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Abstract

We present a method of synthesizing textures based on a modified reaction-diffusion
equation. A non-Gaussian model of diffusion is employed to make a new class of
textures possible. Whereas the Gaussian diffusion model is characterized by its
covariance matrix (a rank-2 tensor), the generalized model of diffusion is charac-
terized by a sequence of tensors of increasing rank which represent higher-order
moments of the diffusion displacement probability. A numerical method of solving
the new reaction-diffusion equation is described, as well as representative textures
generated by this technique. The resulting patterns are inorganic in nature, often
featuring sharp corners. The generalized reaction-diffusion textures display spatial
inhomogeneity, even when the diffusion process is homogeneous, making it possible
to generate complex textures from few parameters when compared with previous
techniques employing inhomogeneous reaction-diffusion. The preferred orientations
depend on the tensor sequence, and can be inspected prior to texture generation by
plotting the non-Gaussian diffusion propagator.

Key words: reaction-diffusion, texture synthesis, generalized diffusion, high-rank
tensor

1 Introduction

Algorithms for automatic generation of models and textures is becoming more
important as graphics applications are capable of displaying increasingly large
and complex scenes. There have been many approaches [1] to synthesis of tex-
tures, including combinations of noise functions [2,3], basis functions based on
feature point distances [4], Fourier synthesis [5], simulation of cellular devel-
opment [6], exemplar-based texture synthesis [7,34–36] and reaction-diffusion
textures.

Alan Turing [8] proposed the reaction-diffusion process as a model of pattern
formation in animals. The process models the chemical reaction between two
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“morphogens” and the simultaneous diffusion of those chemicals within a de-
veloping organism. Witkin and Kass [9] presented a technique for numerically
simulating the reaction-diffusion equations in a Euclidean domain to gener-
ate textures. Greg Turk [10] described a simulation of the same process on
manifolds, so that the texture evolves naturally over a surface. The original
process described by Turing was homogeneous and isotropic. Witkin and Kass
simulated inhomogeneous and anisotropic reaction-diffusion. Their governing
parameters were allowed to vary spatially, and the diffusion process could be
steered by use of a matrix within the diffusion term of the equation. This
simulated a more general diffusion process, one that can vary spatially, but
only in a limited way. At each location the diffusion process had a single pre-
ferred orientation. This orientation corresponds to the modes of the molecular
displacement probability, in this case, a Gaussian distribution. In this paper
we propose to generate textures by extending the diffusion process to be non-
Gaussian. This process will be governed by a sequence of tensors of increas-
ing rank. This allows the underlying diffusion displacement probability to be
multimodal. This permits the generation of patterns with multiple preferred
orientations, even when the diffusion process is homogeneous. This diffusion
process corresponds to what would take place in a structured medium and
makes a new class of textures possible. In subsequent sections we will present
the theory, implementation and our results.

1.1 The Reaction-Diffusion Equation

The general reaction-diffusion equation for an interacting pair of chemicals
can be written as the coupled system

∂u

∂t
= du∇

2u + f(u, v), (1)

∂v

∂t
= dv∇

2v + g(u, v).

The quantities u and v represent the concentration of the two chemicals. It
can be seen from (1) that the time rate of change of concentration depends
on a diffusion process (the first term on the right-hand side) and reaction
functions, designated f(u, v) and g(u, v). It is common to start the evolution
of (1) from some initial condition which is near a steady-state solution and
allow the simulation to run until convergence. The solution of the system
will yield two scalar-valued images, u and v. Color textures are obtained by
defining a palette to map concentration values to colors.

The choice of reaction functions has a large impact on the appearance of
the resulting textures. In addition to Turing, other researchers have proposed
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reaction functions to model various classes of textures, such as those appear-
ing on seashells [11], various mammals [12], reptiles [13] and fish [14]. The
morphogens can be classified by inspecting the partial derivatives of f and g.
Gierer and Meinhardt [15] described and categorized various reaction-diffusion
systems based on the morphogen types. Models of reaction abound in the com-
putational biology and chemistry literature, but to date the only modifications
to the diffusion term have been to make it inhomogeneous and anisotropic.

