
Shape Modeling with Fractals

Tim McGraw and Donald Herring

Purdue University

Abstract. Fractal phenomena are a source of geometric detail that can
be difficult to harness for general purpose shape modeling. We present
a method for modeling surfaces by warping a fractal onto a given mesh.
The warp is specified by the user as a coarse displacement field and
interpolated by triharmonic radial basis functions. Efficient methods for
rendering the warped fractal by ray tracing and isosurface extraction are
presented. Examples are shown using several escape-time fractals and
low-poly meshes.

1 Introduction

A key feature of fractal patterns is that they display self-similarity over all scales.
The patterns can be generated by several techniques, e.g. escape-time formulas,
strange attractors and iterated function systems. The fractal nature of some
iterated function systems, such as the Sierpinski gasket and Koch snowflake,
is intuitive from the description of their construction. The Koch snowflake is
constructed by starting with an equilateral triangle. The inner third of each
edge is removed and replaced with another equilateral triangle. This process
is repeated indefinitely. At all scales the snowflake has a characteristic spiky
star-like appearance.

However, in fractal images generated by escape-time fractals, it is less obvious
how the recursive construction leads to the resulting image. The Mandelbrot set
[1] and Julia sets are generated from simple recursive calculations in the complex
plane but give rise to a rich array of patterns. Upon exploration some unexpected
details may emerge. In general, escape-time fractals are defined as the set of
points that diverge (or “escape”) when iterated through a given formula. For
the quaternion Julia set the recurrence formula is z 7→ z2 + c, where z and c
are quaternions. In practice, a fixed distance threshold is used to approximate
which points diverge. For many fractals it is possible to estimate the distance to
the set from a given point. This permits accelerated ray tracing algorithms and
extraction of isosurfaces of the distance estimate.

Recursive escape-time fractal systems, such as the Mandelbox and Mandel-
bulb (named for Benoit Mandelbrot [1]), can generate a dazzling array of struc-
tures and patterns. Open source software such as Fragmentarium [2] facilitates
exploration of these systems. Aside from abstract computational art, it is un-
clear how to exploit these mathematical constructs for general computer graphics
modeling. An ideal application of fractals to surface modeling requires the so-
lution of a difficult inverse problem: finding the equations which give rise to a

2 Tim McGraw and Donald Herring

desired shape. The Collage Theorem [3] states general conditions for the exis-
tence of a solution to this inverse problem and describes a general approach to
its construction. In 2D this has led to fractal image compression algorithms, but
general 3D solutions have been elusive.

Our approach to utilizing fractals in 3D surface modeling is to warp a selected
volume of an escape-time fractal into another volume bounded by a mesh. In this
work the warp is specified in terms of radial basis functions. The resulting shape
can be visualized using ray tracing, or by rasterizing a triangle mesh generated by
isosurface extraction. Our approach permits the user to specify correspondence
between a set of mesh vertices and points in the domain of the fractal, much like
a mesh is unwrapped for texture mapping. In our case the unwrapping happens
in 3D rather than in the image plane.

2 Previous Work

In this section we review the formulations of some fractals which serve as a
source of detail for our later experiments. We also describe the use of radial
basis functions for surface fitting and warping.

2.1 3D Fractals

The search for a true 3D analogue of the Mandelbrot set has resulted in escape-
time fractal systems with interesting detail at many scales. Strangely, the quater-
nion Julia sets which use an extension of complex numbers to 4D, do not have the
rich variety of detail one might expect given the detail seen in the Mandelbrot set
which is computed in the 2D complex plane. Some recent formulations from the
generative art community rely instead on manipulation of spatial coordinates in
R3.

Fig. 1: Mandelbulb (left) and Mandelbox (right)

The Mandelbulb, Figure (1), is computed by the recurrence z 7→ zn+c where
z ∈ R3, with

zn = [x, y, z]n = rn[sin(nθ) cos(nφ), sin(nθ) sin(nφ), cos(nθ)] , (1)

Shape Modeling with Fractals 3

where r, φ, θ are the spherical coordinates of x, y, z. It emerged from the gener-
ative art community at fractalforums.com. Much more on its history has been
written by Daniel White [4].

Hart et al. [5] introduced the idea of determining bounds on the distance to
a fractal surface to accelerate ray tracing. A distance estimate to the surface
of the Mandelbulb can be computed by updating one additional variable during
iteration: initialize dr = 1, and during iteration dr 7→ nrn−1dr+1. After the last
iteration the distance estimate is given by DE = (1/2) log(r)r/dr. The variable
dr is a derivative that gets updated during iteration, and the final distance
estimation can be seen as an application of Newton’s method.

