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Abstract. Neuronal connectivity matrices contain information vital to the un-
derstanding of brain structure and function. In this work we present graph-based
visualization techniques for macroscale connectivity matrices that retain anatom-
ical context while reducing the clutter and occlusion problems that plague 2D and
3D node-link diagrams. By partitioning the connectivity matrix into blocks corre-
sponding to brain hemispheres and bundling graph edges we are able to generate
intuitive visualizations that permit investigation at multiple scales (hemisphere,
lobe, anatomical region). We demonstrate our approach on connectivity matri-
ces computed using tractography of high angular resolution diffusion images ac-
quired as part of a Parkinson’s disease study.

1 Introduction

The central nervous system (CNS) is an intricate network of interconnected cells with
structural features at multiple scales. Visualizing and understanding this network is crit-
ical to investigating the mysteries of cognition, consciousness, memory and diseases of
the brain. Advances in medical imaging have made it possibleto map parts of the CNS
“wiring diagram” in vivo. The term “connectome” [1] was coined to convey the impor-
tance of mapping the neuronal connections in the brain by comparing it to the human
genome project. Just as mapping the genome will lead to improved diagnosis and treat-
ment of inherited diseases, so will understanding the connectome lead to advances in
diagnosis and treatment of neurological disorders.

Functional MRI permits measurement of patterns of brain activation during cogni-
tive tasks which suggest functional connectivity [2]. Microscopy [3] and diffusion MRI
modalities permit micro- and macroscale structural connectivity, respectively, to be es-
timated. Random molecular motion causes transport of waterat a microscopic scale
within biological systems. The structure of the surrounding tissue can affect the diffu-
sion process, sometimes making it anisotropic (or directionally dependent). Within an
oriented structure, such as a bundle of axonal fibers in the brain, the diffusion direction
tends to be parallel to the fiber direction. In the 1990s diffusion tensor imaging (DTI)
[4] enabled white matter architecture to be assessed indirectly by observing the attenua-
tion of the MR signal due to diffusion of water molecules. Soon after that,tractography
(the process of tracing white matter pathways) at the scale of axonal fiber bundles was
developed [5]. Over time, refinement of the imaging technique and improved fiber trac-
tography techniques have permitted more detailed mapping of structural connectivity
in the brain [6].
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In this work we focus on macroscale visualization of structural connectivity com-
puted from diffusion imaging, and apply our methods to a Parkinson’s disease study.
Our approach uses a bundled edge graph layout technique to present an intuitive and
uncluttered view to the user. Many previous approaches to visualizing diffusion MRI
and the underlying diffusion process lead to cluttered images with occluded features.

2 Related Work

Visualization of DT-MRI and neuronal connectivity has taken many forms in the sci-
entific visualization community. In this section we give an overview of some common
approaches, but the reader is directed to the surveys by Margulies et al. [7] and Pfister
et al. [8] for a more thorough treatment. Many approaches from vector- and tensor-
field visualization, such as glyphs and streamlines, have been applied to the problem
of connectivity visualization. Early tractography methods [5] were similar to stream-
line computations in fluid mechanics. Fibers are traced froma starting point by repeat-
edly stepping in the local direction of principal diffusion. However, visualization of the
connectome by displaying streamlines or streamtubes is notpractical due to the large
number of streamlines required to represent whole brain connectivity. Fibers near the
cortical surface of the brain occlude the inner structure, and the resulting image appears
very cluttered, as seen in Figure (1). Volume rendered connectivity maps [9, 10] only
display connectivity from a single seed point or region of interest as shown in Figure
(1). Although GPU implementations permit exploration of the full dataset at interactive
rates, it cannot give a comprehensive visualization of whole brain connectivity.

Fig. 1. Glyph-based visualization of white matter fiber orientation probabilities (left),volume ren-
dered connectivity (middle), and neuronal fiber tracts (right) coloredaccording to local direction.
The glyphs convey the local structure of fiber orientations within a voxel but the global connec-
tivity cannot be discerned. The volume rendering of connectivity shows only a small portion of
the full connectivity matrix. The fiber tract visualization does convey global structure, but the
clutter makes it difficult to visually follow individual fibers from end to end.

