
Stochastic DT-MRI Connectivity Mapping on the GPU

Tim McGraw, Member, IEEE and Mariappan Nadar, Member, IEEE

Abstract—We present a method for stochastic fiber tract mapping from diffusion tensor MRI (DT-MRI) implemented on graphics
hardware. From the simulated fibers we compute a connectivity map that gives an indication of the probability that two points in
the dataset are connected by a neuronal fiber path. A Bayesian formulation of the fiber model is given and it is shown that the
inversion method can be used to construct plausible connectivity. An implementation of this fiber model on the graphics processing
unit (GPU) is presented. Since the fiber paths can be stochastically generated independently of one another, the algorithm is highly
parallelizable. This allows us to exploit the data-parallel nature of the GPU fragment processors. We also present a framework for the
connectivity computation on the GPU. Our implementation allows the user to interactively select regions of interest and observe the
evolving connectivity results during computation. Results are presented from the stochastic generation of over 250,000 fiber steps
per iteration at interactive frame rates on consumer-grade graphics hardware.

Index Terms—diffusion tensor, magnetic resonance imaging, stochastic tractography.

1 INTRODUCTION

Many neurological disorders are characterized by changes in brain
white-matter connectivity, for example stroke [56], trauma [54], and
multiple sclerosis [55]. Additionally, presurgical planning for epilepsy
and tumor resection can incorporate connectivity information [35].
DT-MRI makes it possible to compute, in vivo, many useful quanti-
ties, including estimates of structural connectivity within neural tissue
[1, 3, 40]. Much clinical research is based on the use of pointwise in-
dices such as diffusion anisotropy, mean diffusivity, or sparse connec-
tivity matrices computed from diffusion weighted images. The next
vertical step in the processing of DT-MRI is to analyze the full connec-
tivity map: the connectivity between all pairs of points in the image.
Fast computation and display of connectivity information will signif-
icantly advance the clinical usefulness of DT-MRI. Nonfocal effects,
such as those secondary to diffuse axonal injury, could also be studied
using these methods. Since connectivity may be affected after injury
and far from the site of injury, studying global connectivity measures
is well justified. Reduced computation time will make these methods
more attractive for use in a time critical settings, such as assessment
of brain injury following stroke or trauma.

1.1 DT-MRI Visualization

The challenge of DT-MRI visualization is to simultaneously convey as
much relevant information as possible: mean diffusivity, principal dif-
fusion direction (PDD), anisotropy, and oblateness/prolateness of the
diffusion ellipsoid. Many of these quantities can be computed from the
elements of the tensor, D, at each voxel or from the eigenvalue decom-
position of D: the PDD is the dominant eigenvector of D, fractional
anisotropy (FA) is the normalized variance of the eigenvalues, mean
diffusivity is the trace of D. We will categorize and describe the most
common tensor field visualization techniques here. Glyph-based vi-
sualization relies on a small graphical icon at each voxel to represent
a tensor. For example, ellipsoids can be computed by transforming
the vertices of a triangulated sphere by the diffusion tensor (Figure
1). However, the appearance of these glyphs can be uninformative at
some viewing angles. Kindlmann et al. [16] used superquadric glyphs
to overcome this visual ambiguity. A composite glyph was introduced
by Westin et al. [57] to address the same problem. Kindlmann and

• Tim McGraw is with West Virginia University, E-mail:
tim.mcgraw@mail.wvu.edu.

• Mariappan Nadar is with Siemens Corporate Research, E-mail:
mariappan.nadar@siemens.com.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online
27 October 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

Westin [17] presented a method of optimally placing glyphs to empha-
size the structure of the data. In order to emphasize spatial continuity
of the PDD, and the supposed direction of underlying neuronal fibers,
streamlines and streamtubes are used to visualize diffusion informa-
tion. Streamlines are curves which are tangent to the PDD vector field
at each point along the curve (also called integral curves). Streamtubes
are cylindrical surfaces whose axis is a streamline. Although these are
vector field visualization techniques, they can be adapted to reflect ad-
ditional information about the tensor field. Song et al. [59] displayed
streamtubes and streamsurfaces of the PDD field. Moberts et al. [33]
evaluate several schemes for clustering of fiber paths so that similar
tracts can be colored similarly. Enders et al. [11] render bundles of
fibers by computing the surface enveloping the fibers. Particles are
another discrete technique for representing a tensor field. In this case,
the icon or glyph representing the tensor is not stationary, but advects
through the PDD field, changing its appearance to reflect the tensor at
its current position. Kondratieva et al.[21] used the GPU to accelerate
the rendering and animation of particles for tensor field visualization.

