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High-quality real-time raycasting and raytracing of streamtubes with
sparse voxel octrees

Tim McGraw*
Purdue University

Figure 1: Neuronal fibers of the cingulum bundle (left), middle cerebellar peduncle (middle) and superior longitudinal fasciculus
(right) rendered by hybrid raytracing / raycasting a sparse voxel octree.

ABSTRACT

Voxel-based rendering and signed distance function (SDF) raycast-
ing have been active areas of graphics research recently because they
simplify high-quality graphical effects like ambient occlusion and
shadowing as compared to rasterization. Much work has centered
around converting triangle meshes to sparse voxel octrees (SVOs)
and developing memory efficient storage schemes but little explo-
ration of the implications to scientific visualization has taken place.
In this work we explore techniques for high-performance rendering
of tubes, such as streamtubes used for visualizing vector fields and
fiber tracts from diffusion tensor MRI. We first present our method
for generating a voxelization of the tubes, and then describe several
methods for rendering: raytracing a SVO storing straight tube seg-
ments in the leaves, and hybrid raytracing/raycasting a SVO storing
curved tube segments. We discuss the tradeoffs inherent in these
different representations and compare the rendering techniques and
results. Compared to standard graphics pipeline approaches, like
using the geometry shader, we achieve joining, capping, and smooth
circular cross-sections with minimal additional effort.

Index Terms: Human-centered computing— Visualization—Visu-
alization application domains—Scientific visualization;

1 INTRODUCTION

Rendering tube-like structures is a common task in scientific visu-
alization. Streamtubes of vector fields, and fiber tracts computed
from diffusion tensor MRI are two examples. In interactive graphics,
polygonal representations of the tubes are most often used. The
GPU and real-time graphics APIs are built around the idea of raster-
izing triangle meshes. But polygonal representations have several
drawbacks. Polygons are well-suited to representing nearly planar
surfaces, but many polygons are required to give the impression
of smooth curved surfaces. Volumetric phenomena are not well-
represented by triangle meshes. Polygon meshes lack the regularity
of raster data, which can lead to visual artifacts from cracks and
T-junctions.
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Two alternative approaches to geometry representation which
we will explore are voxels and signed distance functions (SDFs).
Voxels are commonly encountered in scientific visualization as a rep-
resentation of scalar fields discretized on a regular 3D grid. Voxels
can also be used to represent volumetric phenomena, like fluids, as
well as fur, foliage, and semi-transparent objects which may not be
accurately rendered by rasterizing polygon meshes [1]. Since most
of the voxels in a typical scene would be empty, a full 3D volume
is not necessary, and would be an inefficient way to store this data.
Hierarchical decompositions of space that exploit scene sparsity are
commonly used, e.g. the sparse voxel octree (SVO). In the SVO,
empty space is not explicitly stored, leading to a huge reduction in
memory requirements for most scenes.

Signed distance functions are a special case of implicit functions
for representing surfaces. The signed distance function has the prop-
erty that the distance to the embedded surface from the point x,y, z is
given by | f(x,y,z)|, and f(x,y,z) = 0 for points on the surface. The
sign of f(x,y,z) differentiates points that are inside the surface from
points outside the surface. Equations can be written for SDFs rep-
resenting simple primitives, and more complicated surfaces can be
built by combining primitives using Boolean operations, or by blend-
ing [3]. However, combining a large number of primitives, such as
all the union of all the line segments in a collection of streamlines,
can be prohibitively expensive. A key strength of our approach is
that each node in our SVO stores only the segments which contribute
to each voxel, greatly accelerating the union operation. Since SDF
primitives appear perfectly smooth at any desired image resolution
we can generate high-quality images of streamlines from any view-
ing distance, unlike polygonal and voxel representations. A benefit
of both SDFs and SVOs is that they allow empty space to be effi-
ciently skipped during rendering. For SDFs, | f(x,y,z)| tells you how
far you can safely move along a viewing ray without intersecting
the surface. For the SVO, large empty nodes can be skipped with
ray-plane intersection tests [18].

