992–2004	(Q4)	were	
more	 likely	 to	 be	 discovered	 farther	 south	 and	west	 than	 pests	

from	Q1	(Table	2a,	Figure	3d).	Individual	fits	by	time	period	con‐
firmed	that	discoveries	were	more	likely	to	occur	father	west	and	
south	 as	 time	 progressed	 (Supporting	 Information	Appendix	 S4:	
Table	S4.1).

3.3 | First discovery points: Origin

Marked	 point	 pattern	 analyses	 demonstrated	 that,	 in	 addition	
to	changes	with	time	period,	spatial	patterns	of	discovery	points	
were	mediated	by	pests’	global	region	of	origin.	Within	an	origin,	
all	pests	were	aggregated	in	space	(e.g.,	pests	from	Asia	were	likely	
to	be	discovered	near	other	pests	from	Asia),	although	discovery	
points	of	pests	 from	Australasia,	 Eurasia	 and	Europe	were	more	
aggregated	 than	 those	 from	Asia	 (Figure	2c).	There	were	no	dif‐
ferences	 in	 aggregation	 among	 discovery	 points	 of	 pests	 from	
Australasia,	Eurasia	and	Europe.	Pests	from	Asia	were	more	likely	
to	be	discovered	in	the	east	versus	the	west	(Table	2b,	Figure	3e).	
Pests	 originating	 in	 Australasia	 were	 more	 likely	 to	 be	 discov‐
ered	 in	 the	 south‐western	USA	 than	 those	 from	Asia	 (Table	 2b,	

F I G U R E  3  Discovery	locations	of	non‐native	forest	insects	and	pathogens	discovered	in	the	contiguous	USA	between	1794	and	2004	
displayed	by	time	period	(a–d;	quartiles	of	introduction	year),	world	region	of	origin	(e–h)	and	feeding	guild	(i–l).	Models	comparing	changes	
in	the	distribution	of	points	by	time	period	(row	1	of	figure),	origin	(row	2)	and	guild	(row	3)	are	provided	in	Table	2.	Changes	in	aggregation	
between	groupings	are	presented	in	Figure	2.	Map	projection:	Albers	equal	area

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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Figure	3f),	whereas	pests	from	Eurasia	and	Europe	were	typically	
discovered	in	the	north‐eastern	USA,	similarly	to	pests	from	Asia	
(Table	 2b,	 Figure	 3g,h).	 Individual	 fits	 by	 origin	 confirmed	 that	
pests	from	Asia,	Eurasia	and	Europe	were	generally	discovered	in	
the	 east	whereas	 pests	 from	Australasia	were	 discovered	 in	 the	
south‐west	(Supporting	Information	Appendix	S4:	Table	S4.2).

3.4 | First discovery points: Guild

We	 also	 found	 that	 spatial	 patterns	 in	 discovery	 points	 differed	
among	guilds.	Discoveries	of	foliage‐feeders	were	significantly	more	
aggregated	 than	 borers,	 sap‐feeders	 and	 pathogens	 (all	 p < .01; 
Figure	 2d).	 There	were	 no	 other	 differences	 detected	 in	 aggrega‐
tion	among	guilds	 (all	p	>	 .05).	Foliage‐feeders	were	more	 likely	to	
be	 discovered	 in	 the	 north‐eastern	 USA	 (Figure	 3i),	 whereas	 bor‐
ers	 (Figure	 3j),	 sap‐feeders	 (Figure	 3k)	 and	 pathogens	 (Figure	 3l)	
were	more	likely	to	be	discovered	farther	west	than	foliage‐feeders	
(Table	2c).	Higher	densities	of	discovery	points	of	pathogens	were	
observed	at	higher	latitudes,	although	this	trend	was	not	statistically	
significant	(Table	2c).	Individual	fits	by	guild	confirmed	conclusions	
from	 full	 models,	 except	 that	 the	 positive	 trend	 of	 discoveries	 of	
pathogens	in	the	y‐direction	was	statistically	significant	in	the	model	

evaluating	pathogens	 alone	 (Supporting	 Information	Appendix	 S4:	
Table	S4.3).