The Mandelbox, Figure (1), discovered by Tom Lowe [6], is usually defined
using pseudocode, and written in terms of “folds” as

v 7→ s ballFold(r0, f boxFold(v)) + c , (2)

where r0 = 0.5, s = 2, f = 1. The folds are defined as “conditional reflections.”
The boxFold(v) and ballFold(r0, v) procedures are defined below in Algorithm
(1).

1: function boxFold(v)
2: for i = 1 to dim do

3: if vi > 1 then

4: vi = 2− vi
5: else if vi < −1 then

6: vi = −2− vi
7: end if

8: end for

9: end function

1: function ballFold(r0, v)
2: if ||v|| < r0 then

3: v = v/r20
4: else if ||v|| < 1 then

5: v = v/||v||2

6: end if

7: end function

Alg. 1: Pseudocode for boxFold and ballFold as used in Mandelbox

Similar to the distance estimate described for the Mandelbulb, the distance
to the Mandelbox (and many other fractals) can also be estimated by keeping
track of a running derivative during iteration.

2.2 Radial Basis Functions

Radial basis functions (RBFs) have been popular for image warping and reg-
istration, but have also been applied to surface reconstruction from points [7],
surface editing [8] and posing [9].

For shape modeling applications the surface is represented as the zero-valued
isosurface of s(x) given by

s(x) = p(x) +

n
∑

i=1

λiφ(|x− xi|) (3)

4 Tim McGraw and Donald Herring

where xi are points on the surface (often referred to as RBF centers), φ is the
radial basis function, λ is a set of weights and p(x) is a low degree polynomial.
In our results we have used φ(r) = r and φ(r) = r3.

Given a set of RBF centers, xi, the weights and polynomial coefficients are
found by solving the linear system

[

A P
PT 0

] [

λ
c

]

= B

[

λ
c

]

=

[

f
0

]

(4)

where

Aij = φ(|xi − xj |) (5)

Pij = pj(xi) . (6)

The low-order polynomial, p was chosen to be p(x) = c1 + c2x + c3y + c4z,
making row i of P equal to [1, x1, yi, zi], and c = [c1, c2, c3, c4]

T . To specify that
the zero valued isosurface s(x) = 0 is the surface of interest we set f = 0, and
solve Equation (4) for λ and c. There is a trivial solution to this problem where
f = 0 everywhere. To avoid this, additional RBF centers are added by finding
additional points inside and outside the surface and setting the corresponding f
values to be negative and positive values respectively. These points are found by
searching along the normal direction from each vertex, as illustrated in Figure
(2). During this search it must be kept in mind that simply projecting outward
by a fixed distance, d, doesn’t necessarily give a point outside the surface, since
the surface may be concave. By setting f(xi, yi, zi) = ±di we can solve for an
approximate signed distance function.

Fig. 2: Off-surface points p− and p+ are placed along the line through p in the
direction of the vertex normal, n

The problem of finding an RBF warp that maps mesh M0 to M1 is nearly
identical, except that s, λ, and p are vector-valued. Note that in our work M1 is
simply a copy of M0 with edited vertex locations, so we do not need to solve a
mesh correspondence problem, as shown in Figure (3). Finding the warp requires
solution of

B

[

λx λy λz

cx cy cz

]

=

[

fx fy fz
0 0 0

]

(7)

Shape Modeling with Fractals 5

where xi are vertices of M0, and f = (fx, fy, fz) are vertices of M1 and B is the
same as in Equation (4). The warp from M0 to M1 is given by

W (x) = p(x) +

n
∑

i=1

λiφ(|x− xi|) (8)

Fig. 3: Mapping, W , from M0 to M1

RBFs do give rise to some computational challenges. Finding the n coeffi-
cients requires solution of a dense (n+4)× (n+4) linear system. Matters would
be simplified if we could use RBFs with compact support since the matrix B
would then be sparse, but compactly-supported RBFs would not allow us to
extrapolate the warp field away from the surface of M0, which is critical to our
modeling application. Once the coefficients are found, evaluating the RBF can
be expensive. The use of fast multipole methods (FMMs) can overcome this
problem [10]. FMMs work by grouping centers in a hierarchical structure, like a
kd-tree, and treating each cluster as a single point if the error in doing so falls
below a given threshold.

3 Methods

The high-level pipeline of our application is described below.
1. Select fractal equation and parameters. The user may interactively explore

the fractal to find a region of useful pattern.
2. Select a mesh, M0 to apply the fractal to.
3. Define the warp by deforming the vertices of M0 to obtain a mesh M1 in

the domain of the fractal and defining off-surface points. This step is analogous
to unwrapping a mesh for texture mapping. Compute the RBF coefficients for
the warp.

4. Obtain the result by ray tracing or isosurface extraction. For the points
generated by marching along a ray, or sampling a grid (isosurface extraction),
transform each point into the warped domain, and evaluate the distance estima-
tion formula for the escape-time fractal. That distance is stored as the embedding
function value for the isosurface, or is used to select an adaptive step size along
the ray.

