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Abstract

We present a method for 3D mesh segmentation based on sparse non-negative matrix
factorization (NMF). Image analysis techniques based on NMF have been shown to
decompose images into semantically meaningful local features. Since the features and
coefficients are represented in terms of non-negative values, the features contribute to
the resulting images in an intuitive, additive fashion. Like spectral mesh segmentation,
our method relies on the construction of an affinity matrix which depends on the
geometric properties of the mesh. We show that segmentation based on the NMF is
simpler to implement, and can result in more meaningful segmentation results than
spectral mesh segmentation.

Keywords: segmentation; clustering; mesh processing; sparse approximation; non-
negative matrix factorization

1 Introduction

Mesh segmentation is the process of partitioning a mesh into smaller submeshes. Ap-
plications include object recognition by parts1, mesh parameterization and texture
mapping2, bounding volume computation3, skeleton extraction for rigging and ani-
mation4;5, shape matching6, morphing and mesh editing7;8. The ideal segmentation
results for a given mesh depends on the problem being solved, but 2 main classes have
been proposed in the literature: segmentation into surface patches and segmentation
into semantically meaningful parts. Tasks such as parameterization and texture map-
ping typically use segmentation into patches where the patches are constrained to be
nearly planar, or some other shape that can be easily parameterized. Segmentation
into parts is critical for animation and recognition tasks. The set of parts desired from
an animated character are usually anatomically meaningful (e.g. arms, legs, torso).
The segmentation results can help define the anatomical regions which are indepen-
dently transformed when animating a character. In CAD applications, such as reverse
engineering, the decomposition may be hierarchical so that an assembly can be broken
into subassemblies, and subassemblies can be broken into individual components.

Spectral mesh clustering techniques are heavily influenced by research into graph
partitioning and clustering problems. The observation that eigenvectors of graph ad-
jacency matrices can give insights into the clusters formed by graph vertices9 has also

1



, 2

led to the development of many new image segmentation10 and point clustering tech-
niques. The eigenvalue decomposition of mesh affinity and Laplacian matrices can
reveal useful topological mesh features, such as symmetry and number of connected
components, as well as identifying clusters of similar faces. However, we will make use
of a different matrix factorization for formulating a new mesh segmentation algorithm.

Non-negative matrix factorization is a process for finding a low-rank approximation
to a matrix, L = WH, such that W,H, and L have no negative elements. If L is an
m× n matrix then W is m× k and H is k × n, where the value of k depends on the
problem being solved, but is generally much less than m or n. Applications of NMF
include unsupervised clustering11, dimensionality reduction12, machine learning of
statistical models13, medical image analysis14 and computer vision15. In clustering
and image analysis applications the NMF is often used to find basis functions which
correspond to the “building blocks” which describe the data. We will show that this
is also the case when applying the NMF to mesh segmentation.

1.1 Contributions of our method

The proposed method is a new application of NMF to the mesh segmentation problem.
The contributions of the method are:

• Simplicity: Unlike the spectral segmentation approach, our method does not
require eigenvector computation, sorting, normalization or k-means clustering
steps. The NMF can be computed using non-negative least squares.

• Flexibility: Our method is based on construction of distance and affinity matri-
ces. Similarity measures based on geometric features can be incorporated into
these matrices, permitting these features to influence the segmentation results.
Hierarchical segmentation results can be produced by changing the rank of the
NMF.

• Salience: The NMF naturally produces parts-based decompositions due to the
locality of the NMF basis functions, and the addition of a sparsity constraint
improves the distinctness of features and the consistency of results.

2 Related work

The problem of mesh segmentation has been solved using many approaches, starting
with the region growing approach proposed by Faugeras and Hebert16. The input to
a mesh segmentation algorithm is a set of vertices, V = {v1, v2, ...vn}, a set of edges ,
E = {eij} where vi and vj are adjacent vertices forming the edge eij , and a set of faces,
F , in the mesh. Depending on the specific algorithm the mesh may be constrained to
be 2-manifold (each edge is shared by exactly 2 faces). The output of the segmentation
is a set of disjoint submeshes. These submeshes represent groups of faces, vertices, or
edges of the input mesh that are considered homogeneous according to some criterion.
Most often mesh faces are grouped together, but occasionally vertices and rarely edges.