Harris et al. [16] and Sanderson et al. [17] have implemented reaction-diffusion
texture generation on the GPU to greatly increase the speed of the simulation.
The time required to generate reaction-diffusion textures has been a barrier
to their widespread use in computer graphics, though the model is common in
physical chemistry and developmental biology. We will review several reaction
functions, but our model is not dependent on any particular choice of reaction
equation. Our work involves only the diffusion term in the reaction-diffusion
equation and will work in conjunction with any choice of reaction function.

The reaction-diffusion model proposed by Turing,

∂u

∂t
= du∇

2u + uv − u − α (2)

∂v

∂t
= dv∇

2v + β − uv,

is classified as an activator-substrate system. Depending on the reaction para-
meters α and β, it generates textures that resemble such patterns as leopard
spots and zebra stripes. Note that for u = 4, v = 4, α = 12, β = 16, the
pattern is unchanging. The reaction rate is zero for this combination of val-
ues, and the diffusion rate is zero since the concentration gradient is zero
everywhere. This is a steady-state solution to the system of equations, albeit
an uninteresting one. Initializing the system to this state, then perturbing the
system with random noise on the concentrations or parameters (or both), may
result in other steady states which correspond to visually interesting patterns.

A different family of textures can be generated with the model presented by
Gray and Scott [18]. The system of equations is given by

∂u

∂t
= du∇

2u − uv2 + F (1 − u) (3)

∂v

∂t
= dv∇

2v + uv2 − (F + k)v, (4)

where F and k are user-chosen parameters. This system has a trivial steady
state of u = 1, v = 0 for all parameter values. Initialization is performed by
putting the system into a state nearby this trivial solution and perturbing the

3



concentration values near the center of the array.

Pearson [19] mapped the parameter space of this system by generating images
for many pairs of values of F and k, also identifying regions of stability and
instability. Within the region of instability, no steady state is achieved so the
texture continues to evolve. Sanderson et al. [17] discuss parameter setting for
these and several other models.

1.2 The Diffusion Process

The simple model for diffusion used in Equation (1) is isotropic. This is a
suitable model for free diffusion, such as may occur in the middle of a body of
water. However, the model is not accurate when an impermeable membrane
is present. Molecules will move freely along the membrane, but are restricted
from diffusing across it. This can be modeled by linear transformation of the
concentration gradient. The resulting anisotropic diffusion equation is given
by

∂u

∂t
= div(D∇u). (5)

The matrix, D, called the ”diffusion tensor” is constrained to be symmetric
and positive-definite. Symmetry maintains the diffusive property of the mole-
cular transport. A general tensor can be decomposed into a sum of symmetric
and antisymmetric tensors. The antisymmetric part is associated with advec-
tion [20] in Equation (5), not diffusion. Positive-definiteness of the diffusion
tensor implies that diffusivity is positive (flux goes from high to low concentra-
tion regions). Anisotropic reaction-diffusion simulation will generate patterns
with constant elongation and orientation [9], unless the diffusion tensor, D,
varies spatially. We will demonstrate that this is not the case with higher rank
tensors. Our textures will be characterized by one of several orientations at
each point. The number of possible orientations increases with the number of
terms in the expansion.

Isotropic, inhomogeneous diffusion is described by the equation

∂u

∂t
= div(d(x, y)∇u) = d(x, y)∇2u + ∇d(x, y) · ∇u. (6)

The additional term on the right-hand is due to the inhomogeneity of the
diffusivity function d(x, y). Further examples of inhomogeneous diffusion are
discussed in section (3). Reaction-diffusion textures can be made inhomoge-
neous [9] by specifying a function d(x, y) or a tensor field D(x, y), and solving
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equation (6). Competing orientations can be achieved in this case by coupling
multiple reaction-diffusion systems with differing rank-2 tensor fields. Since
the model we present in this paper can generate inhomogeneous textures even
when the diffusion process is homogeneous, we eliminate the process of design-
ing the function D(x, y) and can instead solve a simpler system of equations
governing only two morphogens. Inhomogeneity in texture generation can also
be introduced by allowing the reaction parameters to vary spatially. In this
way, textures which transition from stripes to spots, for example, can be pro-
duced [17].