Glyph based techniques suffer from some problems. For large
datasets the display can become too dense. In 3D datasets the discrete
glyphs and streamtubes often obscure each other. The local structure
that they convey can become lost. To overcome this problem, tra-
ditional volume visualization techniques [10, 28] such as raycasting
and splatting can be applied to a field of scalar indices of the tensors,
such as FA or tensor trace. These techniques reveal more large scale
structure than the glyph displays can. Kindlmann et al. [18] applied
these direct volume rendering concepts to scalar quantities computed
from tensor-valued data. Texture-based visualization techniques pro-
duce an image in which texture orientation and frequency reflect the
tensor data. Line integral convolution (LIC), introduced by Cabral
and Leedom [7], is a process of blurring or convolving a noise im-
age with a curvilinear kernel aligned with the local streamline through
each voxel. The resulting image has highly correlated intensity values
along each streamline, and uncorrelated intensity across streamlines.
Hsu [14] first applied LIC to DT-MRI images of the myocardium. Mc-
Graw et al. [31] extended this technique by combining the LIC texture,
a color computed from the PDD field, and the FA image to produce an
image reflecting diffusion direction and anisotropy (Figure 2). Zheng
and Pang [60] introduced a technique called ’HyperLIC’ which allows
all eigenvectors of D to influence the texture. Preusser et al. [53]
have used an anisotropic reaction-diffusion equation to visualize vec-
tor fields. Laidlaw et al. [23] have proposed a hybrid approach: ren-
dering textured glyphs. The resulting glyphs can portray all 6 unique
diffusion tensor components. The glyphs can be overlaid on a scalar
image (FA, for example) resulting in a layered image. Figures 1-2
show examples of tensor field visualization applied to a DT-MRI im-
age of the human brain. Note that streamline visualization can give
a misleading impression of certainty since only a single pathway be-

Fig. 1. Ellipsoid glyphs.

Fig. 2. Line integral convolution.

tween any two points is displayed. Although the PDD is usually a
goodestimate of the local fiber direction, many factors influence the
quality of that estimate. In the following section we review some of
the previously proposed methods for tracing fiber tracts from DT-MRI.

1.2 Tractography

Inferring the integrity and trajectory of white-matter pathways in the
central nervous system has long been a goal of DT-MRI analysis. De-
tecting the presence of nerve fiber bundles has been solved using scalar
measures of diffusion magnitude and anisotropy. In DT-MRI, indices
of anisotropy include FA [2], relative anisotropy [2], volume ratio [39]
and lattice anisotropy [39]. These local indices are computed from
the diffusion tensor at each voxel. FA has found success in clinical
applications, being used to detect tissue damage after stroke [48]. FA
is attractive for its ease of computation and display, and robustness to
noise in the data. Scalar indices make it possible to detect changes in
neuronal fiber integrity, but do not indicate the degree to which con-
nectivity has been compromised. They also do not describe the long-
range implications of the change in anisotropy, such as which regions
of the brain have been affected. Tractography is the process of estimat-
ing white-matter fiber pathways. Early tractography methods [34, 15]
were similar to streamline computations in fluid mechanics. Fibers are
traced by repeatedly stepping in the local direction of principal dif-
fusion. Such tractography methods are confounded by the presence
of fiber crossings or bifurcations, and the algorithms usually handle
these cases by simply halting the tracking progress. Some algorithms
[41, 42] use regularizing assumptions to make the tracking robust to
the presence of noise and isotropy. Another approach [25] is to allow
the tensor to merely deflect the current fiber direction.

Many recently proposed tractography algorithms are probabilistic
in nature. While such techniques may generate families of possible

fiber tracts, others eschew the fiber representation and instead produce
probabilities of connectivity. Stochastic algorithms have an advan-
tage over deterministic techniques in that it is more natural to take un-
certainty into account. Uncertainty in diffusion tractography is due
to a number of sources, including partial voluming and noise. By
incorporating uncertainty or randomness into the tractography algo-
rithm it is possible to compute and display distributions of fiber paths.
Even though it may be possible within the stochastic framework to
determine the most probable fiber path between two points, less prob-
able paths may correspond to actual connectivity. The full distrib-
ution of possible fiber paths may have much clinical value. Boot-
strap techniques have been used to generate distributions of diffusion
weighted image intensities which lead to distributions of fiber tracts
[24]. Bayesian models have enjoyed popularity in the context of fiber
tracking due to the ability of these models to incorporate prior knowl-
edge. Prior knowledge of fiber bending angle can be used to allow
DT-MRI tractography to continue through voxels with low anisotropy.
Monte Carlo techniques have been explored by [20, 37, 4, 38] to
solve for connectivity probabilities which are formulated as a high-
dimension integral. Importance sampling was used by [6] to generate
large numbers of fiber tracts and visualize their dispersion. Mangin et
al. [29] compute a sparse connectivity matrix in a stochastic frame-
work.