General approaches to mesh segmentation include hierarchical clustering, iterative
clustering, spectral methods and implicit methods. Our discussion will concentrate
on spectral methods, since they are most closely related to our technique. For an
overview of the other approaches see the survey papers by Shamir17 and Theologou
et al.18.
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2.1 Spectral methods

The spectral clustering approach to mesh segmentation is a product of the active
research areas of spectral mesh processing19 and spectral graph theory (especially
clustering20). Spectral methods, in general, involve analysis of the eigenvalues and
eigenvectors of appropriately defined matrices. In computer graphics spectral methods
have been found to have a wide variety of applications. Vallet and Levy21 presented
a spectral method to convert a mesh into the frequency domain for the purposes of
mesh smoothing. The eigenfunctions of the Laplace-Beltrami operator are used to
define Fourier-like basis functions called manifold harmonics. Mesh processing can
then proceed in a manner similar to signal processing. For example, high-frequency
noise and other small details can be removed by low-pass filtering. Other computer
graphics applications of spectral methods include mesh parameterization, symmetry
detection, surface reconstruction, remeshing, and mesh compression. See Zhang et
al.19 for a complete survey of spectral methods in computer graphics.

Spectral mesh segmentation can be seen as the use of spectral graph clustering
on the graph formed by vertices and edges in a mesh, or the dual graph of faces and
edges in a mesh. The algorithm requires the computation of an affinity matrix, A,
from which a mesh or graph Laplacian matrix, L, may (optionally) be computed. Var-
ious approaches have introduced different formulations for the affinity and Laplacian
matrix, and the subsequent processing of the eigenvectors. Liu and Zhang22 first ap-
plied spectral clustering to three dimensional meshes by computing eigenvectors of a
distance-based affinity matrix. To segment a mesh into k submeshes the eigenvectors
corresponding to the k largest eigenvalues of a normalized affinity matrix A are com-
puted. The final step is to cluster faces by their eigenvector components, usually using
an efficient k-means technique23. Later, Zhang and Liu24 described a mesh segmen-
tation algorithm based on recursive spectral two-way cut and Nystrom approximation
which only requires construction of a partial affinity matrix.

2.2 Affinity and Laplacian matrices

The elements, Aij , of the affinity matrix are measures of the likelihood that faces (or
vertices) i and j are in the same region of the segmentation. An example of a simple
affinity matrix used often in spectral graph analysis is the combinatorial affinity matrix
which is equivalent to the mesh adjacency matrix. This affinity matrix, however only
takes vertex connectivity into account, not mesh geometry. Mesh affinity matrices are
based on distance metrics that do take geometry into into account. Affinity matrices
can be computed from distance matrices by using the fact that affinity and distance
have an inverse relation.

Many different geometric features can lead to definitions of distances on a mesh.
One possible definition for distance dij is the Euclidean distance ||vi − vj || when
clustering vertices, or the geodesic distance between face centroids when clustering
mesh faces. A distance based on the dihedral angle25;4;22 is given by

dij = η(1− ni · nj) (1)

where ni and nj are face (or vertex) unit normal vectors, and η is a free parameter.
The relative sensitivity to ridges and creases can be controlled by changing the value
of η based on the degree of local concavity or convexity4. Another concavity based
affinity matrix is given by Wang et al26.
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Affinity matrices for mesh segmentation have been based on reciprocal distance27,
various kernels (including Gaussian10), and mesh curvature28. For the definitions
given below Ai,j = 0 when there is no edge between vi and vj . In some applications
a full affinity is required, which is defined in terms of the distances between all pairs
of vertices. In these cases distance is defined as the length of the shortest path be-
tween vi and vj , and can be computed using Dijkstra’s or Floyd’s algorithm. Some
implementations24 29 require only a partial version of the full affinity matrix to be
computed, since a sparser matrix provides computational benefits. The Nystrom30

approximation can then be used to approximate the eigenvectors of the full matrix.
The reciprocal distance affinity matrix is given by

Aij =
1

dij
. (2)

The Gaussian kernel distance can also be used for constructing an affinity
matrix,

Aij = e
−d(vi,vj)

2

2σ2 (3)

where σ is a tunable parameter that influences the size of the clusters, and d may be
Euclidean distance or some other measure. Liu and Zhang22 use a function, d based
on face centroid geodesic distance and face dihedral angle. They also suggest a method
for automatically computing σ.