6 Tim McGraw and Donald Herring

3.1 Ray Tracing Warped Fractals

Distance estimation for fractals can accelerate ray tracing since it gives a lower
bound on the distance to the surface, and we can safely step by this distance
along the ray without intersecting the surface.

Ray tracing the fractal warped onto M0 can be seen as ray tracing with
curved rays in the space of M1, as shown in Figure (4). For each point along the
linear ray in M0, that point is mapped into M1, and the distance to the fractal
is estimated. However a closed-form expression for the warped ray is expensive
to evaluate. To overcome this problem we use a Taylor series expansion of the
equation of the warped ray in M1 to estimate how far we can march.

Fig. 4: Rays, r(t), cast from the eye into the scene containing M0 are warped by
W into curves which intersect M1

Let the ray through the eye point p be given by r(t) = p + td, and let
q(t) = W (r(t)). Then the 3rd-order Taylor series expansion of q about t = t0 is
given by

q(t) ≈ q(t0) + q′(t0)(t− t0) +
q′′(t0)

2!
(t− t0)

2 +
q(3)(t0)

3!
(t− t0)

3 (9)

Having computed the warped position q(t0) along the ray we can compute the
derivatives q′,q′′,q(3),q(4) efficiently by reusing the intermediate results δi =
xi − x and ri = ||δi||,

q′ = (I+P)d+ 3

n
∑

i=1

(d · δi)riλi

q′′ = 3

n
∑

i=1

(

(d · δi)
2

ri
+ (d · d)ri

)

λi

q(3) =

n
∑

i=1

(

−3
(d · δi)

3

r3i
+ 9

(d · d)(d · δi)

ri

)

λi

q(4) =

n
∑

i=1

(

9
(d · δi)

4

r5i
− 18

(d · d)(d · δi)
2

r3i
+ 9

(d · d)2

ri

)

λi. (10)

Shape Modeling with Fractals 7

There is no closed-form expression for the distance along the parametric
cubic curve given by Equation (9), so we estimate it using the Vincent-Forsey
rule described by Floater and Rasmussen [11]

L(q[t0,t1]) =
4

3
(||q(tm)− q(t0)||+ ||q(t1)− q(tm)||)−

1

3
||q(t1)− q(t0)|| (11)

where tm = (t0 + t1)/2.
The magnitude of the error of the 3rd-order Taylor series approximation can

be bounded by

||E3(t)|| ≤ M
(t− t0)

4

4!
(12)

where ||q(4)(t)|| ≤ M for t0 ≤ t ≤ t1.

Fig. 5: Plot of ||q(4)(t)|| for rays in a plane passing through an RBF center. Note
that the value is nearly zero, except in a small area near the center

A plot of ||q(4)(t)|| in the neighborhood of an RBF center is shown in Figure
(5). From this plot it can be seen that M , and therefore ||E3(t)||, are small
except for rays that pass very close to an RBF center. By supersampling 4 or
more rays per pixel we reduce the impact of the high-error rays. As we search
along the warped ray we simply let M equal the maximum value of ||q(4)|| we
have encountered along the ray.

Pseudocode of the warped fractal ray tracing process is given below. The
routine returns the parameter value t of the intersection with the warped fractal.

1. For each ray r(t) = p+ td compute the approximate warped ray q(t) using
Equations (9) and (10)

2. Let t0 = 0, t1 = 1, n = 0
3. Compute distance Ltarget to fractal from q(t0) using fractal distance esti-

mation.
4. If Ltarget < ǫ then return t0

8 Tim McGraw and Donald Herring

5. Perform binary search along q(t) between t0 and t1 for the point q(tnew)
such that L(q[t0,tnew]) = Ltarget, using Equation (11).

6. n = n+ 1
7. Let t0 = tnew
8. If n < nmax then goto 3

During the binary search in step 5, the approximation error of the Taylor
series expansion of q(t) is taken into account by incorporating the error estimate,
E in the midpoint evaluation step:

1. tmid = (t0 + t1)/2
2. M = max(M, q(4)(tmid))
3. E = E3(tmid)
4. Lmid = L(q[t0,tmid])
5. if Lmid + E < Ltarget then t0 = tmid

6. else t1 = tmid

7. goto 1

Fig. 6: Example of mesh M1 being positioned relative to Julia set to define a
warp (left) and ray-traced warped Mandelbulb (right)

An example ray-traced warped fractal is shown in Figure (6). In our final
application we use the ray-traced image as a preview of the final results for the
user, and the extracted isosurface is saved to a file for final rendering.