In this paper we explore two representations for scenes consisting
of a large number of tubes, and methods for generating and rendering
these representations. Our contributions are

* A GPU-based voxelization technique which can convert geo-
metric streamlines into a streamtube signed distance function.

* A SVO representation for real-time raytracing of streamtubes
with straight segments
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* A hybrid SVO / SDF representation for raytracing/raycasting
streamtubes with curved segments

We demonstrate that our methods can combine benefits of both
voxel and SDF representations. We can efficiently compute the
union of a large number of SDF primitives representing a collection
of streamtubes to achieve smooth surfaces at any viewing distance,
and render them at interactive rates.

2 RELATED WORK

Hierarchical data structures, like octrees, are popular for storing
volume data and accelerating spatial queries. Many variations of the
structures have been developed to solve specific problems. Knoll
et al. [14] developed efficient methods for raytracing isosurfaces
stored in an octree which stores minimum and maximum values of a
scalar field at each voxel. Octrees containing contour information,
in the form of a pair of parallel planes which bound a surface, were
used by Laine et al. [16] to reduce blockiness in SVO renderings.
Many other sparse hierarchical structures for rendering volumes
(e.g. Gigavoxels [6], SparseLeap [11]) and embedded surfaces (e.g.
VDB [19]) have been proposed. An SVO can used as an auxilliary
scene representation in conjunction with polygons. The SVO can
then be used to approximate global illumination [7] and to perform
other spatial queries when shading polygons.

Much voxelization literature focuses on the challenge of con-
verting triangle meshes into voxels. When voxelizing meshes it is
important to generate a tree which contains every voxel intersected
by a triangle. However, the rasterization rules of many graphics
APIs will only generate a pixel when the triangle overlaps a specific
sample point (or points). A common approach to voxelizing a scene
proceeds slice-by-slice [9,26], rendering the scene with a sequence
of viewing volumes. Some approaches rasterize into a full interme-
diate 3D texture, but it is possible to rasterize directly into an SVO
or other sparse hierarchy [5,23].

Implicit surfaces are another alternative to polygonal scene rep-
resentation. John Hart [12] presented methods for modeling with
implicit surfaces by blending multiple primitives and rendering them
with sphere tracing (often referred to now as raycasting), which
exploits the empty-space skipping property of SDFs. Evans [8] used
SDFs discretized into textures to approximate global illumination
effects, including the ambient occlusion technique we use in our
results. Reiner et al. [22] described further methods for modeling
more complex scenes with SDFs. The scenes are represented as trees
with internal nodes representing blending and Boolean operations.
One failure case of the space-skipping property of raycasting occurs
when rays graze the surface of an object. The process may proceed
in many small steps until the ray gets far enough from the surface.
Galin et al. [10] developed a method for raycasting complex shapes
by establishing local Lipschitz bounds that enable larger steps to be
taken along these grazing rays.

Streamtubes are often rendered as rasterized triangles, but there
are alternatives to rendering a full polygonal approximation to the
cylindrical shape. Many approaches based on simplified tube ge-
ometry have been developed. Imposter-based approaches create
view aligned primitives and shade them to give the illusion of true
3D tubes. Petrovic et al. [21] perform a ray-tube intersection test
in the fragment shader so that intersections between tubes can be
accurately rendered. Imposter-based methods suffer from artifacts
which break the illusion of 3D appearance when viewing along the
streamline direction. Many methods address this special case in
an ad hoc way by drawing a view aligned quad to represent the
streamtube cross-section or end cap.

A common approach to generating tubes from curves relies on the
geometry shading (GS) stage of the programmable graphics pipeline
[15]. The process involves collecting multiple streamline vertices in
the GS and generating a triangle strip that approximates a cylindrical
tube segment. Many vertices must be generated to approximate a

smooth cross-section. This process of geometry amplification in the
GS is known to cause performance issues. The tessellation shader
can also be used to generate tubes, as demonstrated by Nunes et
al. [20]

3 METHODS

In this section we describe how we perform tube voxelization and
construct the SVOs used for rendering straight and curved tubes.

