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Abstract. We present an efficient approach to computing white matter
fiber connectivity on the graphics processing unit (GPU). We utilize a
high-order tensor model of fiber orientation computed from high angular
resolution diffusion imaging (HARDI) and a stochastic model of white
matter fibers to compute and display global white matter connectivity in
real time. The high-order tensor model overcomes limitations of the 2nd-
order tensor model in regions of crossing or fanning fibers. By utilizing
modern GPU features exposed in recent versions of the OpenGL API we
can perform processing and visualization without costly GPU-CPU data
transfers.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) makes it possible to
compute, in vivo, neuronal connectivity in the brain, a valuable capability when
assessing brain injury and diseases of the central nervous system. To make DT-
MRI practical for clinical use many processing and visualization challenges must
be overcome. Computing neuronal connectivity provides crucial information for
diagnosis, but it is a time-consuming process. This drawback must be overcome
in order to make usage of DT-MRI in time-critical situations feasible. Effective
interactive visualization techniques must be developed so that clinicians and
researchers can quickly pinpoint areas of interest in the brain.

Random molecular motion causes transport of water at a microscopic scale
within biological systems. The properties of the surrounding tissue can affect
the diffusion process, making it anisotropic (directionally dependent). Within
an oriented structure, such as a bundle of axonal fibers within white matter of
the brain, water tends to diffuse parallel to the fiber direction. MRI protocols
have been developed which permit the tensor which characterizes directional de-
pendence of diffusion to be estimated. The resulting images can be used to infer
tissue structure. Numerous approaches to diffusion tensor estimation and pro-
cessing have been proposed, many imposing constraints such as symmetry and
positive-definiteness so that the tensor represents a physically plausible diffusion
process [1].

Visualization of DT-MRI is complicated by the fact that the data are tensor-
valued. It is difficult to perceive the underlying connectivity information with-
out explicitly tracing the white matter fibers. Even when they are traced and
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displayed as lines or tubes the resulting image can be visually cluttered. By
leveraging the power of the graphics processing unit (GPU) we have developed
methods that make it possible to visualize scalar connectivity values computed
from DT-MRI at interactive rates.

The diffusion tensor described up to this point is a 2nd-order tensor which
can be represented by a matrix. However, diffusion is better described by a
higher-order tensor in bifurcating or intersecting white-matter fiber bundles in
the brain. The price of this improved model is increased memory requirements
and computational complexity. A 2nd-order tensor,Dij , has 3

2 = 9 elements in 3
dimensions, while a 4th-order tensor,Dijkl, has 3

4 = 81 elements. Those numbers
fall to 6 and 15 respectively when the tensor is constrained to be symmetric.

Efficient processing of high-order tensor images and effective visualization
techniques will aid medical clinicians in the diagnosis and treatment of disease
by enhancing the ability to assess white matter structure in the brain. This will
benefit studies on aging, Alzheimer’s disease, multiple sclerosis, schizophrenia,
traumatic brain injury, and many other conditions.

2 Previous Work

2.1 Diffusion Tensor MRI

The goal of most DT-MRI analysis is to determine the integrity and trajectory
of white-matter pathways. The problem of determining the presence or absence
of white matter is commonly solved using scalar measures of diffusion magni-
tude and anisotropy. Fractional anisotropy (FA) is a scalar quantity that can
be efficiently computed from the 2nd-order diffusion tensor at each voxel and is
robust to noise in the underlying data. FA has been used to assess tissue damage
after stroke, but as a strictly local measure it does not indicate the regions of
the brain where connectivity has been changed.

Tractography is the process of computing white-matter fiber pathways. Early
approaches to tractography were similar to streamline tracing techniques in vec-
tor field visualization. By repeatedly stepping in the direction of highest diffu-
sion, axonal fiber tracts can be estimated. However, tractography becomes unre-
liable in regions where anisotropy becomes low. In 2nd-order DT-MRI anisotropy
may be low due to the absence of white matter or due to crossing or branch-
ing fibers. Regularizing assumptions about the underlying fiber smoothness may
help tracking through small areas of low anisotropy. Stochastic tractography
can generate a large population of feasible fibers while taking uncertainty due to
noise into account. The connectivity mapping approach that we present relies on
stochastic tractography as a means of estimating the probability of connectivity
between two regions of the brain.

2.2 High-Order Tensor Models

The Gaussian diffusion process assumed by Basser et al. [2] in the develop-
ment of DT-MRI is characterized by a symmetric, positive-definite matrix. But
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diffusion within biological structures can be non-Gaussian, for example, when
bifurcating or intersecting white-matter fiber bundles occur in the brain. So high
angular resolution diffusion imaging (HARDI) techniques have been developed
to overcome this weakness of the 2nd-order tensor model. Approaches include
model-free techniques which compute diffusivities along a large number of direc-
tions [3], mixtures of unimodal distributions [4] and higher-order tensors (order
> 2) [5]. Figures (1) and (2) demonstrate the ability of the 4th-order tensor
model to resolve multiple fibers in a single voxel.