Connectivity matrices are square matricesCi, j where the row and column indices
correspond to either individual voxels or groups of voxels.A macroscale anatomical
connectivity matrix can be assembled by registering an expert-labeled anatomical atlas
to the diffusion weighted images. For each fiber path the endpoints can be mapped to
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the regions-of-interest (ROIs) defined in the atlas. Each element ofCi, j then represents
the connectivity of regioni to region j.

A connectivity graph corresponding to a connectivity matrix can be assembled by
creating a node for each ROI, and computing node adjacency fromCi, j. Existing tools
from network analysis and graph theory have been applied to this graph to determine
its characteristics. As with other complex graphs, such as social networks, neuronal
connectivity graphs are characterized by highly connectedhub nodes and a small world
topology (meaning there is a short path between every pair ofnodes) [11].

Connectivity matrices are often visualized as an image witha colormap applied to
the matrix elements. Permuting matrix rows and columns so that the ROIs are sorted
from left to right results in a matrix that can readily yield inter- and intrahemispheric
connectivity information. Sorted and unsorted connectivity matrices are shown in Fig-
ure (2). The sorted matrix can be split roughly (neglecting the brainstem) into quadrants:
the upper-left is connectivity within the left hemisphere of the brain, the lower-right is
connectivity within the right hemisphere, and the other twoquadrants represent in-
terhemispheric connectivity. Many approaches to improving or augmenting adjacency
matrix visualization have been proposed [12–14], but the drawback shared by these
methods is that the nodes lose locational meaning, which we wish to preserve.

Fig. 2. Connectivity matrix with rows and columns ordered arbitrarily (left), and with rows and
columns sorted left to right by ROI position (middle). A 3D node-link diagram of the neuronal
connectivity with anatomically embedded nodes (right). Note the occlusion and clutter due to the
large number of edges, even though there are only 116 nodes.

Node-link diagrams are a popular approach to visualizinggraphs and networks
which may represent such diverse data as transportation routes and social relations. But
even graphs of a moderate size can result in an unusable “hairball” visualization, such
as in Figure (2, right). Nodes in graph based visualization may correspond to physical
locations which should, in some applications, be preservedin the visualization because
the relative positions of nodes provide valuable contextual information. A major prob-
lem with node-link visualizations is the visual clutter that occurs when many edges
overlap. This can be avoided by using edge clustering and force-based edge bundling
[15] to group edges and bend them around nodes. Previous approaches to connectiv-
ity visualization suffer from problems of visual clutter [16, 17] or loss of anatomical
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context [18, 19]. Our goal in this work is to strike a balance between maintaining the
spatial relations and anatomical meaning of the nodes of theconnectivity graph while
minimizing clutter due to the large number of edges.

3 Methods

In this section we describe our visualization application which was implemented in
Matlab. The input to our method is a connectivity matrix computed from diffusion MRI.
Guided by psychological principles, we aim to simplify use of our application by re-
ducing visual clutter and exploiting the user’s existing mental models. Overcrowded
and disorganized displays have been shown to lead to decreased performance on visual
search and recognition tasks [20]. We minimize visual clutter by separating inter- and
intrahemispheric displays, and bundling edges. The existing mental models we build
upon are the radiological conventions, such as standard imaging planes, and human
anatomical knowledge. In the design of our application we eschewed a 3D approach to
visualization since the degree of visual clutter and edge overlap is view dependent and
therefore difficult to control.

Node Layout Node locations were computed from the automated anatomicallabeling
(AAL) brain atlas which consists of 116 gray matter structures which were manually
segmented from a human subject registered into a standard coordinate system [21]. A
slice of the atlas is shown in Figure (3). We have further grouped the 116 labels into
brain hemispheres (left, right) and regions roughly corresponding to brain lobes (shown
in Figure (4)).

Fig. 3. A representative coronal slice of the AAL atlas with colored regions overlaid on T1-
weighted MRI (left), and partitioning of the sorted connectivity matrix (right). The brain is parti-
tioned into left (L) and right (R) hemisphere, and medial (M) structures. The shaded blocks and
unshaded blocks are visualized separately.

