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Abstract. In this paper, we present a novel variational formulation for restor-

ing high angular resolution diffusion imaging (HARDI) data. The restoration
formulation involves smoothing signal measurements over the spherical do-
main and across the 3D image lattice. The regularization across the lattice is

achieved using a total variation (TV) norm based scheme, while the finite ele-
ment method (FEM) was employed to smooth the data on the sphere at each

lattice point using first and second order smoothness constraints. Examples
are presented to show the performance of the HARDI data restoration scheme
and its effect on fiber direction computation on synthetic data, as well as on

real data sets collected from excised rat brain and spinal cord.

1. Introduction. Observing the directional dependence of water diffusion in the
nervous system can allow us to infer structural information about the surround-
ing tissue. Axonal membranes and myelin sheath present a barrier to molecules
diffusing in directions perpendicular to the white matter fiber bundles whereas in
directions parallel to the fibers, the diffusion process is less restricted [10]. This re-
sults in anisotropic diffusion that can be observed using magnetic resonance (MR)
measurements by the utilization of magnetic field gradients [47]. In general, the
acquired MR signal depends on the strength and the direction of these diffusion sen-
sitizing gradients. Repeated measurements of water diffusion in tissue with varying
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gradient directions provide a means to quantify the level of anisotropy as well as to
determine the local fiber orientation within the tissue.

In a series of publications, Basser and colleagues [6, 7, 8] have formulated an
imaging modality called “diffusion tensor MRI (DT-MRI or DTI)” that employs a
second order, positive definite, symmetric diffusion tensor to represent the local tis-
sue structure. They have proposed several rotationally invariant scalar indices that
quantify different aspects of water diffusion observed in tissue, similar to different
“stains” used in histological studies [4]. Under the hypothesis that the preferred
orientations of water diffusion will coincide with the fiber directions, one can deter-
mine the directionality of neuronal fiber bundles. This fact has been exploited to
generate fiber-tract maps that yield information on structural connections in human
[8, 34, 38, 22] as well as rat brains [42, 63, 55, 40, 39] and spinal cords [54].

Figure 1. The effect of fiber orientation heterogeneity on diffu-
sion MR measurements. (a) Isosurfaces of the Gaussian probability
maps assumed by DTI overlaid on fractional anisotropy maps com-
puted from the diffusion tensors. (b) Probability profiles computed
using the diffusion orientation transform (DOT) from HARDI data
overlaid on generalized anisotropy (GA) maps. Both schemes per-
form well when there is only one orientation (top left portions of
both panels). HARDI based method is able to resolve fiber cross-
ings whereas DTI yields an averaged profile.

Despite its apparent success, DT-MRI has significant shortcomings when the
tissue of interest has a complicated geometry. This is due to the relatively simple
tensor model that assumes a unidirectional —if not isotropic— local structure. In
the case of orientational heterogeneity, DT-MRI technique is likely to yield incorrect
fiber directions, and artificially low anisotropy values. This is due to the Gaussian
model implicit in DTI that allows only one preferred direction for water diffusion.
In order to overcome these difficulties several approaches have been taken. Q-
space imaging, a technique commonly used to examine porous structures [13], has
been suggested as a possible solution [59]. However this scheme requires strong
gradient strengths and long acquisition times [5], or significant reduction in the
resolution of the images. Q-space imaging requires many images to be acquired
since the space of diffusion encoding gradients is sampled on a 3D lattice. As a
more viable alternative Tuch et al. have proposed to do the acquisition such that
the diffusion sensitizing gradients sample the surface of a sphere [53, 52]. In this
high angular resolution diffusion imaging (HARDI) method, one does not have to
be restricted to the tensor model and instead, it is possible to calculate diffusion
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coefficients along many directions. This method does not require more powerful
hardware systems than those required by DT-MRI. Several groups have already
performed HARDI acquisitions in clinical settings and have reported 43 to 126
different diffusion weighted images acquired in 20 to 40 minutes of total scanning
time [30, 52, 33] indicating the feasibility of the high angular resolution scheme as
a clinical diagnostic tool.

In Figure 1, we present a matrix of simulated voxels showing renderings of DTI-
based estimates of orientation and HARDI-based orientation estimates computed
using the scheme we present in Section 2.1. The orientation heterogeneity is evi-
dent from the HARDI-based renderings at each voxel since HARDI measurements
can resolve multiple dominant directions of molecular diffusion in a voxel, a lack-
ing feature of DTI. Since the HARDI data acquisition is very nascent, not many
techniques of processing the HARDI data have been reported in literature. In the
following section we will review the recently reported techniques of HARDI data
denoising, which may be done prior to further analysis or visualization.

1.1. Review. We will first briefly describe the physics of acquisition and then
point to various recent restoration techniques followed by methods for computing
anisotropy measures from HARDI. This will be followed by an overview of our
method.

1.1.1. Physics of Diffusion MR and HARDI Acquisition. The random process of
diffusion of water molecules is described by the diffusion displacement PDF pt(r).
This is the probability that a given molecule has a diffusion displacement of r
after time t. The relation between the measured MR signal, and the diffusion
displacement PDF is given by [13]

pt(r) =

∫

S(q)

S0
exp(−2π iq · r) dq , (1)

where S(q) is the MR signal when a diffusion gradient pulse of strength G and
duration δ is applied yielding the wave vector q = γδG where γ is the gyromagnetic
ratio for protons. S0 is the image acquired with no diffusion encoding gradient
applied. The above formula indicates that water displacement probabilities are
simply the Fourier transform of S(q)/S0. It is the orientational modes of pt(r) that
are taken to be the underlying fiber directions.