Early graph partitioning9 and image segmentation10 methods were based on the
eigenvectors of the affinity matrix. Later methods operated instead on the Laplacian
matrix, which is computed from the affinity matrix, but can be defined in many
ways. The study of eigenvalues of the Laplacian matrix has connections to harmonic
analysis where basis functions on various domains (e.g. DCT, Fourier basis, spherical
harmonics) can be formulated as eigenfunctions of Laplacian operators defined on those
domains. Other mesh segmentation techniques based on this eigenfunction concept
include5;31;25;32. Methods based on eigenfunctions of the Laplace-Beltrami operator
include diffusion distance and heat kernel signature18.

Most Laplacian formulations are defined in terms of the diagonal matrix D, where
Dii =

∑

j
Aij . In the case of the combinatorial affinity matrix D represents the

degree of each vertex. Variations on spectral clustering can be created by changing
the definition of the affinity matrix and mesh Laplacian.

The symmetric Laplacian, (or graph Laplacian)

L = D −A (4)

was used for mesh segmentation by Liu and Zhang28 and for mesh segmentation by
Zhang et al.25. The normalized Laplacian is given by

L = I −D
−1

A, (5)

where I is the identity matrix and D−1A is the (row) normalized affinity matrix.
If the eigenvalues of a normalized affinity matrix are λi then the eigenvalues of the

corresponding Laplacian matrix are 1 − λi and the eigenvectors are the same. The
clustering information is contained in the eigenvectors corresponding to the largest

eigenvalues of the affinity matrix, or the smallest eigenvalues of the Laplacian matrix.
Since some popular iterative eigenvalue solvers (e.g. Arnoldi Iteration) produce the
largest magnitude eigenvalues first it can be more efficient to work in terms of the
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affinity matrix. Von Luxburg33 gives a thorough overview of Laplacian matrices used
in spectral mesh clustering, and their properties.

Once the desired matrix, M , (affinity matrix, normalized affinity matrix or Lapla-
cian matrix) is computed, the next step of spectral segmentation is to compute the
eigenvalue decomposition M = XΛX−1 where Λ is a diagonal matrix. The eigenvec-
tors xi are the columns of X, and the eigenvalues λi = Λii are assumed to sorted. Seg-
mentation into k regions requires the k eigenvectors which correspond to the k smallest
or largest eigenvalues. The eigenvectors are assembled into U = [x1, x2, ..., xk]. Finally
k-means clustering on the rows of U is performed to find the segmentation result. It
is also possible to automatically estimate the number of regions from Λ by using the
eigengap heuristic maxk = λk+1 − λk. An overview of spectral mesh segmentation is
given in Algorithm (1).

Like spectral methods, our segmentation algorithm also requires computation of an
affinity matrix. In place of the eigenvalue decomposition we compute the sparse rank-k
NMF. Since the Laplacian matrix can have negative values it cannot be decomposed by
the NMF. Instead we compute the NMF of a normalized affinity matrix, M = D−1A.
The segmentation results are directly extracted from the NMF, M = WH, by finding
the column of H which has maximum value. Due to the clustering properties of NMF
we don’t need to perform any additional clustering on the results.

Algorithm 1 Spectral mesh segmentation

1: procedure Spectral mesh segmentation(V, F, k)
2: Compute the dual graph V ′, F ′. Use the dual graph in the following com-

putations where vertices correspond to faces of the original mesh.
3: Compute the distance matrix d

4: Estimate σ for the Gaussian kernel affinity matrix.
5: Compute an affinity matrix, A from the distance matrix, d and σ.
6: Compute the full affinity matrix for all vertex pairs (e.g. using Floyd-

Warshall or Dijkstra)
7: From A compute a normalized affinity matrix.
8: Compute the eigenvalue decomposition S = V ΛV −1 and sort the eigenvalues

(diagonal elements of Λ) and the corresponding eigenvectors.
9: Extract the last k columns of V into V̂ .