Inhomogeneous anisotropic diffusion has previously been used for vector field
visualization [21,39] and tensor field visualization [22,38]. Vector field visual-
ization involves constructing a field of tensors such that the principal eigenvec-
tor is parallel with the vector at each point. A single species reaction-diffusion
process is simulated, starting from a random concentration function. The reac-
tion function drives the concentration values toward one of two stable values,
resulting in a high contrast image where the local texture orientation is par-
allel to the given vector field. Weickert [23] described the use of this equation
to perform image denoising.

The diffusion transport process can be characterized by the diffusion prop-
agator : the displacement probability of a molecule. If a molecule is located
at position x0 at time t, then the probability that the molecule is at location
x0 + r at time t + τ is denoted pτ (r). In Gaussian diffusion the propagator
is a Gaussian distribution with zero mean and covariance proportional to the
diffusion tensor, pτ (r) = N(0, 2τD). The Gaussian diffusion propagator is uni-
modal and symmetric about the mean. In contrast, the diffusion propagator
in our model can have multiple modes, and even nonzero skew and kurtosis,
unlike the Gaussian distribution. Physically, generalized diffusion (or hyperdif-
fusion [24]) corresponds to restricted diffusion, such as may occur in crystalline
or fiberous materials and other media with orientational heterogeneity.

2 Kramers-Moyal Expansion of the Diffusion Equation

In the previous sections we have seen the connection between the covariance
matrix of the Gaussian diffusion propagator and the diffusion tensor D which
appears in Equation (5). In this section we will see how higher order moments
of a non-Gaussian diffusion propagator can be used to derive a more general
diffusion equation.

Einstein’s formulation [25] for the concentration, C, of particles undergoing
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Brownian motion in 1-D,

C(x, t + τ) =
∫

pτ (r)C(x − r, t)dr, (7)

was based on Bachelier’s earlier work on random walks. Expanding C(x− r, t)
in a Taylor series about C(x, t) we obtain

C(x − r, t) = C(x, t) − r
∂C

∂x
+

r2

2

∂2C

∂x2
−

r3

3!

∂3C

∂x3
... (8)

Substituting (8) into (7) we see that

C(x, t + τ) = C(x, t)[
∫

pτ (r)dr] −
∂C

∂x
[
∫

pτ (r)rdr] (9)

+
1

2

∂2C

∂x2
[
∫

pτ (r)r
2dr] −

1

3!

∂3C

∂x3
[
∫

pτ (r)r
3dr]...

Note that the quantities in square braces are moments of the distribution
pτ (r). Since

∫

pτ (r)dr = 1, and using the fact that

lim
τ→0

C(x, t + τ) − C(x, t)

τ
=

∂C

∂t
(10)

then for τ ≪ 1

∂C

∂t
= −

∂C

∂x

< r >

τ
+

∂2C

∂x2

< r2 >

2τ
−

∂3C

∂x3

< r3 >

3!τ
... (11)

where angle brackets (< ... >) denote moments. Truncating this series at the
second term, allowing the first term (known as drift) to be zero, yields the
familiar isotropic diffusion equation. A similar moment expansion of Boltz-
mann’s 3D transport equation is known as the Kramers-Moyal expansion.

The equation for Gaussian diffusion is a consequence of Fick’s first law [26]
which states that the diffusive flux is a linear function of the concentration
gradient. The flux equation can be expanded to accommodate the more gen-
eral model of diffusion described by the Kramers-Moyal expansion. Each sub-
sequent term involves a higher rank tensor - a moment of the displacement
probability density function (pdf) - and higher order derivatives of the concen-
tration. Applying Fick’s second law (mass conservation) to the generalized flux
we obtain the so-called Kramers-Moyal expansion of the diffusion equation,

∂u

∂t
= div(Dij∇ju + Dijk∇jku + Dijkl∇jklu...). (12)
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The nabla symbol (∇) with n subscripts is a compact notation denoting a
tensor of rank n whose components are partial derivatives of degree n,

∇i1i2...in =
∂n

∂xi1∂xi2 ...∂xin

. (13)

In the next section we will describe in more detail the tensor notation used
in equation (12), and describe how symmetry constaints on the tensors make
the simulation of generalized diffusion more efficient. Later, we will show how
to estimate the diffusion displacement pdf from the tensors that characterize
the moments of the pdf.