Anatomists and clinicians are trained to analyze medical images and identify struc-
tures by looking at images in 3 standard planes: axial, coronal and sagittal. We laid out
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Temporal Lobe

Hippocampus, Parahippocampus, Amygdala, Fusiform gyrus, Heschl
gyrus, Superior temporal gyrus, Temporal pole: superior temporal
gyrus, Middle temporal gyrus, Temporal pole: middle temporal gyrus,
Inferior temporal gyrus

Posterior Fossa Cerebellum, Vermis, Medulla, Midbrain, Pons
Insula and Cingulate GyriInsula, Cingulate gyrus (ant., mid, post.)

Frontal Lobe
Precentral gyrus, Superior frontal gyrus, Middle frontal gyrus, Inferior
frontal gyrus, Rolandic operculum, Supplementary motor area, Olfac-
tory cortex, Gyrus rectus, Paracentral lobule

Occipital Lobe
Calcarine fissure and surrounding cortex, Cuneus, Lingual gyrus,Oc-
cipital lobe (sup., mid. and inf.)

Parietal Lobe
Postcentral gyrus, Superior parietal gyrus,Inferior parietal gyrus, Supra-
marginal gyrus, Angular gyrus, Precuneus

Central Structures Caudate nucleus, Putamen, Pallidum, Thalamus

Fig. 4. Lobes and their constituent AAL labels. Most of the 116 AAL regions consist of left-right
pairs.

our nodes in these standard planes by positioning each one atthe centroid of its AAL
atlas region and discarding one of the 3 coordinates of each node. Node positions were
adjusted to prevent overlap using the method described by Misue et al. [22]. Nodes are
drawn as color-coded circles with radius proportional to the degree (number of incident
edges) of the node. Color is determined by which of the 7 lobesthe node belongs to.
The results we present in the next section use the coronal imaging plane for node layout.

Edge Routing The connectivity matrix was thresholded to discard the lowest 1%
of connectivity values, then edges consisting of line segments were created for each
nonzero value in the connectivity matrix. Initially the edges consist of few segments
(2-10, depending on length), but as the iterative process ofbundling proceeds we refine
the edges using midpoint subdivision. Edge bundling is performed in a manner similar
to the process described by Holten and Van Wijk [15] with a fewapplication specific
differences. Edge bundling criteria are based on length compatibility, orientation, and
visibility as in [15] but we add an anatomical compatibilitycriterion. We only bundle
edges together if one or more of their endpoints is in the samelobe. We also add a small
repulsion force between incompatible edges to try to separate them and avoid clutter.

Block Partitioning of the Connectivity Matrix To achieve a similar connectivity
grouping as the sorted matrix visualization in Figure (2), we display inter- and intra-
hemispherical connectivity separately. Interhemispheric fibers include some long path-
ways which are difficult to avoid when routing edges. By separating these fibers into
their own visualization we reduce the problem to bipartite graph visualization.

The connectivity matrix was sorted by node location from left to right and parti-
tioned by the scheme shown in Figure (3). The shaded blocks ofthe connectivity matrix,
representing intrahemispheric connectivity, are visualized together in a single view. The
other two blocks which represent interhemispheric connections are shown in a separate
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view. In our experiments, even with edge bundling, the long-range edges that cross the
midline of the brain resulted in too much visual clutter. So interhemispheric connec-
tivity is shown with a local scaling applied to node positions to shift them out of this
region. The scaling applied to each hemisphere is given by the matrix productT−1

c STc,
whereTc translates the centroid of the hemisphere to the origin andS is a nonuniform
scaling by 0.25 in the x-direction.

Our application also supports interactive selection and highlighting of multiple lobes
and atlas labels. For each selection the constituent nodes and all edges between them
are shown in color. All other nodes and edges are drawn in a light gray color for context.

4 Results

To generate the results shown in this section we used images from a publicly available
dataset from the Neuroimaging Informatics Tools and Resources Clearinghouse (NI-
TRC). Data for a set of 53 subjects in a cross-sectional Parkinson’s disease (PD) study
was acquired. The dataset contains diffusion-weighted images (DWI) of 27 PD patients
and 26 age, sex, and education-matched control subjects. The diffusion-weighted im-
ages were acquired with 120 unique gradient directions, b=1000 and b=2500 s/mm2,
and isotropic 2.4 mm3 voxels. The acquisition used a twice-refocused spin echo se-
quence in order to avoid distortions induced by eddy currents. The data were postpro-
cessed to compensate for patient motion. Tractography and subsequent connectivity
computation and visualization were performed on a Dell Optiplex workstation with a
3.4 GHz Intel Core i7-3770 CPU, and 8 GB RAM.