Fig. 1. Order 2 (left) and 4 (right) tensor diffusivity profiles in a voxel containing a
single fiber orientation. Diffusivity is plotted as a displaced sphere where large radius
denotes high diffusivity

Fig. 2. Order 2 (left) and 4 (right) tensor diffusivity profiles in a crossing fiber voxel

The ability of the 4th-order model to discriminate multiple fibers can also be
seen in the polynomial models for diffusivity d as a function of direction v using
each tensor. The second-order tensor represents

d(v) =

3∑

i=1

3∑

j=1

Dijvivj (1)

which is a second-degree homogeneous polynomial in the components of v. The
fourth-order tensor represents

d(v) =

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

Dijklvivjvkvl , (2)

a fourth-degree polynomial which can have more local maxima and minima than
the second-degree model.
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The 4th-order tensor model has recently been studied by Barmpoutis et al.
[1] and others for representing not only diffusivity, but also the fiber orientation
distribution function (ODF). In 2nd-order DT-MRI the probable fiber orienta-
tion coincides with the direction of peak diffusivity, but in HARDI this is no
longer the case. For high-order tensors anisotropy cannot be characterized using
FA, but other measures, such as generalized anisotropy (GA) [6] can be used, as
shown in Figure (3).

Fig. 3. Generalized anisotropy in an axial slice of the human brain (left) and detail of
4th-order fiber ODFs (right)

2.3 GPU Processing

The connectivity approach described in [7] was implemented in pure OpenGL
since general-purpose GPU (GPGPU) APIs, like CUDA [8], were new at the time
of publication. So features like render-to-texture, additive alpha blending were
used to achieve the computation of the connectivity map. In subsequent years
APIs such as CUDA and OpenCL became more mature and greatly simplified
the process of writing code for the GPU. In turn, the solutions to many medical
image processing problems have been accelerated by parallelization on the GPU.
For an overview, see Eklund et al. [9].

3 Methods

In this work we take the approach of using new OpenGL 4 features [10] to im-
plement the connectivity mapping. Compute shaders are a portable, lightweight
way of quickly adding general-purpose calculation to a graphical application. By
contrast, CUDA is available only on Nvidia GPUs. OpenCL [11] is portable and
makes it possible to share some OpenGL buffers with the GPGPU code, but
the API is heavyweight since it supports many devices besides GPUs. OpenGL
compute shaders can make direct use of OpenGL buffer objects, they can be
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written in familiar GL shading language (glsl), and don’t require the overhead
of initializing another API context. We also make extensive use of shader im-
age load/store functionality which permits read/write access to texture data,
and atomic counters which make it possible to accumulate and integrate values
across multiple shader invocations. Whereas the previous approach [7] required
3 rendering passes to evaluate one iteration of connectivity computation, our
method permits it to be computed in one compute shader pass. Unlike previ-
ous approaches, ours permits mapping from high-order tensor fields which will
improve the accuracy in regions of the brain with complex fiber geometry. We
utilize modern OpenGL compute shaders to enable our method to be tightly
integrated with a custom raycast visualization method.

3.1 Data Acquisition

Our technique requires no changes to the image acquisition process. The data for
our experiments were acquired on a 3.0 Tesla General Electric Medical Systems
Horizon LX imaging system with a diffusion weighted spin echo pulse sequence.
Imaging parameters were : effective TR = 9000 ms, TE = 78 ms, NEX = 1.
Diffusion-weighted images were acquired with 25 different gradient directions
with b = 1000 s/mm2 and a single image was acquired with b ≈ 0. The image
field of view was 24×24 cm and the acquisition matrix was 256×256×30 voxels.

From the 26 images we computed 4th-order fiber orientation tensors using
the method described by Weldeselassie et al. [12].

3.2 Connectivity Model

As in [13] and [7] we use a Bayesian model of fiber probability. In the Bayesian
framework the prior distribution models the smoothness constraint on the fibers,
and the likelihood function models the dependence of fiber displacements on the
ODF data, C. The axonal fibers we track are modeled as a sequence of vertices,
xi, and displacements, vi, such that xi+1 = xi+vi as shown in Figure (4). As we
generate the sequence of displacements, we take into account C(xi) computed
from the diffusion tensor at the vertex xi and the previous displacement vi−1.