10: Normalize the rows of V̂ , as done by20.
11: Compute k-means on the rows of V̂ . The clustering assignment of each

vertex gives segmentation results
12: end procedure

Decomposition of a normalized affinity matrix has previously been used to perform
clustering in the context of stochastic processes. Meila and Shi34 perform clustering
by analyzing the row normalized matrix M = D−1A. This matrix can be interpreted
as a stochastic matrix where Mij is the probability of a random walk moving from
vertex i to j in one step. Eigenanalysis of this matrix can reveal the regions that
random walks remain in for large amounts of time.
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Fig. 1: Local basis functions computed from 1500 face images (left), sample
19× 19 face image

3 Sparse non-negative matrix factorization

Non-negative matrix factorization is used by many unsupervised learning algorithms
that yield a parts-based representation of data. The non-negativity of the resulting
matrices means that the data can be expressed as a strictly additive combination of
parts. As a result, NMF usually results in an intuitive decomposition of the data since
additional terms cannot subtract already existing features in the data. For example,
NMF is an integral part of algorithms for blind source separation of audio signals,
such as music. A musical score may be decomposed into the individual instrument
tracks35. NMF analysis of stochastic matrices can be used to learn statistical models
of random processes13.

The problem of finding the NMF can be written as the optimization problem

min
W,H

||L−WH||2F s.t. W ≥ 0 and H ≥ 0 (6)

where || · ||F denotes the matrix Frobenius norm.

3.1 Parts-based decomposition and clustering with NMF

To demonstrate NMF with a sample image processing application, we replicated the
experiments of Lee and Seung15 by applying NMF to a facial image database36 of 1500
images. Each 19×19 pixel image was reformatted to 1D, and was set as a column of L.
The NMF (rank = 49) of L was computed, and the facial features were extracted from
the columns of W . Computing the NMF of the 361 × 1500 matrix took 0.25 seconds
in Matlab. Unlike the eigenface approach, where the eigenvalue decomposition of a
covariance matrix is computed, the NMF features are local. The 49 features shown in
Figure (1) often correspond to recognizable features such as eyes, nose and lips. Since
the coefficient matrix is positive, the features can be added together in an intuitive
way to form the image of face.

The fact that symmetric NMF can be shown to be equivalent to kernel k-means
clustering37 suggests the usefulness of NMF as a segmentation tool. The equiva-
lence can be seen by using the fact that the kernel k-means objective function can
be written in terms of matrix trace maximization38. The trace maximization prob-
lem maxH tr(HTLH) can be shown to be equivalent to the minimization problem
minH ||L−HHT || which defines the symmetric NMF problem L = HHT .
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3.2 Sparsity

Many recently developed solutions to image processing problems are formulated by
transforming the problem into a domain in which the data are sparse. Sparsity means
that a signal can expressed as linear combination of basis functions using few terms.
This has obvious implications for data compression39. Other image analysis applica-
tions are image reconstruction40, and denoising41. Though the NMF often results in
sparse basis functions, by imposing a sparseness constraint the degree of sparseness
can be controlled42.

Sparseness can be quantified using the l0 norm which counts the number of nonzero
elements in a vector. Equation (7) shows the constrained optimization problem that
solves the linear system x = Dy while imposing sparseness on the solution y.

min
y

1

2
||x−Dy||22 + λ||y||0 (7)

However, solution of Equation 7 is NP-hard. In many cases43 the convex relaxation
of Equation 7 formed by replacing the l0 norm with the l1 norm induces sparsity in y

and can be solved much more efficiently.
Imposing a sparseness constraint on either, or both of the the factors W and H has

several benefits. In general the NMF does not have a unique solution, but by imposing
some constraints it can be made unique. Sparsity, unfortunately, is not one of those
constraints. But the computation of the sparse NMF does have a smaller solution
space and has been shown to lead to better and more consistent clustering results44.
Increasing sparsity has also been observed to improve the separation of features35 in
the resulting basis vectors.