The drawbacks of the current methods are that (a) they require
time-consuming computation or stochastic simulation or (b) the result-
ing output only describes connectivity between a sparse set of image
voxels. Algorithm run-time is a considerable hindrance to practical
use. Sparse connectivity matrices may miss critical regions of im-
paired connectivity corresponding to minor fascicles. The ability to
efficiently compute full, global connectivity will allow DT-MRI to be
used in new applications, both clinically and in further research.

1.3 GPGPU for Medical Image Processing

Modern graphics hardware can be used to accelerate the display of
medical image volume data [22]. This hardware is also capable of
speeding-up the processing of the data prior to visualization. In the
field of medical image processing, general purpose graphics process-
ing unit (GPGPU) algorithms have been used for filtering [46], seg-
mentation [45, 8, 26, 27], registration [49, 50] and image reconstruc-
tion [58, 47, 51]. In the context of DT-MRI, the GPU has been uti-
lized for particle [21] and streamtube [43, 32] based visualization tech-
niques, but to date, nobody has performed stochastic tractography or
connectivity matrix computation on the GPU.

The fragment processors of the GPU excel at performing indepen-
dent data-parallel operations. By implementing the fiber generation on
the GPU we can generate many fibers in parallel. Memory limitations
on the GPU are one constraint that limits the use of techniques for large
datasets. Typically, the GPU may have between 256MB and 1GB of
RAM. An overview of the capabilities of modern GPUs and common
GPGPU programming techniques is given by Owens et al.[36].

2 FIBER PATH MODEL

The fiber path is modeled as a sequence of displacement vectors
v1:n = {v1,v2,v3...vn}. A fiber path starting at a pointx0 consists of
the points{x0,x1,x2...xn} wherex j = x0 + ∑k

i=1 vi. We will assume
that the path is arc-length parameterized so that all of the stepsvi are
of equal length. Given the diffusion tensor field,D(x), there is a prob-
ability associated with each step along the path. In order to impose
a smoothness constraint on the path we will also condition the step
probability on the previous step direction. So the path has a Markov-
ian property which can also be seen as a mechanical constraint which
prevents the fiber from bending too sharply. The probability of dis-
placementvi given the diffusion tensor,D, at the current location and
the previous displacement,vi−1 can be denotedp(vi|D,vi−1). From
this we may compute the probability associated with the entire path as
the joint probability of the individual steps:

p(v1:n|D) = p(v1|D)
n

∏
i=2

p(vi|D,vi−1). (1)

Fig. 3. Fiber path vertices, x, and displacements, v.

2.1 Bayesian Formulation

In order to generate random fibers we will start from a point within
some voxel of interest, and draw random stepsvi from some distrib-
ution. This distribution will depend on the data, D, and the previous
step direction,vi−1. By Bayes’ rule we have

p(vi|D,vi−1) =
p(vi−1)p(vi|vi−1)p(D|vi,vi−1)

p(D)p(vi−1|D)
. (2)

Assuming D andvi−1 are independent we havep(D|vi,vi−1)= p(D|vi)
andp(vi−1|D) = p(vi−1). Then the posterior probability becomes

p(vi|D,vi−1) =
p(vi|vi−1)p(D|vi)

p(D)
. (3)

Applying Bayes’ rule again we can write

p(D|vi) =
p(D)p(vi|D)

p(vi)
. (4)

The posterior probability can now be rewritten as

p(vi|D,vi−1) =
p(vi|vi−1)p(vi|D)

p(vi)
. (5)

When we have no information about the data or previous direction
we assume that all path directions are equally probable, sop(vi) =
constant.

2.2 Parametric likelihood and prior

We will use a very simple model for the likelihoodp(vi|D). We use
the same model which governs the water diffusion itself. This model
does not take into account noise in the diffusion weighted images or
the associated uncertainty in the eigenvector computation. In this case,
the posterior distribution represents smoothed water molecule paths.

The molecular diffusion displacement pdf is simply a zero-mean
normal distribution, p(vi|D) = N(0,D(x)) with covariance matrix
equal to the diffusion tensor at that voxel. The tractography problem
can be further simplified by assuming a constrained model of diffusion
[13]. This model will result in reduced computational and memory
requirements when implemented. The constrained diffusion model re-
sults in rotationally symmetric diffusion ellipsoids where the axis of
symmetry is parallel to the dominant eigenvector,e1. Given a tensor,
D, with eigenvalues{λ1,λ2,λ3}, it can be shown [12] that the nearest
constrained tensor (in the sense of the Frobenius norm) has eigenval-
ues{λ1,

λ2+λ3
2 ,

λ2+λ3
2 }. The constrained tensor S can then be written

in terms of eigenvalues and eigenvectors of D as

S = λ1e1eT
1 +

λ2 +λ3

2
(e2eT

2 + e3eT
3). (6)