3.1 Tube SDF voxelization

When voxelizing, we take a slice-by-slice GPU rasterization ap-
proach, as many existing mesh voxelization approaches do, so we
do not detail the full method here. Instead we focus on the differ-
ences with typical slicing approaches. The tubes we wish to display
are defined by a collection of line segments which we render as
quadrilateral imposters. These imposters represent a slice of the dis-
tance function around a tube. Note that when the view direction and
streamline direction are parallel this slice of the distance function is
the distance to the circular cross-section of the tube and the impostor
is still a quadrilateral. The distance of each fragment to the tube is
computed in the fragment shader.

If f(p) is the distance to a line segment, then f(p) — r is the
signed distance to a tube of radius, . The distance from the point
p = (x,y,z) to the line segment between points a and b is given by

v = b-a

o= pma VW

t = min(max(ﬁ,O),l)
fo=llw=v. @

Curved tube segments are generated by domain transformation,
J(Mp). For curved streamtubes we choose M to be the quadratic
interpolation of 3 matrices along the tube: M =M, atp=a, M =
My at p =Db, and M = I (the identity matrix) at the midpoint of
the segment. M, and My, are the matrices that perform a rotation
about the corresponding end which aligns v with the tangent at that
endpoint.

Figure 2: Streamlines are rasterized by rendering a bounding quadri-
lateral for each line segment. Signed distance to the tube - either a
straight tube (left) or a curved tube (right) - is computed in the frag-
ment shader and rendered to a texture. Green/red represent regions
of positive/negative distance.

To join multiple tube segments into a streamtube we use the
Boolean union operation which is computed as the minimum of
SDF values at a fragment. We achieve this by rendering billboarded
segments into a floating-point framebuffer object using the minimum
blending mode (GL_MIN in OpenGL [24]). The voxelization pro-
cess proceeds slice-by-slice, setting the projection matrix to cover
one slab of voxels plus 2 streamtube radii for each rendering pass.
Note that we don’t need to join the billboarded segments, in fact we
rely on segments overlapping so that the minimum blending mode
can compute the join between tube segments. Likewise, we do not
need to cap the segments. The signed distance to the tube f(p) —r
will have a smooth radius automatically generated at the ends. The
process is illustrated in Figure 2. Unlike the process for rasterizing
polygonal meshes, we do not need to worry about triangle dominant
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axis selection or missing thin structures since our scene consists of
tubes with nonzero radius.

Due to the finite size of the imposters that we draw, the distance
function is only computed in a band around the streamline. The size
of that band depends on parameters 6 (the width of the imposter),
and r, the streamtube radius. Choice of 6 depends on the subsequent
rendering technique, e.g. isosurface extraction and SVO creation
require only a narrow band, while raycasting requires a wide band.
Example marching cube and volume raycasting results are shown
in Figure 3. The raycasting method we used is similar to the sphere
tracing method described by Hart [12], except that we are fetching
trilinearly interpolated SDF values from a 3D texture. These meth-

Figure 3: A high resolution mesh extracted from the voxelized SDF
of right cingulum bundle using marching cubes (left), and raycasting
results for SDF of the corpus callosum (right).

ods can produce a reasonable image of streamtubes, however, there
are critical drawbacks. The SDF texture is large. A 10243 dataset
occupies 2GB when represented as half-precision floating point (16
bits per voxel). Even though typical video memory on modern video-
cards is greater than this, creation of larger 3D textures can fail due
to memory fragmentation. Per-streamline and per-segment attributes
can’t be used, for example by rendering into an auxillary volume,
since multiple fibers may intersect a single voxel.

3.2 Sparse voxel octree building and raytracing

In our SVO, nodes are stored in the voxels of a 3D texture, which
allows for fast indexing with 3D indices. Minimal data is stored in
each node. We don’t store node size, depth, or any other property
that can be computed during tree traversal. All children of a given
node are stored in a 2 X 2 x 2 block of adjacent voxels. This allows
the parent node to point to its children by pointing to a single child
with a single 3D texture coordinate. Internal nodes store a flag which
lets us differentiate internal nodes from leaf nodes. In leaf nodes
we store minimum distance to the isosurface, and for maximum
flexibility, texture coordinates that refer to auxiliary 2D textures
that allow us to decorate the tree with any application-specific data
needed. In total, each node occupies 8 bytes.