Incorporating sparseness on H into the NMF decomposition results in the opti-
mization problem

min
W,H

1

2
||L−WH||2F +

µ

2
||W ||2F +

λ

2

∑

i

||hi||21 s.t. W ≥ 0 and H ≥ 0

where hi are columns of H. The Frobenius norm term controlled by parameter µ adds
another side constraint that keeps W from becoming too large which would in turn
cause H to become very small.

The sparse NMF problem can be solved by initializing H to non-negative random
values, then solving alternating non-negative least squares (NNLS) problems. When
solving for H by NNLS, W is held constant

minH>0

∣

∣

∣

∣

∣

∣

∣

∣

(

W√
λe1×k

)

H −
(

L

01×n

)
∣

∣

∣

∣

∣

∣

∣

∣

2

F

, (8)

where e1×k is a row of zeros, and 01×n is a column of all zeros. Likewise, H is held
constant when solving for W by

minW>0
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∣
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∣

∣
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(
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)

W
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∣

∣

∣

∣

∣

∣

2

F

, (9)

where Ik is a k×k identity matrix, and 0k×m is a k×mmatrix of all zeroes. Alternation
continues until an iteration threshold has been passed or the fitting residual falls below
some threshold. See Li and Ngom45 for a full description of this and other NMF
decomposition algorithms and source code.
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4 Methods

Algorithm 2 NMF segmentation

1: procedure NMF mesh segmentation(V, F, n, k)
2: Compute the dual graph of the mesh to obtain V ′, F ′.
3: Compute the same distance matrix, d, as Katz4 and Liu and Zhang22 which

is based on a combination of geodesic distance and dihedral angle (Equation
(1)).

4: Compute the distance-based affinity matrix, A, from d using Equation(2).
5: From A, compute T , the all pairs shortest path matrix22.
6: Compute S = D−1T , the normalized affinity matrix, by normalizing the

rows of T to sum to 1. S can be seen as a Markov transition matrix de-
scribing a random walk on the mesh. Each element, Ti,j , represents the
probability of a random walk going from face i to face j.

7: Compute the rank-k sparse NMF of S to obtain W and H, where k is the
number of desired regions.

8: Normalize W and H.
9: Compute the label for each face, i by finding maxjHi,j

10: end procedure

We solve the mesh segmentation problem using the steps described in Algorithm
(2). In comparing this implementation to other clustering and segmentation ap-
proaches, note that

• We have found that the same parameter ranges used by Liu and Zhang22 in
computing distances (δ ∈ [0.01, 0.05] and η ∈ [0.1, 0.2]) perform well, so we use
the same range.

• We decompose an asymmetric normalized affinity matrix rather than a symmet-
ric normalized affinity or Laplacian matrix.

• We don’t need to estimate a variance for the kernel-based affinity (Equation 3).

• We don’t compute eigenvalues, so we don’t need to sort eigenvalues or row
normalize eigenvectors

• We don’t need a separate k-means clustering step since the nature of NMF
produces clusters in the matrix of basis functions, H.

To demonstrate the parts based decomposition found by the NMF we show the
basis functions H:,j for several meshes in Figures (2, 4, and 5). The rank, k, of the
decomposition is set to the number of desired regions. Note that the basis functions
computed for the head mesh, like the image decomposition results in Figure (1), high-
light local anatomical features like the eyes, ears and nose. This is not the case for
other basis functions, such as the diffusion wavelet basis46 or the eigenfunctions of
the Laplace-Beltrami operator shown in Figure (3). The superior locality of the NMF
basis is due to several factors: (1) the affinity matrix takes geodesic distance between
faces into account resulting in surface clustering, (2) the NMF generates an additive
decomposition of the mesh into local parts, and (3) the sparseness constraint drives
low values in the NMF basis functions to zero, resulting in a sharper delineation of
features.
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Fig. 2: NMF basis functions (k = 12) for the head mesh plotted with a heat
map color palette. White denotes high values, and black denotes low
values. Features such as eyes, ears and nose are clearly visible.