So we have

p(vi|D) = cexp(−
1
2

vT
i S−1vi) (7)

whereS−1 is the inverse of the constrained tensor S(D), andc is a nor-
malization constant. Note thatS−1 and D have the same eigenvectors,

and the eigenvalues ofS−1 areλ̂1 = 1
λ1

andλ̂2 = λ̂3 = 2
λ2+λ3

. Using

the fact thatI = e1eT
1 + e2eT

2 + e3eT
3 , we can write

S−1 = λ̂1e1eT
1 + λ̂2(I − e1eT

1). (8)

SincevT e1eT
1 v = (v · e1)

2, the likelihood may be written as

p(vi|D) = cexp(−
λ̂1− λ̂2

2
(vi · e1)

2−
λ̂2

2
||vi||

2). (9)

For arc-length parameterized fibersλ̂2
2 ||vi||

2 is constant with respect to
vi and can be absorbed into the normalization constantc. Equation (9)
only requires one eigenvector and 2 eigenvalues to compute probabili-
ties using the constrained diffusion model. Alternately, we could pass
the full tensor and computee1,λ1,λ2 andλ3 on the GPU, as done by
Kondratieva et al. [21].

The constrained model is not an accurate representation of planar
anisotropic diffusion (λ1 ≈ λ2 > λ3). In this case the oblate tensor
can be more accurately modeled asS = λ1+λ2

2 (e1eT
1 +e2eT

2)+λ3e3eT
3 ,

whereS−1 has eigenvectors̃λ1 = λ̃2 = 2
λ1+λ2

and λ̃3 = 1
λ3

. Model
selection can be governed by the linear and planar anisotropy measures
(cl andcp) given by Westin [57]. An adaptive model for the likelihood
is

p(vi|D) = cexp(−
δ
2

(vi ·µ)2), (10)

where

δ =

{

λ̂1− λ̂2, cl >= cp

λ̃3− λ̃2, cl < cp
, µ =

{

e1, cl >= cp
e3, cl < cp

. (11)

This is an antipodally symmetric distribution(p(vi|D) = p(−vi|D))
capable of representing both linear and planar anisotropic diffusion.

The prior distribution imposes a smoothness constraint on the
randomly generated paths. A very weak prior assumption is that
(vi · vi−1 > 0) so the fiber doesn’t turn more than 90 degrees between
successive steps. A stronger prior may be formulated as

p(vi|vi−1) = cexp(κ(
vi

||vi||
)T (

vi−1

||vi−1||
)). (12)

This is a von-Mises Fisher distribution [30] with concentration para-
meterκ and mean direction vi−1

||vi−1||
. The parameterκ controls how

tightly the distribution is dispersed about the mean direction. The
distribution is uniform over the sphere forκ = 0. Large values ofκ
give very concentrated distributions and result in smoother paths. For
this reason, we have chosen to makeκ a decreasing function of FA :
κ = k1(1−FA)+k2. The prior has a regularizing effect on fiber paths,
allowing them to continue tracking through areas of low FA.

Figure (4) shows probability profiles for the likelihood distribution
(left column) and prior distribution (middle column) for different de-
grees of anisotropy and oblateness/prolateness. When anisotropy is
high (top row) the likelihood is very tightly distributed about the mean
direction. As FA increases (from top to bottom), the likelihood be-
comes more dispersed. The likelihood is nearly a uniform distribution
in the case whereFA = 0.005. The prior distributions were computed
using a value ofκ corresponding tok1 = 5.0, k2 = 1.0. As diffusion
becomes more isotropic,κ increases, and the prior becomes more in-
formative (less uniform).

2.3 Parametric posterior
Given the parametric forms for the likelihood (Equation 9) and prior
(Equation 12)from the previous section we may write the posterior as

p(vi|D,vi−1) = cexp[−
δ
2

(vi ·µ)2 +κ(
vi

||vi||
)T (

vi−1

||vi−1||
)]. (13)

The posterior distributions shown in the right column of Figure (4)
reflect the varying influence of the prior distribution. When FA is high,

Fig. 4. Displacement probability surfaces of the likelihood (left), prior
(middle), and posterior (right) distributions for four cases (top to bottom):
FA = 0.9 (prolate) , FA = 0.4 (prolate), FA = 0.46 (oblate) and FA = 0.005.

the prior merely selects one of 2 antipodal directions, keeping the fiber
from turning 180◦ in a single step. When FA is low, the mean direction
of the posterior is greatly influenced by the prior. In section 3 we
will describe how we draw samples from the posterior distribution to
simulate fibers.

2.4 Connectivity Map
A simple connectivity map may be computed by seeding paths in a
user-selected voxel and accumulating the number of randomly gener-
ated paths passing through each voxel in the dataset. As the algorithm
progresses more random fibers will be generated. Let the number of
fibers passing through voxelx be denoted asn(x) and the total num-
ber of generated fibers beN. The probability that the seed voxelx0 is
connected to each voxelx can be approximated by

pconnect(x0 → x) ≈
n(x)
N

. (14)

This is the model used by Friman et al. [12] under the assumption that
all fiber lengths are equally probable. This technique is comparable
to integrating over the high dimensional space of all possible fibers by
rejection sampling. AsN increases we sample more of the space of all
possible fibers, and the approximation in (14) becomes more accurate.
By implementing the fiber generation on the GPU we can generate
many more fibers, and better estimate connection probabilities.