The HARDI processing proceeds by acquiring diffusion weighted images with
many diffusion encoding gradient directions, effectively sampling a spherical shell of
the q-space (the space of diffusion encoding gradients) as described by Tuch [51]. It
is desired that this sampling minimize the average angle between gradient directions
so that the diffusion signal may be accurately reconstructed. The gradient direction
for each image has been chosen to correspond to the vertices of an icosahedron which
has been repeatedly subdivided. Our data sets include diffusion-weighted images
acquired with the application of diffusion gradients along 81 or 46 directions in
addition to one image with no diffusion weighting. Since the process of diffusion
is known to have antipodal symmetry [30], we need to sample only one of the
hemispheres in q-space.

1.1.2. Restoration. Processing of HARDI data sets has received increased attention
lately and a few researchers have reported their results in literature. The use of
spherical harmonic expansions have been quite popular in this context since the
HARDI data primarily consists of scalar signal measurements on a sphere located
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at each lattice point on a 3D image grid. Tuch et al. [53, 52] developed the HARDI
acquisition and processing and later Frank [30] showed that it is possible to use
the spherical harmonics expansion of the HARDI data to characterize the local ge-
ometry of the diffusivity profiles. Although elimination of odd-ordered terms and
the truncation of the Laplace series provide some level of smoothing, there is no
discussion of smoothing the data across the lattice points. Chen et al. [20] find
a regularized spherical harmonic expansion by solving a constrained minimization
problem. However the expansion is a truncated spherical harmonic expansion of
order four, restricting the level of complexity that can be modeled using this ap-
proach. In [33], Jansons and Alexander described a new statistic, persistent angular
structure, which was computed from the samples of a 3D function. In this case,
the function described displacement of water molecules in each direction. The goal
in their work was to resolve voxels containing one or more fibers. However, there
was no discussion on how to restore the noisy HARDI data prior to resolution of
the fiber paths. More recently, Descoteaux et al., [23, 24], proposed an analyti-
cal solution to the reconstruction of the diffusion orientation distribution function
(ODF). They model the signal using a spherical harmonic function of order eight
and fit this model to the noisy data using a regularization constraint involving the
Laplace-Beltrami operator for smoothing the HARDI data over the sphere of di-
rections at each voxel. Their analytic form for the ODF reconstruction requires a
numerical solution to a linear system and they do not consider regularization across
the 3D lattice which can be important in order to obtain a piecewise smooth repre-
sentation of the given HARDI data. Wiest-Daessle et al. [62, 61] described several
variants of non-local mean denoising applied to diffusion MRI. The approach which
is applicable to HARDI involved considering the dataset as a vector-valued image,
however this approach does not respect the directional relationship among the im-
ages. Assemlal et al. also employ only spatial regularization approaches to robustly
determine the diffusion ODF [1] and PDF [2] fields. Savadjiev et al. [46] formulate
a novel spatial regularization in terms of the underlying 3D curves which represent
neuronal fibers.

In contrast to HARDI denoising, DT-MRI denoising has been more popular and
numerous techniques exist in literature. For sampling of the techniques used to
denoise DT-MRI, we refer the reader to [50, 17, 60, 57, 58, 19, 27, 9, 28, 3, 32].
Most of these works use a linearized Stejskal-Tanner equation [47] describing the
MR signal decay with the exception of Wang et al., [57, 58]. Using the Stejskal-
Tanner equation as is, is quite important in preserving the accuracy of the restored
data and this was shown in the experiments in [58]. Another important constraint
in the DTI restoration is the positive definiteness of the tensors, in this context,
work in [18] introduced an elegant differential geometric framework to achieve the
solution. The work in [57, 58] and [60] chose alternative methods to impose the
positive definiteness of the restored tensor fields namely, a linear algebraic and a
PDE-based method respectively. Approaches to filtering based on the Riemannian
geometry of the manifold of symmetric positive-definite matrices have been reported
[31, 14].

1.2. Overview of Our Modeling Scheme. In this section we present a novel
and effective variational formulation that will directly estimate a smooth signal
S(θ, φ) and the probability distribution of the water molecule displacement over all
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directions p(θ, φ), given the noisy measurement

Ŝ(θ, φ) = S0 exp(−bD(θ, φ)) + η(θ, φ) , (2)

where Ŝ is the signal measurement taken on a sphere of constant gradient magnitude
over all (θ, φ), b is the diffusion weighting factor, D(θ, φ) is the apparent diffusivity
as a function of the direction expressed by the polar and azimuthal angles on the
sphere and η(θ, φ) is Rician noise. The noise is due to additive Gaussian noise
corrupting the complex-valued k-space measurements. However, for high signal-to-
noise ratios we may consider η to be Gaussian distributed. A variational formulation
for denoising using a data constraint based on the Rician likelihood was given
by Basu et al. [9]. However, this leads to a highly nonlinear evolution equation
since it involves the ratio of two Bessel functions. A modification to the non-local
means algorithm which can handle Rician noise was presented by Descoteaux et al.
[25]. However, neither of these approaches address smoothing over the spherical
domain. In contrast, Clarke et al. [21] propose a robust method for estimating
fiber orientation distributions in the presence of Rician noise, but they do not
consider smoothness constraints over the voxel lattice. In this work we will assume
a high SNR so that the Gaussian additive noise is a good assumption. Since we
are performing high-field ex-vivo experiments, we can acquire many images and use
averaging to increase the SNR so that this assumption is valid.