Fig. 3: Other comparable basis functions. Diffusion wavelet basis functions (top)
and eigenfunctions of the Laplace-Beltrami operator (bottom) are not a
local nor as feature specific as the NMF basis functions.

For segmentation, sparsity is enforced on the columns of H, which is the cluster
indicator function. Sparsity on H encourages locality of the clusters. Figure 6 demon-
strates the effect of sparsity on the H and the segmentation results. In the top row
the basis functions without sparsity do not reflect a clear distinction between the three
regions in the mesh. In the bottom row the sparse basis functions show a clear sep-
aration of regions which permits us to use a simple columnwise maximum operation
to assign clusters to faces. The segmentation results are clearly improved with the
sparsity constraint as the helmet, face and base are assigned to different regions.

5 Results

In this section we present our experimental results and demonstrate the performance of
our algorithm compared to spectral approaches. We tested the NMF segmentation ap-
proach on meshes from the Princeton Shape Benchmark, McGill 3D shape benchmark,
and AIM@SHAPE-VISIONAIR repositories. For all results we have used parameter
values δ ∈ [0.01, 0.05], η ∈ [0.1, 0.2], n = 10. The value of k is noted in the figure
captions.
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Fig. 4: NMF basis functions (k = 5) for the table mesh. The table top and each
leg are isolated in different functions.

Fig. 5: NMF basis functions (k = 6) for the hand mesh. Each finger is strongly
associated with a different function.

Figure (7) shows successful results of our method on flamingo, skeleton, pawn and
hand meshes. The flamingo was segmented into four regions which correspond to the
body, two legs and the neck and head together in a single region. The NMF method
combined with the choice of affinity matrix handles narrow extremities very well due to
the inclusion of a dihedral distance term. The skeleton result is particularly impressive
since there are many small bones and concave features that could have confounded
the segmentation process. The pawn doesn’t have any long protrusions, like the other
meshes, but small concave valleys between the parts lead to a good result.

One case in which our method performed better than spectral segmentation is the
octopus mesh shown in Figure 8. Note that our method has placed all of the legs of
the octopus into different regions while spectral segmentation produced a segmentation
where two legs were in the same region (colored cyan), and a separate region appears
near the base of the yellow leg.

Successful segmentations of animals in anatomical regions are shown in Figure(9).
On the horse and camel we are able to split the animals into leg, head and body
regions. On the bunny mesh the head, ears, feet and tail are separate from the chest,
back and thigh.

Figure 10 shows a mesh for which NMF did not produce a good result. A semantic
segmentation would have a region representing the hub at the center of the rocker
arm and regions for the adjusting screw and nut at the top. Our method was able to
segment the screw and nut, but not the hub. Spectral segmentation did a better job,
but not ideal. That method was able to segment the hub and one end of the screw.
These results are probably due to the relative flatness and smoothness of the mesh.
Both methods would likely perform better by changing the affinity matrix to weight
angular distance more or take some other geometric features into account.

Meshes that consist of multiple connected components (such as the handle, spout,
lid and body of the teapot) and non-watertight meshes such as the teapot can be
segmented. The hand mesh shown on the right side of Figure (11) demonstrates that
NMF mesh segmentation can produce meaningful results in the presence of additive
noise. In this experiment the input mesh had its vertices displaced in the normal
direction by a random distance (zero-mean Gaussian with standard deviation = 0.02.)
The results show separation of individual fingers into regions, and results are similar
to the hand in Figure (7).

The sparse NMF segmentation algorithm was implemented in Matlab R2015a on
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Fig. 6: Basis functions (left) and segmentation results (right) computed without
(top) and with (bottom) sparseness constraints (k = 3).

Fig. 7: Segmentation results on flamingo (k=4), dragon (k=6), armadillo (k=6),
skeleton (k=7), pawn (k=4), hand (k=6), Lucy (k=10) and happy Bud-
dha (k=6) and meshes.

a Dell Optiplex workstation with 3.4 GHz Intel Core i7-3770 CPU and 8GB RAM.
Timings for the results in this section are presented in Table (1) and it is clear that
computation time is dominated by the NMF calculation.