3 GPU IMPLEMENTATION

The connectivity model described above is implemented in two stages
using the OpenGL shading language [44]. Recent GPU improvements

have enabled wider general purpose applications. High precision com-
puting is supported through 32 bit floating point render targets. The
ability to render to a slice of a 3D texture simplifies processing of vol-
umetric data. Support for multiple render targets allows fragment pro-
grams to write to multiple destination buffers. Such features are avail-
able on new hardware, but may be supported through vendor-specific
extensions on older hardware. There are still several challenges asso-
ciated with the task at hand:

• The GPU cannot generate pseudorandom numbers. Although
there is a noise function exposed in the fragment programming
languages it is not implemented on current hardware.

• There is no random-access read-write memory on the GPU.
Fragment programs generally read from textures and write to
predetermined locations in the framebuffer.

• Small memory size - typically from 256MB up to 1GB.

The first issue can be overcome by packing pregenerated random num-
bers into a texture. In this case we have chosen to place vectors with
directions uniformly distributed over the unit sphere into a 3D texture.
The second issue is commonly addressed in many GPGPU algorithms
by ”ping-ponging”. This involves rendering textured fragments into a
framebuffer object bound to another texture. After each iteration the
input texture and framebuffer texture are swapped. This allows the
results that were rendered to the framebuffer object to be read back
into the fragment program on the next iteration. The swap is done by
changing binding points, not by copying data. In fact, our framework
can be implemented without any slow copying operations. The ”ping-
ponging” operation does, however, double the required memory for
variables, so for large datasets copying may be necessary. The finalis-
sue is addressed in part by the simplified model of diffusion which re-
sulted in Equation (13). Fiber tracking with this model requires mem-
ory access to the vectorµ and scalar parameters FA andδ at each
voxel. For a 256× 256× 256 dataset stored at 32 bit precision the
memory requirements are 320MB. The full tensor model requiresD
and FA (as termination criterion) resulting in 448MB. Recent support
for half precision floating point texture formats can reduce the mem-
ory requirements for both models. Evaluating (13) also requires fewer
arithmetic operations than the corresponding unconstrained model.

The GPU tractography implementation works in three stages : fiber
path simulation, connectivity computation, and display. The stages
and the data flow are presented in Figure (5). Some initialization is
required on the host CPU before the GPU-based algorithm can run.
Eigenvalues and eigenvectors ofD are computed on the CPU using
Jacobi iteration. Then the required OpenGL textures and buffer objects
are created and initialized. The dimensions of the texturesxi−1,xi,vi−1
andvi are all the same, and depend on how many fibers we wish to
simulate. We use square (m×m), power-of-2 textures since these are
still generally more efficient on modern hardware. The eigenvector
µ and the parametersκ,δ are stored in 3D textures having the same
dimensions as the dataset. A frame buffer object (FBO) is created
so that the rendering in stages 1 and 2 is output to the appropriate
buffer, not the screen. The vertex buffer object (VBO) is created to
holdm2 vertices, and bound toGL_PIXEL_PACK_BUFFER. We will
essentially be rendering to a vertex buffer object which we will later
draw as point sprites. The fragment programs at each stage will be
described in subsequent sections.

Stage 1 Update particle positions and displacements.

• Using stochastic interpolation, compute parameters of the poste-
rior distributionµ ,δ ,vi−1,κ .

• Draw a random displacement from posterior distribution.

• Compute displacementsvi, new particle positionsxi and update
fiber length.

• Reinitialize particle position ifxi is outside of the white/gray
matter domain or length threshold has been exceeded.

Fig. 5. Overview of GPU computations. Stages are executed in order
from top to bottom. Diamonds labeled FP and VP represent fragment
programs and vertex programs. Data stores are labeled inside with vari-
able names and outside with the OpenGL buffer type. The variables
xi−1 and xi are particle positions, vi−1 and vi are the fiber displacement
vectors. Inputs to stages 1 and 3 are textures, the input to stage 2 is a
vertex buffer object (VBO). Outputs from stages 1 and 2 are rendered
into off-screen frame buffer objects (FBOs).

Stage 2 Accumulate connectivity using additive alpha blending.

• If particle has crossed a voxel boundary, then the point sprite
color is white, alpha =α .

• Otherwise the point sprite color is black, alpha = 0.

Stage 3 Visualize connectivity maps.

• If C(x) is nonzero, then compute fragment intensity.