As each slice of the distance volume is generated during voxeliza-
tion, we scan through the values and classify voxels as leaf nodes
when € > f(x,y,z) > —&. The Morton code for the voxel and the
signed distance value are saved for each leaf. When all slices have
been processed the leaves are sorted in z-curve order by Morton
code and the tree is built bottom-up as described by Baert et al. [2].
The SVO can be rendered with a stackless traversal. We use the
push-down variant of the kd-restart traversal presented by Horn et
al. [13], but adapted for octrees, as described in Algorithm 1, where
node.splitPlanelntersection(ray) returns the first node split plane in-
tersection between tMin and tMax, and node.child(ray, tMin, tMax)
returns the first child node along the ray between tMin and tMax. In
terms of memory requirements, the SVO is a vast improvement over
the full texture distance representation. Memory requirements are
on the order of 10s of MB, rather than several GB. The SVO also
enables simple LOD computation by limiting the maximum traversal
depth of the SVO when performing queries. A major drawback to
the SVO representation is that renderings have a blocky appearance
unless the resolution is extremely high. This effect can be seen in

Algorithm 1 Raytracing SVO

tMin < sceneMin; tMax <— sceneMin;
while tMax < sceneMax do
tMin < tMax; tMax < sceneMax;
node < root; pushdown < true;
while node.type != leaf do
tSplit <— node.splitPlanelntersection(ray)
if tSplit > tMin AND tSplit<tMax then
tMax < tSplit; pushdown < false;
end if
node < node.child(ray, tMin, tMax)
if pushdown == true then
root <— node
end if
end while
if node.isEmpty == false then
return ray intersection with leaf node contents
end if
end while
No intersection found

Figure 4: SVO raytracing of corpus callosum at 3 different LODs.

Figure 4, which was generated using Algorithm 1 where the leaf
node contents are the bounding box of the node. we address this
problem in the following sections.

3.3 SVO for raytracing straight tube segments

Distance
Field

Streamlines Intersecting
| Segments

Decorated SVO

Figure 5: Our processing pipeline for streamtube SVO creation. The
streamtube SDF is voxelized and a SVO is built with signed distances
in the leaf nodes which are decorated with streamline vertex indices.

In this scheme, illustrated in Figure 5, we store within each SVO
leaf node references to the tube segments that intersect the corre-
sponding voxel. When raytracing, if the ray intersects a leaf node the
ray intersection points with the tubes are computed. This requires
us to store the streamline vertices on the GPU (we use a shader
storage buffer) in addition to the SVO. In our case we store 4 vertex
indices per leaf node, so that we can resolve 4 streamtube segments
intersecting in a single voxel, and we also store the streamline ID
in the w-component of each streamline vertex. Since the streamline
vertices are stored consecutively in memory, we can index forward
and backward to determine adjacent vertices on the streamline. So,
for each vertex index, m in a leaf node we render the tube segment
between vertex m and m + 1 if they belong to the same streamline.
We can use the same technique to color tubes by orientation, as
shown in Figure 7.
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During voxelization, We keep track of all of the tube segments
that intersect each voxel using an A-buffer [4]. After rendering each
slice, we sort the A-buffer layers by distance in a compute shader

before augmenting the SVO leaf nodes with the 4 nearest segments.

For the results shown in this paper we used an A-buffer with 24
layers.

3.4 SVO for raycasting curved tube segments

This approach, in essence, replaces the cubical proxy geometry used
in volume raycasting with tight-fitting voxelized proxy geometry
from the SVO. The hybrid raytracing/raycasting rendering technique
proceeds by using Algorithm 1 to determine the leaf node intersected
by each ray, then performing SDF raycasting on the union of curved
tubes within that node. We cannot compute an exact intersection
as with straight segments since there is no analytic expression for
curved tube-ray intersection. During raycasting we use the same
domain transformation f(Mp) that was used during curved tube
voxelization.