The variational principle involves smoothing S values over the sphere and across
the 3D image lattice. The key factor that complicates this problem is that the do-
main of the data at each voxel in the lattice is a sphere. One may use the level-set
techniques developed by Tang et al., [48] to achieve this smoothing. However, when
data sets are large, it becomes computationally impractical to apply the level-set
technique at each voxel independently to restore these scalar-valued measurements
on the sphere. Alternative approaches to solving variational problems over non-
planar domains have been described in recent literature. Cecil et al. [15] propose
several numerical approaches to dealing with discontinuous derivatives due to peri-
odic boundaries encountered when solving problems on S1 and S2. Liu et al. [37]
proceed by finding a conformal mapping from the surface to the plane, then solving
the problem in the 2D parameter space. Bogdanova et al. [12] presented explicit
formulations of differential operators on parametric surfaces in terms of the Rie-
mannian metric. Since our input data are sparsely distributed over a triangulated
sphere (gradient directions are computed by subdividing an icosahedron, we simply
use the spherical triangles as our computational domain. We arrive at a computa-
tionally efficient solution to this problem by using the finite element method (FEM)
on the sphere and choosing local basis functions for the data restoration. Unlike
the reported work on spherical harmonic basis expansion of the diffusivity function
on the sphere [29, 43, 20], the FEM basis functions have local support and are more
stable to perturbations due to noise in the data. From the denoised data we will
compute a probability, pt(θ, φ), of molecular diffusion over a sphere of directions.

The rest of this paper is organized as follows: Section (2) contains a variational
formulation of the HARDI denoising problem including smoothing the scalar signal
over a sphere of directions at each 3D lattice point and across lattice points, com-
putation of probability of water molecular diffusion over the sphere of directions
and several measures of anisotropy computed from the field of probability densities.
In section (3), we present several experimental results depicting the performance of
our algorithms on synthetically generated and real data sets. Finally, we conclude
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in section (4). Appendices A and B contain the details of the finite element basis
used and the element as well as the global equations.

2. Formulation of the HARDI restoration. Normally, the diffusion weighted
images are quite noisy especially when acquired using large field gradients. One can
reduce some amount of noise by signal averaging for each gradient direction used.
However, this by itself does not preserve the details in the data. We now present a
variational formulation for effective denoising of the HARDI data.

2.1. Variational Smoothing. We propose a membrane-spline deformation energy
minimization for smoothing the measured image Ŝ(x, θ, φ). The variational principle
for estimating a smooth S(x, θ, φ) is given by

min
S

E(S) =
µ

2

∫

Ω

∫

S2

|S(x, θ, φ) − Ŝ(x, θ, φ)|2dS dx

+

∫

S2

‖∇(θ,φ)S‖2dS dx +

∫

Ω

g(x)‖∇xS‖dx (3)

where Ω is the domain of the image lattice and S2 is the sphere on which the signal
measurements are specified at each voxel. The first term of Equation (3) is a data
fidelity term which makes the solution to be close to the given data. The degree of
data fidelity can be controlled by the input parameter µ. The second term is a regu-
larization constraint enforcing smoothness of the data over the spherical domain at
each voxel. The minimizer of this energy term is a membrane spline over the sphere
which is in Sobolev space H1(S2) [49]. The third term is another regularization term
which causes the solution to be piecewise smooth over the spatial domain (the 3D
voxel lattice). The minimizer of this TV norm is in the space BV (R3), functions of
bounded variation [35]. g(x) inhibits smoothing across discontinuities in S over the
lattice. More on this in section (2.3). The choice of membrane spline smoothness
over S2 is motivated by the partial volume effect in MRI. The signal at each voxel
is the average over a volume much larger than a single axonal fiber. Within this
volume there may be fibers of varying orientation and regions of isotropy. Though
the diffusivity function may be nearly discontinuous over S2 at a point near a fiber
bundle, it is highly unlikely for the volume average to be so. For this reason, we do
not use TV norm minimization over the spherical domain.

2.2. Finite Element Method based smoothing of S(θ, φ). We will consider
a deformation energy functional which is a weighted combination of the thin-plate
spline energy and the membrane spline energy, which is commonly used in computer
vision literature for smoothing scalar-valued data in ℜ3 (see McInerney et al., [41],
Lai et al., [36]). In our case, the data at each voxel is an image on the sphere,
S(θ, φ), so the problem is inherently 2 dimensional.

The diffusion-encoding gradient directions are taken as the vertices of a subdi-
vided icosahedron, to achieve a nearly uniform sampling of gradient directions over
the sphere. We map this piecewise planar approximation of the sphere to the global
FEM coordinate system (u, v) by setting (u = θ, v = φ) for each gradient direc-
tion. This domain is triangulated so each face of the subdivided icosahedron will
have a corresponding triangle in the (u, v) domain. A periodic boundary condition
is imposed so that S(2π, v) = S(0, v). The area element in the (u, v) domain is
du dv = sin φdθdφ. A similar mapping was used by McInerney & Terzopoulos [41]
and Vemuri and Guo [56] for finite elements over a spherical domain.
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Note that, after mapping, the data can be seen as a height field over the (u, v)
plane. The smoothness of the height function, z(u, v), will be enforced by the
smoothing functional

Ep =

∫ ∫

Ω

(α(|zu|2 + |zv|2) + β(|zuu|2 + 2|zuv|2 + |zvv|2))du dv. (4)

The weight on the membrane term is α and the weight on the thin-plate term is β.
Once we have computed a smooth z(u, v), the result will then be mapped back to
the image on the sphere, S(θ, φ).

The data energy due to virtual work of the data forces, f , and virtual displace-
ment, z, is

Ed = −
∫ ∫

Ω

z(u, v)f(u, v)du dv. (5)

By the principal of virtual work, the spline system is in equilibrium when the total
work done by all forces is zero for all virtual displacements.

The restoration of S(θ, φ) at each voxel is formulated as the energy minimization

min
S

E(S) = min
S

(Ep(S) + Ed(S)), (6)

with ∇Ep(S) = −∇Ed(S) defining the equilibrium condition of the system.
We use polynomial shape functions, Ni, as a basis for the unknown smooth

approximation, z, of the data over the u, v plane. We may write z as

z(u, v) =

n
∑

i=1

qiNi(u, v) = Nq (7)

where N is a (1 × n) row vector, and q is a column vector of nodal variables.
The domain, Ω, is partitioned into triangular elements, Ωj , each with their own

local shape functions. The shape functions, in terms of local (barycentric) coordi-
nates are given in Appendix A. For each element j, we have,

z(u, v) = Nj(u, v)qj (8)

for (u, v) ∈ Ωj . In the rest of this section we will derive linear equations for the

element potential energies, Ej
p, and data energies, Ej

d, in terms of the coefficients

qj . Finally, we will assemble a global linear system, and solve for q. This will allow
us to evaluate z(u, v) using Equation 7.