Fig. 4. Vertices, xi, and displacements, vi, along a simulated fiber path

The prior probability is written as p(vi|vi−1) which denotes the probability
of observing displacement vi given that the previous displacement was vi−1. We
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wish to impose a smoothness constraint on the fibers, so the prior should have
high probability that vi ≈ vi−1, and low probability that vi · vi−1 <= 0. This
behavior can be modeled using a von-Mises Fisher (vMF) distribution, which is
similar to a Gaussian wrapped around a sphere. It is given by

p(vi|vi−1) =
1

Zvmf

exp(κ
vi

||vi||
·

vi−1

||vi−1||
) (3)

where κ ≥ 0 is the concentration parameter which controls the variance of the
distribution about the mean direction vi−1/||vi−1||, and Zvmf is a normalizing
constant. Plots of sample distribution for several values of κ are shown in Figure
(5).

Fig. 5. von Mises-Fisher prior distributions for κ = 0 (left), 2 (middle), 10 (right)

Our likelihood model comes from a sharpened version of the computed fiber
orientation tensor. The sharpening process [14], implemented here by raising the
computed fiber probability to a positive exponent psharp(vi|C) = (1/Zsharp)p(vi|C)m,
reflects the distinction between water molecule displacement probability and
fiber orientation probability. Due to intracellular diffusion, water molecules may
diffuse perpendicular to the fiber direction, leading to tensors that are more
isotropic than they should be. Additionally, there is a limit to the sharpness of
the fiber ODF that can be modeled by a 4th-order tensor, since that tensor is
actually representing a 4th-degree homogeneous polynomial. In our experiments
we use m = 2 to suppress the low probability directions of the likelihood and
emphasize the peaks of the distribution, as shown in Figure (6).

The likelihood function p(vi|C) describes our observations of displacements
given the fiber orientation tensor, C. Applying Bayes’ rule, the posterior proba-
bility of observing vi given both C and vi−1 is given by

p(vi|C(xi), vi−1) =
p(vi|vi−1)p(vi|C(xi))

p(vi)
(4)

where p(vi) is a constant of proportionality.
Fibers are stochastically generated by initializing fiber points x0 within a

user-specified region of interest (ROI) and repeatedly drawing from the posterior
Equation (4) using rejection sampling using the prior as a proposal distribution.
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Fig. 6. Sharpened fiber ODFs with m = 1 (left), 2 (middle), 4 (right)

If N fibers are initialized in the ROI, the measure of connectivity between
the ROI and a voxel x is given by n(x)/N where n(x) is the number of fibers
passing through x.

3.3 Connectivity Implementation

The connectivity model described in the previous section was implemented in
an OpenGL compute shader. Due to space restriction we cannot print the full
shader source here but instead we present a high-level unoptimized summary
below.

ivec2 ix = ivec2(gl_GlobalInvocationID.xy);

vec4 x0 = imageLoad(fiberXTex, ix);

vec4 v0 = imageLoad(fiberVTex, ix);

vec4 v1 = draw_from_posterior(x0, v0);

vec4 x1 = x0 + v1;

// reinitialize if outside image or below anisotropy threshold

if(reinit_needed(x1))

{

x1.xyz = seed_pos;

v1.xyz = vec3(0.0);

atomicCounterIncrement(N);

}

imageStore(particlePosTex, ix, x1);

imageStore(particleVelTex, ix, v1);

// accumulate connectivity if we stepped into a new voxel

ivec3 x0_vox = ivec3(round(worldToConnectVox*x0.xyz));

ivec3 x1_vox = ivec3(round(worldToConnectVox*x1.xyz));

if(x0_vox != x1_vox)

{

imageAtomicAdd(connectivityTex, x1_vox, 1);
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}

The fiber positions and displacements are stored in 32 bit floating point
buffers and bound to image units so that the shader can read and write to the
buffers. The connectivity map is a 3D unsigned integer buffer also bound to an
image unit. Since each shader invocation reads then writes a unique memory lo-
cation we do not need expensive memory barrier or synchronization mechanisms
for the fiber updates. The connectivity updates and total fiber count, N , compu-
tations use atomic operations, so they are also free from memory conflicts. Data
which are only read are bound as textures: the tensor components, generalized
anisotropy, and a buffer of random values which are used to emulate a random
number generator on the GPU.

3.4 Visualization

Fig. 7. Connectivity mapping evolution during computation from iteration 1 (top-left)
to 100 (bottom-right)

Visualizing connectivity is not useful without some anatomical reference.
Tractography and connectivity mapping often use the b ≈ 0 image or anisotropy
as context for visualization. In our results we display raytraced anisotropy (GA)
with a user controllable clip box for reference. Since we use GA during com-
putation to compute the prior probability of fiber direction we don’t need to
upload any additional data for visualization. The GA image is displayed with no
texture filtering to give the user a true impression of the resolution of the under-
lying data. The connectivity data is overlaid with GA using a hot color palette.
Voxels below a specified threshold are transparent, and increasing connectivity
progresses through the red, orange, yellow, white color sequence. An iteration
of connectivity mapping is interleaved between frames of volume rendering so
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that the user may watch the connectivity map evolve and change the viewpoint
interactively.