3 High-Rank Tensors

The rank of the tensor (referred to as order in some literature) is the number of
indices into it. Tensors of rank 0 are scalars, and tensors of rank 1 are vectors.
A rank-2 tensor can be represented as a matrix. If d is the dimension of the
tensor, then each index can take one of d different values. In 2 dimensions a
rank-ℓ tensor then has 2ℓ components. A general tensor may also have two
different types of indices, covariant and contravariant, usually denoted using
subscripts and superscripts. For Cartesian tensors these are equivalent, so will
denote indices using only subscripts.

High-rank tensors have recently been applied to describe diffusion in the con-
text of medical imaging by Özarslan et al. [27,28] and Liu et al. [29]. Diffusion
within biological structures can be non-Gaussian, for example, when bifurcat-
ing or intersecting white-matter fiber bundles occur in the brain.

Imposing a symmetry constraint on D will reduce the number of unique tensor
components and eliminate advective transport from the equation. For symmet-
ric rank-2 tensors we have

Dij = Dji. (14)

In general, symmetry implies that components whose indices are permutations
of each other are equal,

Di1i2...iℓ = D(i1i2...iℓ) (15)

where (i1i2...iℓ) stands for all permutations of the ℓ indices. For a symmetric
tensor, a component can be identified by the number of times each index
occurs, order notwithstanding. As a result of symmetry the number of unique
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components of a symmetric 2-dimensional tensor is much lower than 2ℓ. In
fact, the number of unique elements is given by Nℓ = ℓ + 1.

The number of permutations of each set of indices is the same as the number
of times that component is duplicated. This number is called the multiplicity,
and is given by

µ =
ℓ!

nx!ny!
(16)

where nx, ny are the number of x and y indices respectively.

In writing an expression containing tensors, we will use the summation con-
vention. This means that repeated indices are to be multiplied pairwise, and
summed over all possible values,

Ai1i2...iℓBi1i2...iℓ =
d

∑

i1=1

d
∑

i2=1

...
d

∑

iℓ=1

Ai1i2...iℓBi1i2...iℓ . (17)

If both tensors are symmetric, the number of terms in the summation can be
greatly reduced by only summing over the unique components

Ai1i2...iℓBi1i2...iℓ =
Nℓ
∑

k=1

µkAkBk (18)

where Ak, Bk are the k-th unique components of A and B, and µk is the
multiplicity of that component.

Truncating the Kramers-Moyal expansion (12) at the 4th term, for homoge-
neous diffusion we arrive at

∂u

∂t
= Dij∇iju + Dijk∇ijku + Dijkl∇ijklu. (19)

For symmetric tensors D, the expansion (19) has only 12 terms,

∂u

∂t
= Dxx∂xxu + 2Dxy∂xyu + Dyy∂yyu (20)

+ Dxxx∂xxxu + 3Dxxy∂xxyu + 3Dxyy∂xyyu + Dyyy∂yyyu

+ Dxxxx∂xxxxu + 4Dxxxy∂xxxyu + 6Dxxyy∂xxyyu

+ 4Dxyyy∂xyyyu + Dyyyy∂yyyyu. (21)
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isotropic anisotropic Gaussian anisotropic non-Gaussian

hom. d∇2u div(D∇u) Dij∇iju + Dijk∇ijku + Dijkl∇ijklu

inhom. d∇2u+ tr(DH(u))+ Dij∇iju + Dijk∇ijku + Dijkl∇ijklu+

∇u · ∇d ∇u · div D ∇iDij∇ju + ∇iDijk∇jku + ∇iDijkl∇jklu

Table 1
Diffusion term for all cases of homogeneous/inhomogeneous, isotropic/anisotropic
Gaussian/anisotropic non-Gaussian.

In Table (1) we summarize the various forms which the diffusion term may
take. In these equations d is a scalar diffusion coefficient, D is a diffusion
tensor, H(u) is the Hessian of u, tr() denotes the trace and

div D =







div[DxxDxy]
T

div[DyxDyy]
T






. (22)

In general inhomogeneous diffusion leads to an equation with many more
terms than homogeneous diffusion. Also note that in Table (1) the isotropic
and anisotropic Gaussian diffusion equations are special cases of the more
general non-Gaussian diffusion equation.