3.5 | First discovery points: Origin and guild by 
time period

Year	of	first	discovery	did	not	vary	with	region	of	origin	(F4,74	=	2.10,	
p	=	.09).	Pests	from	Australasia	were	the	most	recently	discovered	
group	on	average,	with	a	mean	discovery	year	of	1973	 (±18	years	
SE),	followed	by	pests	from	Asia	(1943	±	8),	Eurasia	(1928	±	11)	and	
Europe	(1923	±	12).	Year	of	first	discovery	varied	significantly	among	
guilds.	The	means	for	year	of	first	discovery	of	borers	and	pathogens	
were	1981	 (±8	years	SE)	 and	1949	 (±	9),	 respectively,	 and	did	not	
differ	significantly	(Tukey’s	HSD,	t75	=	2.08,	p	=	.17).	Foliage‐feeders	
and	sap‐feeders	were	discovered,	on	average,	in	1916	(±	9	SE)	and	
1918	 (±	 11),	 respectively,	 significantly	 earlier	 than	 borers	 (Tukey’s	
HSD,	 all	 t75 > 4.3 and p	 <	 .0004).	 No	 differences	 were	 detected	
among	foliage‐feeders,	sap‐feeders	and	pathogens	(Tukey’s	HSD,	all	
t75 < 2.29 and p	>	.10).

3.6 | Current invasion hotspot patterns: All pests

Of	 the	3,109	counties	 comprising	our	 analysis,	89%	were	 invaded	
by	at	least	one	species	(Figure	4a).	The	average	number	of	species	
per	county	was	4.88	(±	0.09	SE;	maximum	=	36	species)	and	6.3%	of	
counties	were	identified	as	hotspots	(i.e.,	Z	≥	4.16,	p <	.00002)	as	es‐
timated	by	Getis–Ord	(G∗

i
)	statistics	(Figure	4b).	Most	hotspots	were	

in	 the	 north‐eastern	USA	 except	 for	 one	 county	 in	 south‐eastern	
Wisconsin	(Figure	4b).

3.7 | Current invasion hotspot patterns: Origin

Species	region	of	origin	was	associated	with	distinct	geographic	pat‐
terns.	The	average	county	had	pests	belonging	to	1.62	(±	0.018	SE)	
origins.	Pests	from	Asia	were	the	most	widespread	and	established	
in	80%	of	counties.	Pests	 from	Eurasia	 (50%	of	counties	 infested)	
were	the	second	most	widespread,	followed	by	pests	from	Europe	
(28%)	and	Australasia	 (4%).	Several	 counties	 in	California	and	one	
county	each	 in	 Idaho,	Massachusetts	and	Montana	were	hotspots	
for	 the	 number	 of	 different	 origins	 represented	 (Figure	 5a).	 That	
is,	 those	 counties	 had	 more	 origins	 represented	 than	 would	 be	
expected	 due	 to	 random	 chance.	 Hotspots	 based	 on	 origin	 were	
relatively	 limited	 in	spatial	extent	for	pests	from	Asia,	Australasia,	
Eurasia	 and	 Europe,	 covering	 7,	 2,	 6	 and	 5%	 of	 counties,	 respec‐
tively	 (Figure	5b–e).	Hotspots	 for	pests	 from	Asia	 (Figure	5b)	and	
Eurasia	(Figure	5d)	were	concentrated	in	eastern	counties,	although	
two	 hotspots	 for	 Eurasian	 pests	 were	 identified	 in	 Washington	
state.	Hotspots	of	pests	from	Australasia	were	concentrated	in	the	
south‐west	and	Florida	(Figure	5c),	whereas	hotspots	for	pests	from	
Europe	were	 located	 in	 several	 coastal	 and	 inland	western	 coun‐
ties,	some	counties	in	the	upper	Midwest	and	several	north‐eastern	
counties	(Figure	5e).