4 Results

In this section we present images of the resulting connectivity maps, a table of
computation times and comparisons between results computed from order 2 and
order 4 data. Our connectivity mapping application was implemented in C++
and executed on 2 systems. System 1 was a Dell Optiplex workstation with a 3.4
GHz Intel Core i7-3770 CPU, 8 GB RAM, Nvidia GeForce GTX 750 Ti with 640
shader cores and 2 GB GDDR5 dedicated video RAM. System 2 was a Surface
Pro 2 Tablet with a 1.6 GHz Intel Core i5-4200U CPU, 8 GB RAM, Intel HD
Graphics 4400 with 20 shader cores and 1793 MB shared video RAM.

Fig. 8. Connectivity mapping in corpus callosum (CC) midbody (top-left), CC genu
(top-middle) and corticospinal tracts (top-right), fornix (bottom-left), inferior longitu-
dinal fasciculus (bottom-middle), occipitofrontal fasciculus (bottom-right)

Figure (7) shows 6 iterations of connectivity map computation. The connec-
tivity maps in Figure (8) were seeded in a single fiber and run for 350 iterations.
The corpus callosum (CC) connects the left and right hemispheres of the brain
as clearly reflected in the connectivity map. Our maps also capture the fanning
behavior of the corticospinal tracts as they approach the cortex and correlate
well with known neuroanatomy.

All connectivity maps were computed by simulating 262000 fiber tracts per
iteration. System 1, the desktop workstation, required 11.4 ms per iteration of
the compute shader. System 2, while slower at 63.1 ms, was capable of running
our algorithm at usable rates. This demonstrates that our technique is portable



10 Tim McGraw and Donald Herring

across GPU vendors and also that high-end hardware is not required to take
advantage of GPU-accelerated algorithms.

5 Conclusions

We have presented a fast high-order diffusion tensor MRI connectivity map-
ping algorithm and developed an implementation of this algorithm in modern
OpenGL. Our implementation using compute shaders is portable across Nvidia
and Intel GPUs. We have demonstrated that this model can generate plausi-
ble connectivity maps, even in regions of bifurcating and crossing fiber tracts.
Future work will involve validation of connectivity results and incorporation of
anatomical prior information.

References

1. Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regu-
larized positive-definite fourth order tensor field estimation from DW-MRI. Neu-
roImage 45 (2009) S153–S162

2. Basser, P.J.: Inferring microstructural features and the physiological state of tissues
from diffusion-weighted images. NMR in Biomedicine 8 (1995) 333–344

3. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex
neural architecture. Neuron 40 (2003) 885–895

4. McGraw, T., Vemuri, B.C., Yezierski, B., Mareci, T.: Von Mises-Fisher mixture
model of the diffusion ODF. In: 3rd IEEE International Symposium on Biomedical
Imaging: Nano to Macro, 2006, IEEE (2006) 65–68
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6. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion
MRI using trace, variance, and entropy. Magnetic Resonance in Medicine 53 (2005)
866–876

7. McGraw, T., Nadar, M.: Stochastic DT-MRI connectivity mapping on the GPU.
IEEE Transactions on Visualization and Computer Graphics 13 (2007) 1504–1511

8. Nvidia: CUDA programming guide, version 6.0. Nvidia Corporation, February
(2014)

9. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on
the GPU–past, present and future. Medical Image Analysis 17 (2013) 1073–1094

10. Shreiner, D., Sellers, G., Kessenich, J.M., Licea-Kane, B.M.: OpenGL program-
ming guide: The Official guide to learning OpenGL, version 4.3. Addison-Wesley
Professional (2013)

11. Khronos OpenCL Working Group, Edited by Munshi, A.: The OpenCL specifica-
tion version: 1.0 (2014)

12. Weldeselassie, Y.T., Barmpoutis, A., Stella Atkins, M.: Symmetric positive semi-
definite Cartesian tensor fiber orientation distributions (CT-FOD). Medical Image
Analysis 16 (2012) 1121–1129

13. Friman, O., Farneback, G., Westin, C.F.: A Bayesian approach for stochastic white
matter tractography. IEEE Transactions on Medical Imaging 25 (2006) 965–978

14. Descoteaux, M., Lenglet, C., Deriche, R.: Diffusion tensor sharpening improves
white matter tractography. In: Medical Imaging, SPIE (2007)