In this work we have discussed the generation of textures on 2-dimensional
Euclidean domains, but the same equations can be used to generate 3-dimensional
texture volumes by extending the noise texture to 3 dimensions and using the
3D equation for the gradient and divergence. The problem of computing gen-
eralized reaction-diffusion on manifolds is not considered here, but can be
incorporated into this framework. Using the intrinsic divergence and gradient
operators for the manifold, which will depend on the metric tensor of the sur-
face, will permit the process to be accurately simulated on curved domains.
This was the approach taken by Diewald et al. [21] for Gaussian diffusion on
manifolds.

4 Gram-Charlier Expansion of the Diffusion Displacement PDF

The Gram-Charlier expansion [30] of the normal distribution is popular in
the field of mathematical finance because covariance, skewness and kurtosis
can be specified as parameters. For multivariate distributions the moments
are tensors : the mean is a rank-1 tensor (or vector), variance is a rank-
2 tensor (or matrix), skewness is a rank-3 tensor, and kurtosis is a rank-4
tensor. These tensors appeared in the Kramer-Moyals expansion presented
earlier. The diffusion propagator for the generalized diffusion equation (12)
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has Gram-Charlier expansion given by

pτ (r) = N(0, 2τD(2))(1 +
Q(3)

3!
H(3)(r) +

Q(4)

4!
H(4)(r)...), (23)

where the cumulants of pτ (r) are given by

Q(n) = (−1)nn!D(n)τ, (24)

D(n) denotes the tensor of rank n and H(n)(r) are the Hermite tensor poly-
nomials (see appendix). Since the Hermite polynomials are orthogonal with
respect to the Gaussian function, the expansion (23) can be shown to integrate
to one. However, for some parameter values, this expansion may produce small
negative values in the tails.
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Fig. 1. Polar plots of the diffusion propagators, pτ (r) for |r| = 1 and τ = 0.1 sec.

The peaks of pτ (r) correspond to the dominant orientations of the resulting
texture. Plots of 6 different diffusion propagators are shown in Figure (1) for
τ = 0.1, |r| = 1. The corresponding tensor components are shown in Table
(2). These correspond to the tensor sequences used to produce the images in
the Results section.

5 Implementation

The system of reaction-diffusion equations can be linearized and written in
either explicit or semi-implicit form. The explicit formulation requires a small
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Tensor

components (a) (b) (c) (d) (e) (f)

Dxx 1 1 1 1 1 1

Dxy 0 0 0 0 0 0

Dyy 1 2 1 1 1 2

Dxxx 0 0 1 0 0 0

Dxxy 0 0 -1 0 0 0

Dxyy 0 0 -1 0 0 0

Dyyy 0 0 1 0 0 0

Dxxxx 0 0 0 1 -1 -1

Dxxxy 0 0 0 0 0 0

Dxxyy 0 0 0 -1 1 1

Dxyyy 0 0 0 0 0 0

Dyyyy 0 0 0 1 -1 -1

Table 2
Tensor components for the sequences producing the propagators in Figure 1.

step size for stability and each iteration can be performed quite quickly. The
semi-implicit formulation remains stable for larger step sizes, but requires the
solution of a sparse linear system for each iteration.

Using central differences the Laplacian ∇2u can be discretized as the convo-
lution K ∗ u and implemented as Au where

K =















0 1 0

1 −4 1

0 1 0















, A =





















−4 1 0 · · · 1 0 · · · 0

1 −4 1 0 · · · 1 0 · · ·

0
. . . . . . . . . . . . . . . . . . . . .

0 0 · · · 1 · · · 0 1 −4





















(25)

and u is reshaped into a column vector, u.

The explicit formulation of isotropic reaction-diffusion in terms of the matrix
A is given by

ut+1 − ut

δ
= Aut + f(ut). (26)

where δ is the time-step and superscripts denote iteration number. The cor-
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responding update equation for u is

ut+1 = (I + δA)ut + δf(ut). (27)

A semi-implicit formulation can be obtained by time-lagging the reaction term
resulting in the update equation

ut+1 = (I − δA)−1(ut + δf(ut)). (28)

In both cases, the matrix A is symmetric and sparse, with 5 nonzero diago-
nals. For tensor anisotropic diffusion characterized by the rank-2 tensor Dij,
div(D∇u) = K ∗ u where the convolution kernel is

K =
1

2















−Dxy 2Dyy Dxy

2Dxx −4(Dxx + Dyy) 2Dxx

Dxy 2Dyy −Dxy















. (29)

In this case the corresponding matrix, A, will have 9 nonzero diagonals. The
non-Gaussian diffusion operator described in the next section will be writ-
ten as a 5 × 5 convolution kernel, allowing the generalized reaction-diffusion
equation to be computed using either update formula (27) or (28). Periodic
boundary conditions allow the texture to seamlessly tile, but at the expense
of 4 additional diagonals in the matrix A. If the diffusion is homogeneous, the
matrix will remain symmetric.