The global potential energy is the sum of the energies of each finite element,

Ep =
∑

j

Ej
p (9)

where the local potential energy function for each element is given by

Ej
p =

∫ ∫

Ωj

(α|zj
u|2 + α|zj

v|2 + β|zj
uu|2 + 2β|zj

uv|2 + β|zj
vv|2)du dv. (10)

The element strain vector (given by Dhatt and Touzot [26]) is

ǫj =













zj
u

zj
v

zj
uu

zj
uv

zj
vv













(11)
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Figure 2. Data forces are applied at each vertex in the triangu-
lated domain.

which may be rewritten as

ǫj =













(N1)u . . . (Nn)u

(N1)v . . . (Nn)v

(N1)uu . . . (Nn)uu

(N1)uv . . . (Nn)uv

(N1)vv . . . (Nn)vv













qj = Bqj (12)

where we have defined B as the (5 × n) matrix of derivatives of the nodal basis
functions. We can then rewrite the element potential (strain) energy as

Ej
p =

∫ ∫

Ωj

ǫjT Dǫjdu dv (13)

where we define

D =













α 0 0 0 0
0 α 0 0 0
0 0 β 0 0
0 0 0 2β 0
0 0 0 0 β













, (14)

the diagonal matrix containing the membrane and thin-plate spline weighting fac-
tors. We have the option of finding solutions in the space H1 by setting β = 0, or
in H2 by making β > 0. In general, the parameter values depend on the angular
resolution of the underlying signal. Making the values too high may smooth out
salient details, and setting the values too low may result in fitting the spline to
the noise. In practice we determine the values empirically by processing synthetic
datasets.

Since qj is constant over each element we can derive the element stiffness matrix,
K, in terms of D and B giving us the element strain energy as,

Ej
p =

∫ ∫

Ωj

qjT BjT DBjqjdu dv = qjT Kjqj . (15)

We will model the data constraint as springs pulling z(u, v) toward the measured
values z0(u, v), as illustrated in Figure(2). The force at each point will obey f =
k(z − z0), where k is the spring constant. For small displacements the spring
constant, k = µ

2 where µ is the data constraint coefficient from Equation (3).
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The element deformation energy due to virtual displacement z(u, v) is given by

Ej
d = −

∫ ∫

Ωj

Njqjk(Njqj − z0) du dv. (16)

We can split the deformation energy into two terms : Ej
d = qjT (Fjqj − f j) by

defining

Fj = −k

∫ ∫

Ωj

NjT Nj du dv (17)

and

f j = k

∫ ∫

Ωj

NjT z0 du dv. (18)

We may now balance the deformation energy and data energy by solving the fol-
lowing linear system:

(Kj + Fj)qj = f j . (19)

The global linear system for smoothing the entire mesh may be obtained by ap-
propriately summing the local element matrices, as detailed in Appendix B. The
global system is symmetric, and has a sparse banded structure with 18 nonzero
diagonal bands. Since the global matrix is positive-definite, an efficient solution to
q is obtained via Cholesky factorization.

2.3. Spatial smoothing of S(x). We are now ready to describe the smoothing of
the data across the 3D lattice. There are many existing methods that one can apply
to this problem as discussed earlier. Smoothing the raw vector-valued data, S(x),
is posed as a variational principle involving a first order smoothness constraint on
the solution to the smoothing problem. Note that the data at each voxel are m
measurements of S over a sphere of directions and can be assembled into a vector
after the smoothing on the spherical coordinate domain has been accomplished. We
propose a weighted TV-norm minimization for smoothing this vector-valued image
S. This smoothing scheme reduces the effect of inter-region blurring, a drawback
Gaussian convolution and isotropic diffusion suffer. Our method is a modified ver-
sion of the work in Blomgren et. al., [11]. The novelty here lies in the choice of the
weighting i.e., the coupling term between the channels. The variational principle for
estimating a smooth S(x) is given by

min
S

E(S) =

∫

Ω

(g(x)

m
∑

i=1

‖∇Si‖ +
µ

2

m
∑

i=1

(Si − Ŝi)
2)dx (20)

where, Ω is the image domain, µ is a regularization factor and m is the number of
images. The first term here is the regularization constraint on the solution to have a
certain degree of smoothness. The second term in the variational principle makes the
solution faithful to the data in the L2 sense. We have used the coupling function
g(x) = 1/(1 + ||∇GA(x)||2) for smoothing HARDI, where GA is the generalized

anisotropy index defined in Özarslan et al., [45] and is computed from the variance
of normalized diffusivity. For a more detailed discussion on GA, we refer the reader
to [45]. This selection criterion preserves edges in anisotropy while smoothing the
rest of the data. This anisotropy measure is chosen since it can be computed without
explicitly computing the ODF, and it is our goal to smooth the data prior to ODF
computation. An image of the coupling term for a typical slice is shown in Figure
(3).
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Figure 3. S0 (left), GA (center), and coupling factor g (right).

Here we have used a different TV-norm than the one used by Blomgren and Chan
[11]. The TVn,m norm is an L2 norm of the vector of TVn,1 norms (

∫

Ω
‖∇Si(x)‖2dx)

for each channel. We use the L1 norm instead, which is known to have better
discontinuity preservation properties.

The gradient descent form of the above minimization is given by

∂Si

∂t
= div

(

g∇Si

‖∇Si‖

)

− µ(Si − Ŝi) i = 1, ...,m

∂Si

∂n
|∂Ω×R

+ = 0 and S(x, t = 0) = Ŝ(x) (21)

The use of a modified TV-norm in equation (20) results in a looser coupling between
channels than when using the TVn,m norm. This reduces the numerical complexity
of Equation (21) and makes solution for large data sets feasible.