F I G U R E  4  County‐level	(a)	invasion	richness	and	(b)	hotspots	
for	non‐native	forest	insects	and	pathogens	as	of	2018	in	the	
contiguous	USA.	Hotspot	analyses	enable	comparisons	of	invasion	
richness	of	a	county	and	its	neighbours	to	the	global	richness	
patterns	across	all	counties	to	identify	counties	with	richness	levels	
greater	than	would	be	expected	due	to	random	chance.	Invasion	
hotspots	were	identified	by	quantifying	local	Getis–Ord	(G∗

i
)	

statistics,	which	produces	a	Z‐score.	Counties	with	Z‐scores	≥	4.16	
were	considered	invasion	hotspots.	Map	projection:	Albers	equal	
area

(a)

(b)
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3.8 | Current invasion hotspot patterns: Guild

Counts	and	distributions	of	guilds	exhibited	considerable	geographic	
variation.	 The	 average	 county	 contained	 2.22	 (0.023	 ±	SE)	 guilds.	
Pathogens	were	the	most	widespread	and	were	detected	in	76%	of	
counties,	followed	by	foliage‐feeders	(64%	of	counties),	borers	(49%)	
and	sap‐feeders	(34%).	Hotspots	for	numbers	of	different	guilds	rep‐
resented	occurred	in	few	counties	(<	1%)	and	were	concentrated	in	
the	north‐east	(Figure	6a).	Hotspots	for	borers,	foliage‐feeders,	sap‐
feeders	and	pathogens	were	limited	in	their	spatial	extent,	covering	
4.7,	5.2,	4.6	and	7.1%	of	counties,	respectively	(Figure	6b‐e).	Despite	
hotspots	 for	 borers	 (Figure	 6b)	 and	 sap‐feeders	 (Figure	 6d)	 being	
the	least	geographically	widespread,	hotspots	for	both	guilds	were	
identified	in	the	north‐east	and	south‐west.	Additional	hotspots	for	
borers	were	found	in	Michigan	and	Wisconsin,	with	one	hotspot	in	
north‐western	 Utah.	 Several	 counties	 throughout	 California	 were	

identified	as	hotspots	for	sap‐feeders.	Hotspots	of	foliage‐feeders	
(Figure	6c)	and	pathogens	(Figure	6e)	were	distributed	similarly	and	
concentrated	in	the	north‐east	and	some	Midwestern	states.

3.9 | Current invasion hotspot patterns and first 
discovery locations

Both	county‐level	invasion	richness	(Figure	7a)	and	hotspot	Z‐val‐
ues	 (Figure	 7b)	 were	 positively	 correlated	with	 estimated	 inten‐
sities	 of	 first	 discovery	 locations.	 That	 is,	 invasion	 richness	 was	
higher	 in	 counties	 located	 in	 areas	with	 higher	 densities	 of	 first	
discovery	 points.	 Similarly,	 hotspot	 Z‐values	 were	 significantly,	
positively	 correlated	 with	 invasion	 richness	 (Figure	 7c).	 The	 si‐
multaneous	autoregressive	error	models	used	to	regress	invasion	
richness	and	hotspot	Z‐values	on	estimated	 intensities	of	discov‐
ery	points	sufficiently	accounted	for	spatial	autocorrelation	(both	

F I G U R E  5  County‐level	invasion	hotspots	for	non‐native	forest	insects	and	pathogens	as	of	2018	in	the	contiguous	USA	based	on	pest	
origin:	(a)	numbers	of	origins,	(b)	Asia,	(c)	Australasia,	(d)	Eurasia	and	(e)	Europe.	A	hotspot	is	defined	as	any	county	where	Getis–Ord	(G∗

i
) 

statistics	(Z‐scores)	are	≥	4.16.	See	Figure	4	and	main	text	for	description	of	G∗
i
.	Map	projection:	Albers	equal	area

(a) (b)

(c) (d)

(e)
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Moran’s	I	<	−.10,	p	=	.99).	There	remained	some	spatial	autocorrela‐
tion	in	the	model	regressing	hotspot	Z‐values	on	invasion	richness	
(Moran’s	I	=	.02,	p	<	.05).