Multigrid algorithms work by approximating the solution to a problem on a
coarse grid, then progressively refining the solution using finer grids. Witkin
and Kass [9] describe such an implementation for anisotropic reaction-diffusion
textures, and it is straightforward to implement our technique in such a frame-
work.

5.1 Savitsky-Golay Filters

Numerical derivatives of discretized functions are sensitive to noise in the data.
One solution to this problem is to fit a low-degree polynomial to the region
surrounding each pixel, then differentiate that polynomial. Since the polyno-
mial is so simple to differentiate, the complexity of these schemes is dominated
by the fitting process. The technique presented by Savitsky and Golay [31] in-
volves the least-squares fitting of a polynomial to the neighborhood of each
pixel. Since much of the fitting procedure can be precomputed, the technique
is very fast.
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Consider the 5 × 5 neighborhood of each pixel (r0, s0). The local coordinates
(x, y) = (r − r0, s − s0) for the polynomial surface will have the origin at the
location of pixel (r0, s0), as shown





























(−2,−2) (−1,−2) (0,−2) (+1,−2) (+2,−2)

(−2,−1) (−1,−1) (0,−1) (+1,−1) (+2,−1)

(−2, 0) (−1, 0) (0, 0) (+1, 0) (+2, 0)

(−2, +1) (−1, +1) (0, +1) (+1, +1) (+2, +1)

(−2, +2) (−1, +2) (0, +2) (+1, +2) (+2, +2)





























. (30)

A degree n polynomial prs(x, y) will be fit to the image intensities in this
neighborhood,

prs(x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2... (31)

=
n

∑

i=0

n
∑

j=0

aijx
iyj. (32)

The fitting is performed by solving, in the least-squares sense, the system of
equations





















1 x1 y1 x2
1 y2

1 x1y1 · · ·

1 x2 y1 x2
2 y2

1 x2y1 · · ·
...

...
...

...
...

...
...

1 xm ym x2
m y2

m xmym · · ·







































































a00

a10

a01

a20

a02

a11

...

ann



















































=





















u(x1 + r0, y1 + s0)

u(x2 + r0, y1 + s0)
...

u(xm + r0, ym + s0)





















. (33)

The overconstrained system (33) is solved for the polynomial coefficients, a.
Consider the linear system to be Xa = u. Then the least squares solution can
be written in terms of the pseudoinverse as

a = (XT X)−1XTu = X+u. (34)

Note that the matrix X+ does not depend on the data, u, and can be precom-
puted for a fixed neighborhood size and polynomial degree. Likewise, deriv-
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atives of the polynomial prs(x, y) depend on the coefficients a, and can be
written as filter convolution kernels. For more details about these filters see
the original paper by Savitsky and Golay [31] or the numerical methods book
by Press et al. [32].

The partial derivatives at image coordinates (r0, s0) can then be approximated
by partial derivatives of prs(x = 0, y = 0). The fourth and third order partial
derivatives are

∂xxxxprs(0, 0) = 24a40, ∂xxxprs(0, 0) = 6a30,

∂xxxyprs(0, 0) = 6a31, ∂xxyprs(0, 0) = 2a21,

∂xxyyprs(0, 0) = 4a22, ∂xyyprs(0, 0) = 2a12,

∂xyyyprs(0, 0) = 6a13, ∂yyyprs(0, 0) = 6a03,

∂yyyyprs(0, 0) = 24a04.

(35)

The generalized diffusion equation can be rewritten in terms of the coefficients
as

∂u

∂t
= 2(Dxxa20 + Dxya11 + Dyya02) (36)

+ 6(Dxxxa30 + Dxxya21 + Dxyya12 + Dyyya03)

+ 24(Dxxxxa40 + Dxxxya31 + Dxxyya22 + Dxyyya13 + Dyyyya04).