The gradient descent of the vector-valued image smoothing using the TVn,m-

norm TVn,m(S(x)) =
√

∑m
i=1[TVn,1(Si)]2 presented in [11] is given by,

∂Si(x, t)

∂t
=

TVn,1(Si)

TVn,m(S)
∇ · ( ∇Si

‖∇Si‖
)

S(x, 0) = S0(x). (22)

Note that the TVn,m norm appears in the gradient descent solution of the vector-
valued minimization problem. Considering that our data sets consist of up to 82
images, corresponding to (magnetic field) gradient directions, calculating the TVn,m

norm by numerically integrating over the 3-dimensional data set at each step of an
iterative process would be prohibitively expensive. In contrast using our modified
TV-norm described earlier leads to a more efficient solution. We are now ready to
present the numerical solution to equation (21).

2.3.1. Fixed-Point Lagged-Diffusivity. Since the m Equations(21) are coupled only
through the function g, we can drop the subscript on S with no ambiguity (later
the subscript will refer to spatial coordinates.) In this section we will discuss the
numerical solution for each channel, S, of the vector-valued image S. Equation (21)
is nonlinear due to the presence of ‖∇Si‖ in the denominator of the first term. We
linearize Equation (21) by using the method of “lagged-diffusivity” presented by
Chan and Mulet [16]. By considering ‖∇S‖ to be a constant for each iteration, and
using the value from the previous iteration we can instead solve

− 1

‖∇St‖ (∇g · ∇St + g∇2St+1) + µ(St+1 − S0) = 0 (23)
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Here the superscript denotes iteration number. Equation (23) can be recast in the
form

−∇2St+1 +
µ‖∇St‖

g
St+1 =

µ‖∇St‖S0 + ∇g · ∇St

g
. (24)

We now discretize the above equation in the following.

2.3.2. Discretized Equations. To write Equation (24) as a linear system (ASt+1 =
f t), we discretize the Laplacian and gradient terms. Using central differences for
the Laplacian we have

∇2St+1 = St+1
x−1,y,z + St+1

x,y−1,z + St+1
x,y,z−1

− 6St+1
x,y,z + St+1

x+1,y,z + St+1
x,y+1,z + St+1

x,y,z+1 (25)

We define the standard central differences to be

∆xS =
1

2
(Sx+1,y,z − Sx−1,y,z)

∆yS =
1

2
(Sx,y+1,z − Sx,y−1,z)

∆zS =
1

2
(Sx,y,z+1 − Sx,y,z−1) (26)

We can rewrite Equation (24) in discrete form using the definitions in Equation (26)

−Sx−1,y,z − Sx,y−1,z − Sx,y,z−1

+(6 +
µ
√

(∆xSt)2+(∆ySt)2+(∆zSt)2

g
)Sx,y,z

−Sx+1,y,z − Sx,y+1,z − Sx,y,z+1

= 1
g
(µS0

√

(∆xSt)2 + (∆ySt)2 + (∆zSt)2

+∆xg∆xSt + ∆yg∆ySt + ∆zg∆zS
t) (27)

This results in a sparse linear system. The matrix of coefficients of St+1 has 7
nonzero bands, and is given by















6 + µ‖∇St‖0

g0
−1 . . . −1 . . . −1 . . .

−1 6 + µ‖∇St‖1

g1
−1 . . . −1 . . . −1

0 −1 6 + µ‖∇St‖2

g2
−1 . . . −1 . . .

. . .
. . .

. . .
. . .

. . . . . .
. . .















. (28)

The matrix in Equation (28) is symmetric and diagonally dominant. We employ
the conjugate gradient descent to solve this system. The solution of Equation (28)
represents one fixed-point iteration. This iteration is continued until |St−St+1| < c,
where c is a small prespecified tolerance.

2.4. Computing Probabilities. The probability in Equation (1) can now be eval-
uated by computing the quantity S(q)/S0 and performing the FFT. If the sig-
nal, S, is assumed to decay mono-exponentially from the origin of q-space (where
S(0) = S0), one can interpolate the signal values for arbitrary q. It is then pos-
sible to extrapolate (using the monoexponential decay model) from the spherical
coordinate locations to grid points in cartesian space and then perform the FFT on
this extrapolated data. The result is a probability of water molecule displacement
over a small time constant. Since the quantity of interest is primarily the direc-
tion of water displacement, one can integrate out the radial component of pt(r) to
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get pt(θ, φ). This is commonly referred to as the diffusion orientation distribution
function or simply ODF. Computing the ODF with this method is computationally
expensive since it requires a 3D FFT at each voxel, and then a numerical integration
for each direction. For the sake of efficiency, we will compute a probability profile
(not the ODF), which will make processing large datasets feasible. This probability
profile, written as pt(r, θ, φ) quantifies the probability that a water molecule diffuses

through a sphere of fixed radius, r. A more detailed treatment by Özarslan et al.
can be found in [44]. This scheme provides a fast way to calculate the orientation
profiles. In our implementation we have evaluated the series given in [44] up to
l = 6 terms since the reconstructed surfaces have very simple shapes which can be
accurately represented using a truncated spherical harmonics series, and r0 was set
to 17.5µm. An alternative approach is to use the Funk-Radon Transform proposed
by Tuch [51], however this introduces smoothing due to a spherical convolution step
which would make evaluation of our denoising algorithm more difficult.

To enhance the visual impact of the probability profiles we apply a sharpening
transform to the distribution by subtracting a uniform distribution (sphere) from
each profile, as shown in Figure (4). The radius of the sphere is the minimum of
the probability over all directions. By performing this operation the direction of
maximum probability becomes more apparent.

Figure 4. Original probability profile (left), Minimum probability
sphere (center), and sharpened probability profile (right).