4  | DISCUSSION

Our	 finding	 that	 discovery	 locations	of	 forest	 pests	 are	 associated	
with	human	activity	provides	quantitative	 support	 for	 the	 role	hu‐
mans	 have	 in	 facilitating	 invasions.	 Movement	 of	 non‐native	 spe‐
cies	by	humans	has	 long	been	 recognized	 (Hulme,	2009);	however,	
we	 found	 that	proxies	 for	human	activity,	 such	as	density	of	ports	
and	 roads,	 were	 more	 correlated	 with	 the	 intensity	 of	 discovery	
points	than	human	population	density	itself	(Table	1).	Such	findings	
may	be	indicative	of	frequent	pest	arrival	in	cargo	imports	(Aukema	
et	 al.,	 2010;	Work,	McCullough,	Cavey,	&	Komsa,	 2005).	 The	 final	

destination	of	 contaminated	 cargo	 is	 not	 necessarily	 near	 the	port	
of	entry	(Rassati	et	al.,	2015)	and	areas	with	high	densities	of	roads	
may	contain	many	final	destinations	for	cargo.	The	predictive	ability	
of	human	population	density	may	have	been	improved	by	considering	
population	densities	at	earlier	time	periods	(e.g.,	prior	to	the	1920s),	
given	 the	 relatively	 wide	 temporal	 window	 of	 our	 first	 discovery	
point	data	(1794–2004).	Human	population	density,	ports,	and	roads	
are	also	correlated	in	space,	which	may	have	masked	the	predictive	
power	of	population	density	(Supporting	Information	Appendix	S5).	
Nonetheless,	there	remained	unexplained	variation	in	locations	of	ini‐
tial	establishment,	as	indicated	by	the	strong	association	of	discovery	
points	with	coastal	regions	after	accounting	for	the	densities	of	ports,	
roads	and	humans	(Table	1),	which	may	be	attributable	to	habitat	in‐
vasibility	(e.g.,	tree	diversity)	(Guo	et	al.,	2019;	Liebhold	et	al.,	2013).

The	spatial	distribution	of	discovery	points	differed	between	
time	periods	and	was	dependent	on	pest	origin	and	feeding	guild,	

F I G U R E  6  County‐level	invasion	hotspots	for	non‐native	forest	insects	and	pathogens	as	of	2018	in	the	contiguous	USA	based	on	pest	
guild:	(a)	numbers	of	guilds,	(b)	bark/wood‐borers,	(c)	foliage‐feeders,	(d)	sap‐feeders	and	(e)	pathogens.	A	hotspot	is	defined	as	any	county	
where	Getis–Ord	(G∗

i
)	statistics	(Z‐scores)	are	≥	4.16.	See	Figure	4	and	main	text	for	description	of	G∗

i
.	Map	projection:	Albers	equal	area

(a) (b)

(c)

(e)

(d)
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likely	 reflecting	 changes	 in	 the	 intensity	 of	 invasion	 pathways,	
prevention/management	efforts	at	ports	of	entry,	or	composition/
volume	 of	 imports.	 For	 example,	 the	 historically	 dominant	 inva‐
sion	 pathway	 for	 foliage‐feeders	 is	 the	movement	 of	 live	 plants	
(Liebhold	et	al.,	2012).	Prior	to	1918,	imports	of	plants	to	the	USA	