3.2 Isosurface Extraction of Warped Fractals

For isosurface extraction we use a variant of marching cubes proposed by Lewiner
et al. [12] that guarantees topological correctness. However, the mesh generation
process poses two problems that we need to address. First, extracting an isosur-
face with detail at small scales can lead to noisy looking mesh. Second, extracting
a high resolution mesh of a warped fractal can be time consuming due to the
large number of points at which the warp and fractal distance estimate will be
computed.

Due to the occurrence of fractal detail at many scales, we can end up with
much geometric detail within a single cube of the marching cubes array. In this

Shape Modeling with Fractals 9

case the underlying surface cannot be accurately reconstructed using only the
8 distance values at the corners of the cube. Our approach to this problem is
simple: we offset the surface in the outward normal direction by a small amount,
ǫ. This has the effect of smoothing small scale fractal detail that cannot be
represented by the triangulated mesh. In theory, we can guarantee that ǫ = s/2,
where s is the marching cubes step size, will be sufficient. In practice, we make
ǫ a user-supplied parameter.

The second problem we only solve in the case where the extracted surface
consists of a single connected component. Rather than exhaustively evaluating
the warped fractal distance function for each vertex in the marching cubes array,
we instead cast rays through the volume to find a single surface intersection
point. From this seed point we then march along adjacent cubes that intersect
the surface. This permits much empty space to be skipped, greatly reducing the
number of warp and distance function evaluations.

4 Results

Our fractal modeling system was implemented in C++ and OpenGL on a Dell
Optiplex workstation with 3.4 GHz Intel Core i7-3770 CPU and 8GB RAM,
Nvidia GeForce GTX 750 Ti with 640 shader cores and 2 GB GDDR5 dedicated
video RAM. The results are shown with the original coarse mesh M0 to the left.

Fig. 7: Gallery of shape modeling using fractals

The user of our system positioned mesh vertex locations relative to the se-
lected fractal and previewed results using our accelerated ray tracing procedure.
When satisfied with the results a final mesh was generated using our modified
marching cubes algorithm. Results are shown for Mandelbulb-mushroom with

10 Tim McGraw and Donald Herring

Julia set-stem, Mandelbox-hand, Mandelbulb-head, Mandelbulb-bunny, and Man-
delbox - teapot. Our accelerated ray tracing algorithm was implemented in the
OpenGL shading language (glsl), and permitted previewing results at 5-10 fps
while the unaccelerated ray tracing procedure caused the video driver to timeout
and reset.

5 Conclusions

In this paper we have described a system which can be used to harness the di-
verse patterns found in escape-time fractals for general purpose modeling. We
described a warping technique using radial basis functions for mapping a user-
specified region of the fractal onto an arbitrary mesh. We presented approaches
for efficiently visualizing the results using ray tracing and isosurface extraction.
Results show that this technique has promise for shape modeling purposes. Fu-
ture work will involve exploring automatic techniques for finding a mapping
between the fractal and mesh based on symmetry and other features.

References

1. Mandelbrot, B.B.: The fractal geometry of nature. Volume 173. Macmillan (1983)
2. Christensen, M.: Fragmentarium. http://syntopia.github.io/Fragmentarium

(2013)
3. Barnsley, M.F., Ervin, V., Hardin, D., Lancaster, J.: Solution of an inverse problem

for fractals and other sets. Proceedings of the National Academy of Sciences of the
United States of America 83 (1986) 1975–1977

4. White, D.: The unravelling of the real 3d mandelbulb.
http://www.skytopia.com/project/fractal/mandelbulb.html (2009)

5. Hart, J.C., Sandin, D.J., Kauffman, L.H.: Ray tracing deterministic 3-d fractals.
ACM SIGGRAPH Computer Graphics 23 (1989) 289–296

6. Lowe, T.: What is a mandelbox? https://sites.google.com/site/mandelbox/what-
is-a-mandelbox (2010)

7. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum,
B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial ba-
sis functions. In: Proceedings of the 28th annual conference on Computer Graphics
and Interactive Techniques, ACM (2001) 67–76

8. Sieger, D., Menzel, S., Botsch, M.: High quality mesh morphing using trihar-
monic radial basis functions. In: Proceedings of the 21st International Meshing
Roundtable. Springer (2013) 1–15

9. Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions.
Computer Graphics Forum 24 (2005) 611–621

10. Beatson, R., Powell, M., Tan, A.: Fast evaluation of polyharmonic splines in three
dimensions. IMA Journal of Numerical Analysis 27 (2007) 427–450

11. Floater, M.S., Rasmussen, A.F.: Point-based methods for estimating the length
of a parametric curve. Journal of computational and applied mathematics 196

(2006) 512–522
12. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of

marching cubes’ cases with topological guarantees. Journal of Graphics Tools 8

(2003) 1–15