3. Experimental Results. The denoising and rendering techniques described in
the previous section were first applied to a synthetic HARDI dataset. This dataset
was generated using the technique described by Özarslan et al. in [45]. The dataset
was designed to depict a region of curving fibers, a region of straight fibers, and a
crossing between the two. A total of 81 acquisition directions are simulated with b
= 1500 s/mm2.

A small sample of the probability surfaces p(θ, φ) computed from the synthetic
data, taken from near the crossing region, is shown in Figure (5a). The real-valued
synthetic data was corrupted with Gaussian noise of zero mean, and variance σ2 =
0.005. p(θ, φ) surfaces computed from the noisy data (without any denoising) are
shown in Figure (5b). The same voxels are shown – after smoothing over the
spherical manifold at each voxel independently – in Figure (5c), after smoothing
over the image lattice, in Figure (5d) and after both techniques have been used, in
Figure (5e). The parameter values used for the restoration were µ = 0.97, α = 0.40,
β = 0.22, k = 100. The right-hand side plate in each figure shows the sharpened
profiles computed from the S values depicted on the left-hand side. Note that the
probability surfaces in figure 5e) depict better smoothing than those in either of 5c)
or 5d), visually indicating that one needs to perform smoothing on the sphere and
across the lattice and not just one or the other.
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Table 1. Error between ground-truth probabilities p̂ and proba-
bilities computed from restored synthetic data when SNR = 14.

Method µ(d(p̂, p)) σ(d(p̂, p))
p = No Restoration 0.9409 0.2516

p = FEM Restoration 0.5540 0.1997
p = TV Restoration 0.2840 0.2129

p = FEM + TV Restoration 0.1889 0.1748
p = TV + FEM Restoration 0.2128 0.1631

Table 2. Error between ground-truth probabilities p̂ and proba-
bilities computed from restored synthetic data when SNR = 5.

Method µ(d(p̂, p)) σ(d(p̂, p))
p = No Restoration 2.7461 0.3432

p = FEM Restoration 1.1848 0.2424
p = TV Restoration 0.9175 0.1903

p = TV + FEM Restoration 0.4970 0.2046
p = FEM + TV Restoration 0.6552 0.1984

From Figure (5b), it can be seen that the noise has a large influence on the
smoothness of the distribution. As expected from the variational formulation, the
spikes of noise present in the raw data have been smoothed while preserving the
overall shape of the S profile. This smoothness is evident in the computed proba-
bility profiles as well.

A quantitative evaluation can be obtained by comparing the distributions com-
puted from the smoothed data with the ground-truth by using the square root of
J-divergence (symmetrized KL-divergence) as a measure. This divergence is defined
as

d(p, q) =
√

J(p, q) (29)

where

J(p, q) =
1

2

n
∑

i=1

p(θi, φi) log
p(θi, φi)

q(θi, φi)
+ q(θi, φi) log

q(θi, φi)

p(θi, φi)
(30)

In Table (1) we compare the distances, d(p̂, p), between the densities computed
from the original synthetic data, (p̂), and the unrestored data, the data restored
only using the FEM method, the data restored using only the TV-norm minimiza-
tion, and the data restored using both techniques. For each technique, the mean
distance, µ(d(p̂, p)), between the densities in corresponding voxels and the standard
deviation, σ(d(p̂, p)), is presented. As evident from Table (1), the TV restoration
has superior performance over the FEM technique in terms of the mean error. The
combination of techniques has a lower mean error and standard deviation of the
error than either the L2-norm based or the TV-norm based restoration. Note also
that the error achieved by applying smoothing over the sphere prior to smoothing
over the voxel lattice is lower than when the order is reversed. Since TV-norm
minimization can be seen as a nonlinear diffusion process, performing the denois-
ing in this order propagates smoothed intensities within homogeneous regions. In
subsequent experiments we perform the denoising in this order.
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The denoising algorithm was applied to a dataset consisting of one non-diffusion
weighted image and 46 diffusion weighted images of a rat spinal cord. Our data were
acquired using a 14.1 Tesla (600 MHz) Bruker Avance Imaging spectrometer system
with a diffusion weighted spin echo pulse sequence. Imaging parameters were : TR
= 1400 ms, TE = 25 ms, Delta = 17.5 ms, delta = 1.5 ms, bhigh = 1500s/mm2,
blow = 0s/mm2, diffusion gradient strengths = 0 mT/m with 28 averages were
measured for b = 0s/mm2 and diffusion gradient strengths = 733s/mm2 with 7
averages were measured for each of the 46 diffusion weighting-gradient directions.
The 46 directions were derived from the tessellation of a hemisphere. The image field
of view was 4.3×4.3×12mm3, acquisition matrix was 72×72×40. The approximate
SNR for the S0 and diffusion weighted images were 58 and 50 respectively. The
parameter values used for the restoration were µ = 0.97, α = 0.02, β = 0.0, k = 1.0.

Axial slices before and after denoising are shown for the non-diffusion weighted
image in Figure (6) and one diffusion weighted image in Figure (7). The ring-
ing artifacts visible near the sample boundary in Figure (6) have been noticeably
decreased. Note that the edges in the image have been well preserved.

Figures (8) and (9) show restored probability profiles from rat brain and spinal
cord datasets. The brain data were acquired using a 17.6 Tesla (750 MHz) Bruker
Avance Imaging spectrometer system with a diffusion weighted spin echo pulse
sequence. Imaging parameters were : TR = 2000 ms, TE = 28 ms, Delta = 17.8
ms, delta = 2.2 ms, bhigh = 1500s/mm2, blow = 0s/mm2, 6 averages for each of
the 81 diffusion weighting-gradient directions. The 81 directions were derived from
the tessellation of a hemisphere. The image field of view was 150 × 150 × 300µm3,
acquisition matrix was 100×100×60. The approximate SNR for the S0 and diffusion
weighted images were 206 and 177 respectively.