6 Conclusions and future work

We have presented a new mesh segmentation technique based on sparse non-negative
matrix factorization. This method is simpler to implement than competing spectral
segmentation approaches and can result in more meaningful segmentation results when
the same distance metrics are used. The sparseness constraint results in improved lo-
calization of features and also improves consistency over multiple runs of the algorithm.
This method can also handle meshes with non-manifold edges that are not watertight
and consist of multiple connected components.
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Fig. 8: Segmentation results on octopus (k=9) using our method (left) and spec-
tral mesh segmentation (right).

Fig. 9: Animal segmentation results. Camel (k=6), horse (k=6) and bunny
(k=8).

6.1 Limitations

Mesh size and region count are limited by system memory. We have run out of memory
on a 64-bit system with 8GB of RAMwhile segmenting a mesh with 50000 faces. This is
because the matrix, S, assembled in algorithm 2 is a full matrix with size |F |×|F | where
|F | is the number of faces in the mesh. Likewise, spectral mesh clustering22, requires
construction of a dense pairwise face distance matrix. But the memory requirements
of our implementation of the NMF are greater than the eigenvalue decomposition.
We are investigating patch-based and multiresolution approaches to segmenting large
meshes and more memory efficient implementations of NMF.

We have observed that NMF segmentation results depend on triangle quality. The
same is noted for spectral segmentation. Using an area weighting when computing the
affinity matrix, as is done in the conformal Laplacian, may help reduce the impact of
triangle quality.

Sometimes computing segmentation labels with the max operation results in dis-
connected regions having the same label. This can be fixed by splitting disconnected
regions into multiple labels, resulting in a segmentation with more than k regions.

6.2 Improvements

There are several areas of improvement to the proposed algorithm. The row maximum
operation for assigning clusters to faces is a simple and obvious approach, but replacing
it with a more sophisticated process may improve the quality of clusters and result in
smoother boundaries. Another approach to smoothing the segmentation boundaries
may be to directly filter the basis functions. To compare our results with spectral mesh
clustering22 we used the same distance matrix, but more experiments are needed to
see if the NMF approach can be improved by using a different distance metric.
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Fig. 10: Segmentation of rocker arm (k=4) with NMF method (left) and spectral
method (right). Both methods fail to produce a meaningful result.

Fig. 11: The NMF segmentation method can handle meshes with multiple com-
ponents and meshes that are not watertight, such as the teapot, k=4
(left) and noisy meshes, such as the hand, k=6 (right).

6.3 Applications

The parts-based local basis functions computed by the sparse NMF may be useful
for other applications, such as automatically computed bone weights for skeletal ani-
mation. We will also explore the use of these basis functions for feature detection in
applications such as shape matching and mesh retrieval.
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[21] B. Vallet and B. Lévy, “Spectral geometry processing with manifold harmonics,”
in Computer Graphics Forum, vol. 27, pp. 251–260, 2008.

[22] R. Liu and H. Zhang, “Segmentation of 3d meshes through spectral clustering,” in
Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacific
Conference on, pp. 298–305, IEEE, 2004.

[23] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algo-
rithm,” Applied statistics, pp. 100–108, 1979.

[24] H. Zhang and R. Liu, “Mesh segmentation via recursive and visually salient spec-
tral cuts,” in Proc. of vision, modeling, and visualization, pp. 429–436, 2005.

[25] J. Zhang, J. Zheng, C. Wu, and J. Cai, “Variational mesh decomposition,” ACM
Transactions on Graphics (TOG), vol. 31, no. 3, p. 21, 2012.

[26] H. Wang, T. Lu, O. K.-C. Au, and C.-L. Tai, “Spectral 3d mesh segmentation
with a novel single segmentation field,” Graphical Models, vol. 76, no. 5, pp. 440–
456, 2014.

[27] K. C. Das, “Maximum eigenvalue of the reciprocal distance matrix,” J Math
Chem, vol. 47, pp. 21–28, 2010.

[28] R. Liu and H. Zhang, “Mesh segmentation via spectral embedding and contour
analysis,” in Computer Graphics Forum, vol. 26, pp. 385–394, 2007.

[29] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the
nystrom method,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 26, no. 2, pp. 214–225, 2004.
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