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Abstract. We propose a scheme for tensor field interpolation which is
inspired by subdivision surfaces in computer graphics. The method ap-
plies to Cartesian tensors of all ranks and imposes smoothness on the
interpolated field by constraining the divergence and curl of the tensor
field. Applying the method involves only a sparse matrix-vector multi-
plication at each iteration. Results are presented for rank 1, 2 and 4
tensors. These examples demonstrate that the subdivision scheme can
better preserve FA and interpolate rotations than some other interpola-
tion methods.

1 Introduction

Many alternatives to componentwise linear interpolation of tensors have been
proposed. Geodesic [1–3], log-Euclidean [4], tensor spline [5], and geodesic-loxodrome
[6] approaches formulate interpolation in terms of intrinsic distances on some
manifold. Some methods have the desirable property of monotonically inter-
polating some scalar measure, such as determinant [1–4] or other orthogonal
invariants [6]. In this work we propose a subdivision scheme based on minimiz-
ing the divergence and curl of the continuous tensor field which interpolates a
given set of tensors. Divergence constraints are commonly used in simulations
[7, 8] of incompressible fluid flows.

The term ”subdivision” refers to a computer graphics technique for recur-
sively refining meshes. A subdivision scheme defines a mechanism for adding
new vertices to a mesh and updating the mesh connectivity. The limit surface
obtained after an infinite number of iterations can be shown to be a smooth sur-
face in some cases - a bicubic B-spline for the scheme of Catmull-Clark [9] and
a biquadratic B-spline in the case of Doo-Sabin [10]. The subdivision process is
often analyzed as a linear equation pn+1 = Spn where p is the set of vertices
in the mesh and the superscripts denote iteration number. The subdivision ma-
trix S characterizes the subdivision process of generating new vertices as linear
combinations of the old vertices.

Weimer and Warren [11] extended the concept of subdivision to fluid flows.
Starting with a coarse vector field representing fluid velocity, their technique
generated a dense vector field corresponding to the solution of the Navier-Stokes
equation. Similarly, our method can be seen as the solution of a system of partial
differential equations.



2 Vector Field Subdivision

We will first formulate the subdivision scheme for vector field interpolation which
will help explain the tensor field subdivision scheme in the next section of this
paper. Our formulation is much simpler than that of Warren and Weimer [11].
Given velocity vectors at the corners of a cube (or square in 2D) we construct a
velocity field which is simultaneously as incompressible and irrotational as pos-
sible. This can be seen as a physical constraint on the flow, or alternatively since
we may wish to interpolate vector fields other than fluid velocity fields, this can
also be seen merely as a smoothness constraint since spurious sources/sinks and
vortices can introduce regions of rapidly changing vector direction and length.

The strength of sources or sinks in a fluid flow can be quantified by the
divergence of the velocity field, and the strength of vortices can be quantified by
the curl
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where v = [vx, vy, vz]T is the vector field. These are usually denoted by the
shorthand ∇ · v and ∇ × v respectively. We will approximate these operators
discretely by using finite differences

∆x =
1
2
(v(x + 1, y, z)− v(x− 1, y, z)), (2)

∆+
x = v(x + 1, y, z)− v(x, y, z), (3)

∆−
x = v(x, y, z)− v(x− 1, y, z)

which are the central, forward and backward differences respectively. The subdi-

Fig. 1. Illustration of the subdivision process in 2D. The first subdivision iteration
replaces the 2 × 2 grid of vectors (v0) with a 3 × 3 grid of vectors (v1). The vectors
in the corners of the domain (white background) are interpolated. The remaining 5
vectors are computed by minimizing the divergence and curl of the field. The next
subdivision step would interpolate all 9 vectors. The process can be repeated to obtain
vn, a grid of size 2n + 1× 2n + 1.

vision operation takes as input a coarse grid of vectors (2× 2 in 2D, or 2× 2× 2



in 3D) we will call v0 and produces a refined grid (3 × 3 in 2D, or 3 × 3 × 3 in
3D) we will call v1 as shown in Figure (1). The process will proceed iteratively
and each step will interpolate the results of the previous step. The system of
equations which determine vn+1 given vn specify 3 types of requirements:

1. Interpolation. The vectors at iteration n should be interpolated in step n+1.
In the first step we have

vn(1, 1) = vn+1(1, 1) (4)
vn(1, 3) = vn+1(1, 3)
vn(3, 1) = vn+1(3, 1)
vn(3, 3) = vn+1(3, 3).

where the array vn has been padded to be the same size as vn+1 so that
indices at corresponding corners are equal.

2. Divergence minimization. The divergence at each point in vn+1 is set to zero,
and written in terms of vn when a corner point is involved. If the central
difference equation involves a point outside the domain, forward or backward
differences are used instead. There will be one equation for each vector in
vn+1. Each equation will be of the form

0 = ∆xvx + ∆yvy + ∆zvz. (5)

The superscript on v is n + 1 for the new voxels being computed, and n for
the voxels being interpolated.

3. Curl minimization. The curl is handled analogously to the divergence. For
the 2D example there is only one nonzero component of the curl for each
vector. In the 3D case there will be 3 components per voxel of the form

0 = ∆yvz −∆zvy (6)
0 = ∆zvx −∆xvz (7)
0 = ∆xvy −∆yvx (8)

for a total of 81 equations in the first step.