Figure (8b) shows a detail from the rat hippocampus. The piecewise smoothing
behavior of the algorithm is evident within the anisotropic hippocampus region.
This region has been smoothed independently of the more isotropic surrounding
regions. The spherical smoothing term has also suppressed some peaks of the dis-
tribution which were probably due to noise in the acquired data. Figure (8c) shows
a detail from the rat corpus callosum. The data dependent coupling term in the
restoration algorithm has permitted intraregion smoothing within the corpus callo-
sum while preventing interregion smoothing. Note that the fiber directions within
the corpus callosum have been well preserved.

Figure (9) shows details from the rat spinal cord dataset. Here the noise reduction
can be seen to enhance the coherence of structures in the inner core of grey matter.

The data were processed by a MATLAB implementation of the algorithm run-
ning on a system with Intel Quad Core QX6700 2.66 GHz CPU and 4 GB RAM.
The computation times for the finite element smoothing over the sphere depends
on the number of diffusion-encoding gradient directions in the image acquisition.
For the spinal cord data with 46 directions the time was 0.018 seconds per voxel,
and for the brain dataset with 81 directions the time was 0.038 seconds per voxel.
The computation time for the TV-norm minimization problem for each diffusion
weighted image depends on the size of the acquisition matrix. For the spinal cord
the resolution was 72 × 72 × 40 and the computation time per image was 28.3 sec-
onds. For the brain dataset the resolution was 100 × 100 × 60 and computation
required 82.4 seconds per image.
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Table 3. Gauss-Radau weights

i ri wii ξi ai

1 0.0469100770 0.1184634425 0.0398098571 0.1007941926
2 0.2307653449 0.2393143353 0.1980134179 0.2084506672
3 0.5 0.2844444444 0.4379748102 0.2604633916
4 0.7692346551 0.2393143353 0.6954642734 0.2426935942
5 0.9530899230 0.1184634425 0.9014649142 0.1598203766

4. Conclusion. In this paper, we presented a new variational formulation for
restoring HARDI data and an FEM technique for implementing the restoration.
Our formulation of the HARDI restoration involves two types of smoothness con-
straints. The first is smoothness over the spherical domain of acquisition directions,
and the second is smoothness between neighboring voxels in the Cartesian domain.
The smoothing technique is capable of preserving discontinuities in the data. This
was demonstrated on synthetic and real anatomical data. By using J-divergence as a
measure of distance between distribution, we were able to show quantitatively that
the combination of restoration techniques performs better than either technique
alone.

Appendix A.

Local Element Coordinates. We now present the coordinate system for the
local elements. For local elements, triangular elements are used with a barycentric
coordinate system (γ, ξ, η). Each coordinate is in the range [0, 1] and γ + ξ + η = 1
for points on the triangle.

The global coordinates, (u, v), can be computed from the local coordinates by
[

u
v

]

=

[

u1 − u0 u2 − u0

v1 − v0 v2 − v0

] [

ξ
η

]

+

[

u0

v0

]

. (31)

The Jacobian, J, of the transformation between coordinate systems is defined by

[

du
dv

]

=

[

∂u
∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂η

]

[

dξ
dη

]

= J

[

dξ
dη

]

. (32)

Integrals over the (u, v) domain to be converted to integrals over the local (ξ, η)
domain by

∫ ∫

Ωj

f(u, v)du dv =

∫ ∫

Ωj

f(u(ξ, η), v(ξ, η)) det(J)dξ dη. (33)

Using the Gauss-Radau quadrature rules given in [26], we can approximate the
integral in Equation (33) by the summation

5
∑

i=1

5
∑

j=1

wiiwjjf(u(ξj , ηi,j), v(ξj , ηi,j)) det(J) (34)

where ηi,j = ri(1 − ξj), wjj = aj(1 − ξj), ξj , and wii are given in Table 3.
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Derivatives over (u, v) can be written in terms of local coordinates by applying
the chain rule:

∂N

∂u
=

∂N

∂ξ

∂ξ

∂u
+

∂N

∂η

∂η

∂u

∂N

∂v
=

∂N

∂ξ

∂ξ

∂v
+

∂N

∂η

∂η

∂v
. (35)

The partial derivatives of ξ and η with respect to u and v can be computed by
inverting the Jacobian

[

dξ
dη

]

=

[

∂ξ
∂u

∂ξ
∂v

∂η
∂u

∂η
∂v

] [

du
dv

]

= J−1

[

du
dv

]

. (36)

The inverse of J is given by

J−1 =
1

det(J)

[

v2 − v0 −(u2 − u0)
−(v1 − v0) u1 − u0

]

. (37)

We use the fifth order element shape functions given by Dhatt and Touzot [26].
This element guarantees C1 (surface normal) continuity across triangles. The quin-
tic basis functions are given by

N1 = λ
2(10λ − 15λ

2 + 6λ
3 + 30ξη(ξ + η))

N2 = ξλ
2(3 − 2λ − 3ξ

2 + 6ξη)

N3 = ηλ
2(3 − 2λ − 3η

2 + 6ξη)

N4 =
1

2
ξ
2
λ

2(1 − ξ + 2η)

N5 = ξηλ
2

N6 =
1

2
η
2
λ

2(1 + 2ξ − η)

N7 = ξ
2(10ξ − 15ξ

2 + 6ξ
3 + 15η

2
λ)

N8 =
1

2
ξ
2(−8ξ + 14ξ

2
− 6ξ

3
− 15η

2
λ)

N9 =
1

2
ξ
2
η(6 − 4ξ − 3η − 3η

2 + 3ξη)

N10 =
1

4
η
2(2ξ(1 − ξ)2 + 5η

2
λ)

N11 =
1

2
ξ
2
η(−2 + 2ξ + η + η

2
− ξη)

N12 =
1

4
ξ
2
η
2
λ +

1

2
ξ
3
η
2

N13 = η
2(10η − 15η

2 + 6η
3 + 15ξ

2
λ)

N14 =
1

2
ξη

2(6 − 3ξ − 4η − 3ξ
2 + 3ξη)

N15 =
1

2
η
2(−8η + 14η

2
− 6η

3
− 15ξ

2
λ)

N16 =
1

4
ξ
2
η
2
λ +

1

2
ξ
2
η
3

N17 =
1

2
ξη

2(−2 + ξ + 2η + ξ
2
− ξη)

N18 =
1

4
η
2(2η(1 − η)2 + 5ξ

2
λ).