were	largely	unregulated	but	subsequent	implementation	of	quar‐
antine	practices	greatly	diminished	accidental	introductions	of	in‐
sects	on	commercial	plant	imports	(Liebhold	&	Griffin,	2016).	We	
found	that	discoveries	of	foliage‐feeders	occurred	the	earliest	on	
average	(1916)	and	were	concentrated	in	the	north‐eastern	USA.	
Thus,	 the	 concentration	of	 human	populations	 in	 the	north‐east	
in	 the	 early	 1900s	 coupled	with	unregulated	 importation	of	 live	
plants	likely	drove	the	high	aggregation	of	discovery	points	for	fo‐
liage‐feeders	(Figure	2d).	It	follows	that	increased	population	den‐
sity	in	the	western	USA	would	increase	propagule	pressure	in	the	
west	and	spread	the	risk	of	non‐native	pest	establishment	across	
a	 larger	 area,	 thus	 decreasing	 aggregation;	 indeed,	we	observed	
a	 decrease	 in	 aggregation	 through	 time	 (Figure	 2b).	 Patterns	 of	
borer	discovery	also	suggest	 that	 intensity	of	 invasion	pathways	
change	with	 time.	The	average	 introduction	year	 for	borers	was	
1981,	which	may	 reflect	 temporal	 changes	 in	 their	 dominant	 in‐
vasion	 pathway,	 solid	 wood	 packaging	 material	 (Brockerhoff	 et	
al.,	 2006;	 Brockerhoff	 &	 Liebhold,	 2017).	 Imports	 to	 the	 USA	
have	 risen	 dramatically	 over	 the	 last	 100	 years	 and	widespread	
adoption	 of	 containerized	 cargo	 has	 led	 to	 increased	movement	
of	 wood	 packaging	 and	 associated	 increases	 in	 borer	 invasions	
(Aukema	et	al.,	2010).

We	note	 that	patterns	 in	discovery	points	may	be	a	 function	
of	 sampling	 bias,	with	more	 pests	 discovered	 in	 areas	 of	 human	
activity	 due	 to	 survey	 efforts.	 However,	 invaders	 often	 arrive	
via	 pathways	 such	 that	 they	 typically	 establish	 in	 populated	
areas	(Colunga‐Garcia,	Haack,	&	Adelaja,	2009;	Paap,	Burgess,	&	
Wingfield,	2017)	and	 thus	 first	establishments	 in	 rural	 areas	are	
generally	low.	Conspicuousness	of	impacts	may	also	be	an	import‐
ant	 determinant	 of	 first	 discovery	 point	 patterns.	 For	 example,	
there	may	be	shorter	time‐lags	between	establishment	and	detec‐
tion	for	pests	with	immediately	visible	impacts	when	at	low	den‐
sities.	Variability	in	detection	and/or	imperfect	detection	may	be	
able	to	be	accounted	for	using	occupancy	models	(Dorazio,	2014;	
MacKenzie	 et	 al.,	 2017).	 However,	 data	 on	 impact	 detectability,	
particularly	when	at	low	densities	as	is	observed	immediately	fol‐
lowing	introduction,	were	not	available	and	thus	not	accounted	for	
in	our	analyses.

Hotspot	analyses	using	all	pest	species	 indicated	that	hotspots	
were	concentrated	in	the	north‐eastern	USA,	corroborating	findings	
by	 Liebhold	 et	 al.,	 (2013),	 but	 striking	 differences	 emerged	when	
viewing	hotspots	by	pest	origin	and	guild.	Hotspot	patterns	could	
be	driven	 in	part	by	the	origin	×	guild	composition	of	 invasive	for‐
est	pests.	Hotspots	of	Australasian	pests	(Figure	5c)	and	sap‐feed‐
ers	(Figure	6d)	were	present	in	California	and	Florida,	and	4/8	pests	
from	Australasia	were	sap‐feeders	(only	4/27	sap‐feeders	were	from	
Australasia;	Supporting	Information	Appendix	S1).	Thus,	the	number	
of	species	per	guild	arriving	from	a	place	of	origin	could	have	con‐
tributed	to	some	of	the	patterns	in	both	first	discovery	points	and	
hotspots	observed	here.