3.5 Results

In this section we describe the results of our technique on neuronal
fiber data from the 2015 ISMRM tractography challenge [17]. The
tracts were computed from diffusion-weighted MRI data from the
Human Connectome Project [25] which were then manually refined
and segmented into 25 anatomical regions and saved in the tck file
format. These tracts were originally used as the ground-truth for
assessing the quality of various tractography algorithms.

Streamline SVOsize  Decoration
Tck file buffer (MB) (MB) size (MB)
CP 0.417 2.44 4.26
SCPR 1.67 5.30 9.22
SLFR 16.2 353 61.7
CingulumL 249 60.5 105
MCP 38.7 40.2 70.4

Table 1: SVO memory requirements

We implemented our methods in OpenGL on a PC with Nvidia
GTX 1080 Ti (12 GB VRAM) and Intel Core i7-8700K 3.7 GHz and
32 GB RAM. In our images we have used a low-resolution dense
distance field created by our voxelizer to compute shadowing and
ambient occlusion. Voxelizing only distance for applications such
as isosurface extraction is fast (2s to 5s per dataset), but voxelizing
the streamline vertex indices using the A-buffer is much more time
consuming (114s to 136s). However, this is a preprocessing step
which can be performed offline once for each dataset.

Straight tube Curved tube
Tck file raytracing (ms) raycasting (ms)
CP 3.61 153
SCPR 5.87 22.8
SLF R 13.3 73.1
CingulumL 11.3 59.7
MCP 12.4 77.3

Table 2: Raytracing and raycasting performance (1920 x 1080)

At runtime our system needs access to a buffer of streamline
vertices, the SVO 3D texture, and the node decoration texture. In
Table 1 we show the GPU memory requirements of our system
for several datasets, ranging from the smallest to largest. These
requirements are the same for straight or curved streamline segments.
For comparison, a full 3D texture of size 1024 containing 16-bit
distance values requires 2 GB, and full volumes holding 4 32-bit

integer vertex indices would be 16 GB. Even though our data is
not sparse everywhere (it contains regions of tightly-packed fiber
bundles) good compression is achieved nevertheless. We merged
all 25 datasets into a single decorated SVO to obtain a full-brain
dataset consisting of 19.5 million fiber vertices occupying a total of
1.92 GB. This is more memory than polygonal streamtubes would
require, but we estimate we could handle up to 100 million vertices
on our test PC before encountering memory issues.

In Figure 1 raytraced images of the Cingulum L, MCP and SLF R
datasets are shown, and Figure 6 shows raytraced images of the full-
brain dataset. At high magnification it is apparent that the raytraced
tubes are made of straight segments, but the hybrid rendered curved
tubes are smooth, as shown in Figure 7. Average render times during
interactive sessions rendered with lighting in a 1920 x 1080 window
are shown in Table 2.

Figure 6: Raytraced images of merged datasets, coronal view (left),
intersecting fiber detail (middle) and sagittal view (right).

Figure 7: Tubes colored by fiber direction (left). Straight raytraced
tubes (middle), curved raycast tubes (right).

4 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel method for voxelizing
collections of curved tubes, and an efficient SVO representation
that allows straight and curved tubes to be rendered at interactive
rates. Compared to other approaches, such as imposters generated
in the geometry shader, our method allows smooth joins between
tube segments, smooth circular cross-section at any pixel resolution,
and round end-capping.

A drawback of our approach is that we require that no more than
four tube segments intersect a voxel. In our results there are no
visible artifacts because we have chosen a sufficiently small voxel
size for our datasets. However, our voxelizer has detected regions in
the interior of bundles where the 4 tube limit is exceeded. This limits
our ability to do cutaways or render with transparency. In future
work we plan to implement a preprocessing step that can select an
appropriate voxel size based on number of vertex indices per voxel,
tube radius, streamline density, and segment lengths.

Our method does not exploit the ability of SVOs to represent
multiple levels-of-detail (LOD). In the future we plan to investigate
methods for view-dependent LOD. We also wish to explore other
application areas, such as molecular model visualization.
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