Connectivity Matrix Computation From the diffusion weighted images we computed
4th order fiber orientation distribution tensors using the methods described by Welde-
selassie et al. [23]. One million fiber tracts were generatedby randomly seeding within
the white matter and deterministically tracking until the fiber terminated. We use the
AAL atlas to define 116 anatomical ROIs, so we initialize a 116×116 connectivity ma-
trix to all zeroes (Ci, j = 0). The nearest AAL atlas region to each endpoint of the fiber
was found and then the corresponding element of the connectivity matrix was incre-
mented (Ci, j =Ci, j +1). Since we have no basis on which to assume fiber directionality
we make the connectivity matrix symmetric (C = C+CT ), resulting in an undirected
connectivity graph.

Control Group and Parkinson’s Group Visualization After computingC for each
subject, the mean and variance of connectivity values for subjects in each group (PD
and control) were computed. A node-link diagram of the resulting graph of 1842 edges
with no partitioning or edge bundling is shown in Figure (5).Note the visual clutter
near the midline where many edges cross as they pass between hemispheres.

The mean control group intrahemispheric connectivity is shown using our proposed
method in Figure (6). Since the interhemispheric connectivity is displayed separately
the clutter near the midline in greatly reduced, and the edgebundling within each hemi-
sphere makes the connectivity patterns more easily discerned. Large bundles of edges
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Fig. 5. Visualization of the control group mean connectivity without matrix partitioning and edge
bundling.

can be seen connecting to high degree nodes (represented with larger markers), em-
phasizing their importance as connectivity hubs. Left-right hemisphere asymmetry is
clearly visible in this view, and is expected. This is due to many factors, including im-
age noise, hard thresholding of connectivity values and lateralization of brain function.
Functions such as speech and language are known to be controlled by the left cerebral
hemisphere, especially the temporal and parietal lobes. Note that bilateral symmetry
is not related to symmetry of the connectivity matrix (C = CT ). Control group inter-
hemispheric connectivity visualization results are shownin Figure (7). Label and lobe
selection by the user results in visual highlighting of connectivity. Although the node
locations have been locally scaled, it is still possible to differentiate the nodes near the
midline from the more lateral nodes.

Parkinson’s disease is associated with impaired motor function and reduced cogni-
tive performance. The disease is associated with dysfunction of the frontal lobe of the
brain, and changes in functional connectivity have been observed in PD patients [24].
Connectivity differences between the PD and control groupswere visualized by com-
puting the absolute difference between connectivity matricesCdiff = |CPD−Ccontrol|. An
unpaired two-sample t-test at the 5% confidence level was performed for each pair of
nodes(i, j). If the test did not reject the null hypothesis (that the meanconnectivity in
the groups is equal) then we setCdiff(i, j) = 0. Visualization of this difference is shown
in Figure (8). By selecting the nodes of the frontal lobe we can clearly see in Figure
(9) that many of the connectivity differences between the PDand control group have
connections to the frontal lobe.

5 Conclusion and Future Work

In this work we have presented an approach to visualizing macroscale neuronal connec-
tivity graphs which is designed to reduce user cognitive load by maintaining aqnatomi-
cal context. Visual clutter is reduced by partitioning the connectivity matrix into hemi-
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Fig. 6. Visualization of the control group mean intrahemispherical connectivity.Lobes are color-
coded and connectivity weights are represented by edge thickness.

Fig. 7. Visualization of control group average interhemispherical connectivityfor the whole brain
(left), 3 selected lobes (middle) and a few selected nodes (right).

spheric blocks which are separately visualized using node-link diagrams with bundled
edges. Hierarchical relations between brain hemispheres,lobes and regions-of-interest
can be explored interactively, supporting coarse-to-fine investigation of connectivity.
Examples of our technique were presented using data from a Parkinson’s disease study.
Edge bundling revealed long-range connectivity patterns that are not visible in the naive
node-link diagram or matrix visualization. In future work we plan to conduct a user
study to assess which views and interactions permit expertsto recognize meaningful
connectivity patterns in the connectome.
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