• Otherwise render voxel as black, alpha = 0;

3.1 Stage 1
The first two stages are common to many GPU-based particle advec-
tion schemes [19, 21]. The viewport size is set tom × m, the size
of texturexi−1. A full-screen textured quadrilateral is drawn so that
one fragment is generated per particle. Multiple render targets are at-
tached to the FBO at this stage so that we can update position and
displacement variables in a single fragment program. Buffersxi−1 and
xi are swapped in ping-pong fashion after each iteration. The displace-
ments are stored in 4 channel RGBA textures and the 4th component
is used to track the current fiber length. The novel aspect of our im-
plementation of stage 1 is that the interpolation and displacements are
stochastic, not deterministic. The fiber model is specified by the frag-
ment program at this stage. The model - deterministic, constrained or
Gaussian - may be changed by substituting the fragment program, and
uploading the appropriate data.

Stochastic Interpolation. Since the tensor data only exist on lat-
tice points of a discrete grid, some form of interpolation is necessary
when fiber path vertices fall between lattice points. It is possible to
interpolate between tensors and recompute the eigenvalues at each it-
eration, but this adds much computational burden. Stochastic interpo-
lation, however, reflects the underlying uncertainty in the data. This

scheme, suggested by Behrens et al. [5] randomly selects a tensor from
the nearest neighbors. In 1-D stochastic interpolation is done by

D(x) =

{

D(⌊x⌋), if U(0,1) > x−⌊x⌋);
D(⌈x⌉), otherwise. (15)

where⌊·⌋ and⌈·⌉ denote the floor and ceiling functions respectively,
andU(0,1) returns a random value uniformly distributed between 0
and 1. This means that two fiber paths which go through the same
point may compute different interpolated values. This technique can
be easily extended to higher dimensional interpolation. Stochastic in-
terpolation in 3D is done using the following sequence of GLSL code:

vec3 u = texture3D(umap, pos.xyz + offset.xyz);
vec3 f = fract(pos.xyz);
vec3 c = ceil(pos.xyz);
vec3 ipos = c - step(f, u);

whereumap is a texture containing uniform random values in each
color component andoffset is a random offset which changes each
iteration.

Generating random fiber directions. The problem of drawing
random samples from nonuniform distributions is discussed in detail
by Devroye [9]. Given a univariate probability density function,f (x),
the inversion method entails inverting the cumulative distribution to
obtain F−1(x). If U is uniform on the interval[0,1], thenF−1(U)
has distribution functionF and densityf . We can apply this con-
cept to multivariate distributions by discretizing the continuous density
function into binsf (ri), integrating to obtainF(ri), drawing a random
valueu from U(0,1), and finding the bin with associated directionri
such thatF(ri−1) < u ≤ F(ri).

Since it is not possible to generate pseudorandom numbers on the
GPU, we generate them on the CPU and pack the values into a 4 chan-
nel floating point texture. At each texel the (r,g,b) components are
unit vectors uniformly distributed over the unit sphere and the alpha
channel contains values from U(0,1). Uniformly distributed unit vec-
tors can be produced by drawing each component from a zero mean
normal distribution and normalizing the vector [9].

In the fragment program we discretize the posterior into a fixed
number of bins by drawingb randomly distributed unit vectors,
{r1,r2, ...rb} from the texture map and settingf (ri) = p(ri|D,vi−1).
The valueu is also read from the texture map, and the corresponding
vectorri is found by sequential search through the bins.

Drawing random values from the texture map involves computing
a texture coordinate which is also randomized. The texture coordi-
nate depends on particle positionxi−1 and a random offset which is
changed on the CPU and uploaded as a uniform variable. This way dif-
ferent particles will obtain a different sequence of sample directions,
and the sample directions will change each iteration.

Fiber tracking will cease when the path exits the dataset, when the
fractional anisotropy value falls below a certain threshold represent-
ing cerebro-spinal fluid (CSF) or when the length exceeds a threshold.
When a fiber can no longer be tracked, it is randomly reinitialized
within the initial voxel of interest. This way we track a constant num-
ber of fibers per iteration. The advecting particles (xi) can be visual-
ized directly after stage 1 as point sprites, but we instead compute a
connectivity map.

3.2 Stage 2

The data is kept entirely on the GPU for rendering by binding thexi
texture to a VBO and callingglDrawArrays. Rendering at stage
2 is also off-screen (to a frame buffer object with attached 3D tex-
ture C(x)). The previous position (xi−1) buffer is bound as a vertex
attribute. We use the vertex normal to hold the previous position, al-
though user-defined attributes may be used. The vertex buffer is ren-
dered as points with additive alpha blending and depth testing dis-
abled.

Since we may only render to a single slice of the attached 3D tex-
ture at a time, we accumulate connectivity values in a one voxel thick
slab at a time. This is done by setting the the projection matrix to be

orthogonal with the near clipping plane at front face of the current slab
and the far clipping plane at the back face of the slab. Stage 2 must be
repeated for each slab we wish to compute connectivity information
within.