We can discretize Equation (19), and rewrite as Equations (27) and (28) by
letting

A = 2(DxxX
+
20 + DxyX

+
11 + DyyX

+
02) (37)

+ 6(DxxxX
+
30 + DxxyX

+
21 + DxyyX

+
12 + DyyyX

+
03)

+ 24(DxxxxX
+
40 + DxxxyX

+
31 + DxxyyX

+
22 + DxyyyX

+
13 + DyyyyX

+
04)

where X+
ij is the row of X+ such that X+

ij u = aij. The result is a matrix which
has 25 nonzero diagonals.

The numerical stability of the explicit simulation depends on the spectral
radius, ρ, of the matrix (I + δA). For values greater than one, small errors
can be amplified upon repeated matrix-vector multiplication. As constructed
by equation (37) we compute ρ(I + δA) ≈ 1.102 for the tensor sequences in
table 2 with δ = 0.1. By replacing the Savitsky-Golay second partial deriv-
ative approximation kernels X+

20, X
+
11, X

+
02 with standard second-order central

difference kernels, the spectral radius can be improved. For our experiments
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ρ(I + δA) ≈ 1.03 and concentration values remained bounded during simula-
tion. Likewise, the condition number of the matrix (I − δA) which affects the
numerical stability of the semi-implicit simulation can be improved by this
substitution.

6 Results

The generalized diffusion model was used in conjunction with the Turing reac-
tion model. Initial conditions were u = 4 + U(−2, 2), v = 4 + U(−2, 2) where
U(min,max) is a uniformly distributed random value between min and max
at each pixel. The parameters values were δ = 0.1, α = 12, β = 15. Degree 5
Savitzky-Golay filters were used to compute derivatives of order higher than
2. The results generated using the tensor sequences in Table (2) and Figure
(1) are shown in Figure (2). A multigrid scheme was used for all results in
this section. A total of 3 grid discretizations (64 × 64, 128 × 128, 256 × 256)
were used, and 20000 iterations at each grid level were performed using the
explicit scheme. Note that in each case the dominant orientations in each tex-

(a) (b) (c)

(d) (e) (f)

Fig. 2. Textures generated by expansion of Turing reaction-diffusion equation with
α = 12, β = 15. The tensor sequences used correspond to those in Figure(1) and
Table(2).

ture correspond to the peaks of the diffusion displacement function plotted in
Figure (1). In each case, increasing the rank of the tensor expansion increases
the number of peaks in the diffusion propagator. Expansions with only even
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order terms are antipodally symmetric, so expansions (d), (e) and (f) lead to
patterns with 2 dominant texture orientations. However, the rank 3 expansion
(c) has 3 dominant orientations.

The generalized diffusion model was also used in conjunction with the Gray-
Scott reaction model. Initial conditions were u = 1, v = 0, then perturbed
by setting a square region in the center of u to value 0.5, and the same sized
square region in v to 0.25. Both u and v then each had uniform random noise
U(−0.25, 0.25) added. The timestep was set to δ = 0.1. The 4th order ex-

(a) F=0.053, k=0.062 (b) F=0.030, k=0.070 (c) F=0.035, k=0.060

(d) F=0.035, k=0.070 (e) F=0.060, k=0.062 (f) F=0.065, k=0.060

Fig. 3. Textures generated by rank 4 expansion (d) of Gray-Scott reaction-diffusion
equation.

pansion (d) was used to generate the patterns in Figure (3). The preferred
orientations are axis-aligned in this case. The 4th order expansion (e) was
used to generate the patterns in Figure (4). The preferred orientations are
diagonal for these patterns. The 3rd order expansion (c) was used to generate
the patterns in Figure (5). Compared to the Turing model, the Gray-Scott
model produced a more varied set of textures as the parameters were varied.
In all cases we were able to control the texture orientation in a predictable
way by modifying the tensor expansion. The diffusion process was homoge-
neous for all of our results - the same tensor sequence was used at each pixel
for u and v. The orientational heterogeneity in these patterns is due to the
non-Gaussian diffusion model and the random initial conditions. Other pat-
terns can be obtained by choosing different tensor expansions for each of the
morphogens.