Invasion	 pathways	 begetting	 higher	 rates	 of	 establishment	 per	
unit	area	may,	in	part,	drive	subsequent	patterns	in	invasion	richness.	
That	is,	numbers	of	invasive	forest	pest	species	establishing	in	an	area	

F I G U R E  7   (a)	Number	of	non‐native	pests	per	county	as	of	
2018	in	the	contiguous	USA	(y	axis;	invasion	richness)	as	a	function	
of	kernel	estimated	discovery	points	per	km2	at	county	centroids	
(estimated	discovery	density,	x	axis).	The	kernel	smoother	was	fit	to	
observed	first	discovery	locations	for	non‐native	forest	pests	in	the	
contiguous	USA	(1794–2004)	and	estimated	discovery	density	for	
each	county	was	obtained	from	that	interpolated	surface.	Intercept	
(±	0.22	SE,	Z	=	13.46,	p	<	.0001)	and	slope	(±	7,816.57	SE,	Z	=	17.92,	
p	<	.0001)	of	fit	line	significantly	differ	from	0.	(b)	Z‐values	from	
hotspot	analyses	of	invasion	richness	(richness	hotspots,	y	axis)	
as	a	function	of	estimated	discovery	density	at	the	county	level.	
Intercept	(±	0.14	SE,	Z	=	−3.18,	p	=	.0015)	and	slope	(±	5,773.40	SE,	
Z	=	5.64,	p	<	.0001)	of	fit	line	significantly	differ	from	0.	(c)	Richness	
hotspots	as	a	function	of	invasion	richness.	Intercept	(±	0.02	SE,	Z = 
−132.48,	p	<	.0001)	and	slope	(±	0.002	SE,	Z	=	182.05,	p	<	.0001)	of	
fit	line	significantly	differ	from	0.

(a)

(b)

(c)
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appeared	to	be	associated	with	pest	accumulation	(Figure	7a)	and	inva‐
sion	richness	hotspots	(Figure	7b)	in	surrounding	areas.	Quantification	
of	spatio‐temporal	import	trends	may	provide	further	insights,	for	ex‐
ample,	if	certain	regions	and	time	periods	are	associated	with	guild‐
dependent	 invasion	 pathways	 and	 associated	 establishments.	 We	
caution	that	our	hotspot	results	may	be	scale‐dependent;	analysing	
data	at	the	county	level	was	ideal,	however,	given	that	(a)	these	data	
were	recorded	and	quarantines	are	often	imposed	(e.g.,	emerald	ash	
borer Agrilus planipennisi	Fairmaire)	at	the	county	level	and	(b)	hotspot	
analyses	 at	 the	 state	 level	may	have	been	 limited	by	 too	 few	data	
points	(i.e.,	3,000	+	counties	versus	48	states).

Future	analyses	encompassing	more	discovery	points,	including	
those	of	pests	of	agricultural,	 rangeland	and/or	other	ecosystems,	
may	 exhibit	 different	 patterns	 and/or	 provide	 insight	 into	 the	 be‐
haviour	 of	 different	 invasion	 pathways.	 Patterns	 described	 here	
may	 not	 reflect	 the	 patterns	 of	 all	 non‐native	 forest	 insects	 and	
pathogens,	 as	 our	 data	 are	 limited	 to	 tree	 insects	 and	 pathogens	
having	some	detectable	impacts.	Further	analyses	are	also	needed	
to	 examine	 the	 role	 of	 biotic	 resistance,	 the	 ecological	 character‐
istics	of	a	community	that	decrease	 invasibility,	 in	patterns	of	first	
discovery	locations.	Investigations	of	how	diversity	and	structure	of	
urban	and	rural	 forests	affect	pest	establishment	might	help	man‐
agers	promote	more	pest‐resistant	 landscapes	 (Jactel	et	 al.,	2009;	
Raupp,	Cumming,	&	Raupp,	2006;	Santamour,	1990).	Nonetheless,	
our	findings	highlight	the	central	role	humans	play	in	the	movement	
and	establishment	of	non‐native	forest	pests	and	suggest	continued	
monitoring	near	ports	and	highly	populated	areas	to	maximize	early	
detection	of	new	invaders.
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