The vertex program for this stage is given below:

gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);
vec3 ipos = floor(gl_Vertex.xyz);
vec3 iprev = floor(gl_Normal.xyz); //previous position
if(any(notEqual(ipos, iprev)))
{

gl_FrontColor = vec4(1.0, 1.0, 1.0, alpha);
}

The effect of this vertex program is that when a particle enters a
new voxel, the particle is colored white with a small constant alpha
value, α . Since additive alpha blending is used in stage 2,α , gets
added to the previous connectivity value. The particles are rendered
as 1 pixel points so only the voxel being entered has the connectivity
value incremented.

3.3 Stage 3

Stage 3 is a color mapping stage where colors are assigned to connec-
tivity values. Since the actual probability values are small, we use the
negative logarithm of the probabilities as a base intensity value. The
connectivity valuesC(x) in the floating point texture output from stage
2 are not actual fiber countsn(x), but scaled countsαn(x). The value
of N increases whenever a fiber is reinitialized. We do not keep track of
the total number of fibers generated during simulation since the reini-
tialization happens entirely on the GPU. If the initialized voxel was
x0, thenC(x0) = αN, then the connectivity probabilities can be recov-

ered aspconnect(x0 → x) =
C(x)
C(x0)

after the value ofC(x0) is read back
to the CPU and set as a uniform value of the fragment shader. Alter-
natively, to eliminate the need for a costlyglReadPixels call, the
value ofN can be set by the user as part of the color mapping process.

4 EXPERIMENTAL RESULTS

The connectivity algorithm described above was implemented two
ways. First, a C++ implementation was written for execution on
the host PC. Second, a GPU-based implementation was written using
OpenGL 2.0 and GLSL. Experiments were run on two systems. Sys-
tem 1 was desktop PC featuring Intel Quad Core QX6700 2.66 GHz
CPU and 4 GB RAM, and the GPU was a GeForce 8800 GTX with 768
MB VRAM. System 2 was notebook PC featuring Intel Core2 Duo
T7500 2.2 GHz CPU and 2 GB RAM, and the GPU was a GeForce
8600M GT with 256 MB VRAM. The dataset studied was a human
brain data set acquired from the Scientific Computing and Imaging
(SCI) Institute at the University of Utah [52]. The matrix size is
148× 190× 160, and the voxels measure 1.0mm× 1.0mm× 1.0mm.
We have used 16 bit half float textures to store the vectorµ . The er-
ror associated with this representation is minimal. For this dataset the
maximum error in any vector component was 0.0003, and the maxi-
mum angular error was 0.034◦ when compared with the 32-bit floating
point representation.

We can simulate many paths, exploiting the parallelism of the frag-
ment processors, but the size of the fragment programs is limited. To
eliminate branching, loops are unrolled by the compiler, when possi-
ble, which leads to a longer fragment program. Using too many bins
when discretizing the posterior distribution on the GPU leads to a dra-
matic drop in performance, suggesting that OpenGL has fallen back
to a software path for rendering because the fragment program has ex-
ceeded the allowable length. In this case it may be necessary to split
Stage 1 into multiple passes.

The connectivity images in Figures (6-9) were computed entirely on
the GPU and volume rendered. Connectivity values are overlaid on FA
images for reference. The connectivity values map to yellow for high
probability and red for lower probability. Figure (6) was the result of
seeding the fiber tracts near the pons within the brain stem. It is known
that this area is connected to the internal capsule from where fibers fan

out toward the cortical surface. The connectivity map reflects these
connections.

Fig. 6. Connectivity computed for seed point in brain stem after 850
iterations.

Figure (7) was generated by selecting the seed point to be within
the cingulum bundle. These fibers arch over the corpus callosum in
the anterior-posterior direction. Figure (8) shows the results of seed-

Fig. 7. Connectivity computed for seed point in cingulum bundle after
400 iterations.

ing in the occipitofrontal fasciculus. As expected, the connectivity
map shows that this structure connects the frontal and occipital lobes
of the brain. Figure (9) was the result of seeding fibers in the sple-

Fig. 8. Connectivity computed for seed point in occipitofrontal fasciculus
after 700 iterations.

nium and genu of the corpus callosum. This structure is known to
connect the left and right hemispheres of the brain, a fact reflected in
the connectivity map. The results shown in this section were com-
puted by simulating over 250000 particles (a 512× 512 buffer) ad-
vecting stochastically along fiber paths. The numerical results of the
reference CPU algorithm agree with those of the GPU algorithm to
within 3%. Note that these images are showing fundamentally differ-
ent things from the visualizations in Figures (1) and (2). The glyph vi-
sualization techniques emphasize the nature of the tensor at each voxel

Fig. 9. Connectivity computed for seed points in the splenium (left) and
genu of the corpus callosum (right) after 300 iterations .