Figure (6) was generated by allowing the Gray-Scott reaction parameters to
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(a) F=0.053, k=0.062 (b) F=0.047, k=0.063

(c) F=0.040, k=0.060 (d) F=0.040, k=0.064

Fig. 4. Textures generated by rank 4 expansion (e) of Gray-Scott reaction-diffusion
equation.

(a) F=0.039, k=0.059 (b) F=0.044, k=0.061

Fig. 5. Textures generated by rank 3 expansion (c) of Gray-Scott reaction-diffusion
equation.

vary spatially. This parameter map can be used to determine the nature of
the textures generated from various parameter values. For example, it can
be seen that F = 0.06, k = 0.03 results in a constant valued texture, as does
F = 0.06, k = 0.065. The interesting textures appear along the border between
two regions characterized by trivial steady states. Such maps can eliminate
the trial and error associated with picking parameter values. Normal maps
computed from generalized reaction-diffusion textures were used to render the
models in Figure (7). In contrast to previous reaction-diffusion techniques, the
angular features and corners in these textures suggest man-made structures,
such as etched pottery, riveted panels forming the surface of a vehicle, quilted
fabrics or embossed metals. The periodic boundary condition imposed during
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F

k

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Fig. 6. Gray-Scott parameter map for tensor expansion (e).

texture generation allows these maps to be tiled multiple times over the surface
without seams appearing.

Fig. 7. Generalized reaction-diffusion textures as bump maps

Timing results are given in Table (3) for a GPU implementation written in
OpenGL shading language and tested on an Nvidia 8800 GTX with 768MB
RAM. The isotropic case was implemented using convolution by the 3×3 kernel
in Equation (25) and the anisotropic Gaussian case was implemented using
the kernel given in Equation (29). The non-Gaussian case was implemented
using 5×5 convolution with the kernel computed as described in the previous
section. In all cases the kernel values were precomputed on the CPU and
uploaded to the GPU.
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isotropic anisotropic anisotropic

size Gaussian non-Gaussian

256 × 256 6387 6245 6204

512 × 512 6206 3740 2031

1024 × 1024 1515 1210 603

Table 3
Iterations per second for the GPU implementation.

This implementation makes it possible to generate 512 × 512 generalized
reaction-diffusion textures in about 15 seconds using a multigrid scheme with
20000 iterations at each resolution.

7 Conclusion

Generalizing the model of diffusion used in reaction-diffusion texture synthesis
makes many new textures possible. By simulating a non-Gaussian diffusion
process, textures with orientational variability are possible, even when the
diffusion is homogeneous. Inhomogeneous diffusion requires the specification of
a tensor field, and the evaluation of additional terms in the diffusion equation
due to the spatially varying diffusion coefficients. Generalized homogeneous
diffusion, on the other hand, requires the specification of only 9 additional
parameters for an order 4 expansion. Previous schemes have employed multiple
coupled systems of equations to produce patterns with competing orientations,
but our technique can produce such pattern using only a single system (one
pair of morphogens).

The resulting patterns are strikingly inorganic. They feature multiple orien-
tations and sharp corners. Some resemble building footprints, circuit boards,
mazes, and networks of intersecting roadways. Since the character of the tex-
tures depends strongly on the reaction terms of the system of equations, this
new diffusion model can be used to extend previously described reaction-
diffusion systems.

Numerical simulation of diffusion has many applications, including image
processing, scientific visualization and medical imaging. Our future work will
involve using an inhomogeneous generalized diffusion model for controlling
exemplar-based texture synthesis, image filtering, visualizing fields of proba-
bility density functions and also visualizing uncertainty.
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Appendix

The Hermite tensor polynomials, up to order 4, are given by

H(0) = 1 (38)

H
(1)
i = xi

H
(2)
i,j = xixj − δij

H
(3)
i,j,k = xixjxk − (xiδjk + xjδik + xkδij)

H
(4)
i,j,k,l = xixjxkxl − (δijxkxl + δikxjxl + δilxjxk

+δjkxixl + δjlxixk + δklxixj) − 3δijkl.

where

δi1i2...il =











1 for i1 = i2... = il

0 otherwise
(39)

Higher order polynomials can be generated using the recurrence relation given
by Grad [33].
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