(38)
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The quintic shape functions have nodal variables which can be written in terms
of local or global coordinates as,

qξ,η =

















z
zξ

zη

zξξ

zξη

zηη

















,qu,v =

















z
zu

zv

zuu

zuv

zvv

















. (39)

The local and global nodal variables are related to each other by

qu,v =

















1 0 0 0 0 0
0 ξu ηu 0 0 0
0 ξv ηv 0 0 0
0 0 0 ξ2

u 2ξuηu η2
u

0 0 0 ξuξv (ξuηv + ηuξv) ηuηv

0 0 0 ξ2
v 2ξvηv η2

v

















qξ,η. (40)

Appendix B.

Global Matrices. We wish to construct global matrices so that the energy balance
over the entire FEM mesh is given by the linear system

Kq = f (41)

where K is a (6n × 6n) matrix since we have 6 variables per node.
We will consider the simple case of 2 elements. Expanding the element Equa-

tion(19) in terms of nodal variables for element 0 we get




K0
0,0 K0

0,1 K0
0,2

K0
1,0 K0

1,1 K0
1,2

K0
2,0 K0

2,1 K0
2,2









q0
0

q0
1

q0
2



 =





f0
0

f0
1

f0
2



 , (42)

and for element 1 we have




K1
3,3 K1

3,2 K1
3,1

K1
2,3 K1

2,2 K1
2,1

K1
1,3 K1

1,2 K1
1,1









q1
3

q1
2

q1
1



 =





f1
3

f1
2

f1
1



 . (43)

where each qj
l is a (6 × 1) column vector of nodal variables. We expand each Kj

to be (6n× 6n) by inserting rows and columns of zeros corresponding to each node
of the mesh. Also expand f j to (6n × 1). The global K and q are obtained by
summing the expanded matrices from each element in the mesh. For our 2 element
example we have









K0
0,0 K0

0,1 K0
0,2 0

K0
1,0 K0

1,1 + K1
1,1 K0

1,2 + K1
1,2 K1

1,3

K0
2,0 K0

2,1 + K1
2,1 K0

2,2 + K1
2,2 K1

2,3

0 K1
3,1 K1

3,2 K1
3,3

















q0
0

q0
1

q0
2

q0
3









=









f0
0

f0
1 + f1

1

f0
2 + f1

2

f0
3









. (44)

Acknowledgements. All MRI data was obtained at the Advanced Magnetic Res-
onance Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute
at the University of Florida. This research was supported in part by the grant NIH
EB7082 to BCV and by Siemens Corporate Research (Princeton, NJ). We wish to
thank Sara Berens and Robert Yezierski for providing the spinal cord sample and
Ron Hayes for the brain.
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[14] C.A. Castańo-Moraga, C. Lenglet, R. Deriche, and J. Ruiz-Alzola, A Riemannian approach
to anisotropic filtering of tensor fields, Signal Processing 87 (2007), 263–276.

[15] T. Cecil, S. Osher, and L. Vese, Numerical methods for minimization problems constrained
to S1 and S2, Journal of Computational Physics 198 (2004), 567–579.

[16] T. Chan and P. Mulet, On the convergence of the lagged diffusivity fixed point method in total

variation image restoration, SIAM Journal on Numerical Analysis 36 (1999), 354–367.
[17] C. Chefd’hotel, D. Tschumperlé, R. Deriche, and O. Faugeras, Regularizing flows for con-

strained matrix-valued images, Journal of Mathematical Imaging and Vision 20 (2004), 147–
162.
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20 MCGRAW,VEMURI,ÖZARSLAN,CHEN AND MARECI
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(a) Original synthetic data

(b) Added Gaussian noise, σ
2 = 0.005,

SNR = 14

(c) Manifold smoothing with α = 0.01

(d) Lattice smoothing with µ = 0.95 (e) Manifold smoothing followed by
Lattice smoothing

(f) Added Gaussian noise, σ
2 = 0.04,

SNR = 5
(g) Manifold smoothing with α = 0.01

(h) Lattice smoothing with µ = 0.95 (i) Manifold smoothing followed by

Lattice smoothing

Figure 5. Simulations from a 64×64 synthetic high angular reso-
lution diffusion image, subsampled for display purposes. The signal
profiles, S(θ, φ), are shown on the left side of each panel whereas
the probability profiles are provided on the right. Results from
manifold smoothing using FEM, lattice smoothing using TV-norm
minimization, and a combination of the two techniques are shown
for noisy data.
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Figure 6. Original S0 (non-diffusion weighted) image (left), and
denoised (right) from spinal cord data.

Figure 7. A slice from the original 3D diffusion weighted image
(left), and corresponding slice from the denoised (right) spinal cord
data.
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(a) Anterior commissure

(b) Hippocampus

(c) Corpus callosum

Figure 8. Restored probability profiles from rat brain data over-
laid on anisotropy images. Representative profiles from the region
of interest (left) are shown for the original (middle) and denoised
(right) data.
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(a) Pyramidal tract

(b) Lumbar region

(c) Thoracic region

Figure 9. Restored probability profiles from rat spinal cord data
overlaid on anisotropy images. Representative profiles from the
region of interest (left) are shown for the original (middle) and
denoised (right) data.
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Figure 10. Mapping to barycentric coordinates
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