By reshaping v into column vector the equations can be rearranged in the form

0 = Avn + Bvn+1 (9)

Both matrices A and B are sparse and contain only elements with values (−1,− 1
2 , 0, 1

2 , 1)
Overall, in the 2D case we have to solve for 18 vector components in vn+1 given
22 equations. In 3D we solve for 81 vector components given 112 equations. The
equations are solved in the least squares sense by

vn+1 = −B+Avn (10)

where the pseudoinverse B+ = (BT B)−1BT . This is a subdivision scheme in
which the subdivision matrix is S = −B+A. The result is a vector field where



the magnitudes of the divergence and curl are minimized while interpolating
the coarse vector field. The influence of the divergence and curl minimization
can be separately controlled by using a weighted least squares approach. We
implement this by scaling the divergence equations in Eq. (9) by σdiv = 0.9
and the curl equations by σcurl = 0.1. Results of vector field interpolation are

Fig. 2. Vector Field Subdivision. Four examples (top to bottom) of the vector field
subdivision process. The field to be interpolated (left) is subdivided 3 times (results
shown left to right). The background image is vector magnitude.

shown in Figure 2. Note that even though curl and divergence are minimized in
the least squares sense they are not guaranteed to equal zero. The subdivision
process can generate rotational and nonsolenoidal flows.



3 Tensor Field Subdivision

We will now extend the vector field interpolation results of the previous section
to tensor fields. We use the same constraints (interpolation, divergence mini-
mization and curl minimization) by simply substituting the definitions of the
divergence and curl of tensors of arbitrary rank.

3.1 Tensor Field Divergence

The divergence of a rank 2 tensor field is a vector field of the same dimension.
For a symmetric tensor we have

div

[
Dxx Dxy

Dxy Dyy

]
=

[
∂Dxx

∂x + ∂Dxy

∂y
∂Dxy

∂x + ∂Dyy

∂y

]
(11)

div




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


 =




∂Dxx

∂x + ∂Dxy

∂y + ∂Dxz

∂z
∂Dxy

∂x + ∂Dyy

∂y + ∂Dyz

∂z
∂Dxz

∂x + ∂Dyz

∂y + ∂Dzz

∂z


 . (12)

To perform interpolation we form an equation for each of the vector compo-
nents in Equation (11) or (12). For each such equation the corresponding row of
matrices A,B has the appropriate elements assigned.

A good intuition can be gained about the nature of vector divergence by
observing that near sources the vector field has positive divergence and locally
the vectors appear to point away from the source. Conversely, near a sink the
vector appear to converge toward the sink. The meaning of tensor field divergence
can be appreciated by considering the diffusion equation when the concentration
gradient is constant, but not necessarily zero

∂C

∂t
= div(D∇C) = div(D) · ∇C. (13)

Then at steady state ∂C
∂t = 0 is achieved for div(D) = 0. Under the given

conditions, this is equivalent to saying that the inhomogeneous tensor field D
does not transform any constant vector field into a vector field with nonzero
divergence.

In general, the divergence of a rank n tensor field is a rank (n−1) tensor field
given in Einstein notation as ∂iDi. This notation indicates that for all possible
values of index i, the tensor components are differentiated with respect to that
index and summed over. Note that when the field consists of totally symmetric
tensors the divergence tensor is also totally symmetric.

3.2 Tensor Field Curl

The curl of a rank 2 tensor field is a vector in 2D and a rank 2 tensor in 3D,
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The curl of a rank n tensor field is a rank (n+d−3) tensor field in d dimensions
defined as εijk(∂jDk) where εijk is the Levi-Civita symbol (permutation tensor)

εijk =





+1 (i, j, k) is an even permutation of indices
−1 (i, j, k) is an odd permutation of indices
0 otherwise.

(16)

4 Results

The results of rank 2 tensor field subdivision are shown in Figure 3, along with
linear and log-Euclidean interpolation for comparison. Note that in the bot-

Fig. 3. Rank 2 tensor field interpolation. Linear interpolation (left), Log-Euclidean
interpolation (center), 2 subdivision steps (right). The background image is FA.

tom row of voxels in both examples (top and bottom of Figure 3) FA is better
preserved for the subdivision scheme than in the linear and log-Euclidean in-
terpolation cases. The subdivision scheme results in a smooth rotation of the
diffusion tensor.



High angular resolution diffusion imaging can overcome some limitations or
rank 2 diffusion tensor imaging. Models for the diffusivity function have been
formulated in terms of tensors of various ranks [12], rank 4 tensors in particular
[13] and sequences of tensors of increasing rank [14]. To demonstrate the gener-
ality of the subdivision scheme, we present the results of subdivision applied to
rank 4 tensor fields in Figure 4, along with linear interpolation results. In these

Fig. 4. Rank 4 tensor field interpolation. Linear (top), subdivision (bottom).

examples it is apparent that the subdivision scheme encourages rotation in the
peaks of the diffusivity profiles during interpolation. Note that these do not nec-
essarily correspond to fiber directions. In the case of linear interpolation, the
peaks in diffusivity merely grow and shrink while maintaining their orientation.

5 Conclusions

We have presented a scheme for tensor field interpolation which can be extended
to tensors of arbitrary rank. The method is computationally efficient - It requires
only a sparse matrix-vector multiplication at each step, and the matrix can be
precomputed since it is independent of the data. Results show that the tech-
nique better preserves FA during interpolation in some cases than linear and
log-Euclidean interpolation.

Future work will investigate the tensor basis functions underlying this subdi-
vision scheme. Stam [15] analyzed the subdivision surface in terms of the eigen-



system of the subdivision matrix. This is apt since the limit surface (if it exists)
is given by p∞ = S∞p0 where p∞ can be shown to be an eigenvector of S with
corresponding eigenvalue = 1. This analysis permits exact evaluation of the limit
surface without recursion.
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