GPU GPU CPU
m data size Stage 1 (sec) Stage 2 (sec)

128 128×128×128 0.005 0.021 0.375
256 128×128×128 0.015 0.043 1.508
512 128×128×128 0.028 0.130 6.041
128 256×256×256 0.004 0.039 0.377
256 256×256×256 0.008 0.083 1.517
512 256×256×256 0.030 0.257 6.065

Table 1. Timing results for GPU vs. CPU implementation on system 1.

and local structure. The techniques based on deterministic streamlines
can give a false impression of preciseness in tract location and direc-
tion. The high intensity regions in these images should not be inter-
preted as pathways. Adjacent voxels with high values do not reflect
high connectivity probabilities between these voxels, but instead re-
flect high connectivity probability between each voxel and the initial
seed voxel. Timing results for multiple data sizes and number of par-

Fig. 10. Rotated views of occipitofrontal fibers (left) and cingulum fibers
(right).

ticles are shown in Tables (1 and 2). The different sized datasets were
obtained by cropping or padding the dataset described above. For these
experiments the posterior distribution was discretized into 100 bins.
We have observed that the Stage 1 time is linear in the number of bins
and that Stage 2 times are unaffected by this choice. Rendering time
was constant in all cases (0.035 sec). As expected, Stage 1 times de-
pend strongly on the number of particles being simulated. Since Stage
2 involves rendering the particles to a 3D texture the same size as the
dataset, both data size and number of particles influence the timing.
Note that for the largest dataset the available GPU memory for system
2 was exceeded. Omitting this case (∗) we see a speedup of between
10× and 27× when using the GPU algorithm.

5 CONCLUSION

We have presented a fast DT-MRI connectivity mapping algorithm and
a framework for GPU implementation. This framework is general

GPU GPU CPU
m data size Stage 1 (sec) Stage 2 (sec)

128 128×128×128 0.010 0.021 0.459
256 128×128×128 0.033 0.049 1.836
512 128×128×128 0.119 0.158 7.398
128 256×256×256 0.012 0.036 0.462
256 256×256×256 0.033 0.093 1.848
512 256×256×256 0.121 0.745∗ 7.413

Table 2. Timing results for GPU vs. CPU implementation for system 2.

enough to accommodate fiber models other than the one presented
here. It was demonstrated that this model can reconstruct plausible
connectivity values, and that the GPU can compute these values much
faster than the CPU. Future work will involve refining the fiber model
and validating the connectivity results.

ACKNOWLEDGEMENTS

This work was supported in part by West Virginia University start-up
funding and Siemens Corporate Research. Brain dataset courtesy of
Gordon Kindlmann at the Scientific Computing and Imaging Institute,
University of Utah, and Andrew Alexander, W. M. Keck Laboratory
for Functional Brain Imaging and Behavior, University of Wisconsin-
Madison.

REFERENCES

[1] P. J. Basser. Inferring microstructural features and thephysiological state
of tissues from diffusion weighted images.NMR in Biomed., 8:333–344,
1995.

[2] P. J. Basser. New histological and physiological stainsderived from
diffusion-tensor MR images.Ann. N. Y. Acad. Sci., 820:123–138, 1997.

[3] P. J. Basser and C. Pierpaoli. Microstructural and physiological features
of tissue elucidated by quantitative-diffusion-tensor MRI. J. Magn. Re-
son. B, 110:209–219, 1996.

[4] T. Behrens, H. Johansen-Berg, M. Woolrich, S. Smith, C. Wheeler-
Kingshott, P. Boulby, G. Barker, E. Sillery, K. Sheehan, O. Ciccarelli,
A. Thompson, J. Brady, and P. Matthews. Non-invasive mapping of con-
nections between human thalamus and cortex using diffusion imaging.
Nature Neuroscience, 6(7):750–757, July 2003.

[5] T. Behrens, M. Woolrich, M. Jenkinson, H. Johansen-Berg, R. Nunes,
S. Clare, P. Matthews, J. Brady, and S. Smith. Characterization and prop-
agation of uncertainty in diffusion-weighted MR imaging.Magnetic Res-
onance in Medicine, 50:1077–1088, 2003.

[6] M. Bj örnemo, A. Brun, R. Kikinis, and C. F. Westin. Regularized sto-
chastic white matter tractography using diffusion tensor MRI. In Fifth
Intl. Conf. on MICCAI, volume 1, pages 435–442, 2002.

[7] B. Cabral and L. Leedom. Imaging vector fields using line integral con-
volution. In Proceedings of Siggraph, pages 263–270, New York, 1993.
ACM Press, New York.

[8] J. Cates, A. Lefohn, and R. Whitaker. GIST: an interactive, GPU-based
level set segmentation tool for 3d medical images.Medical Image Analy-
sis, 8(3):217–231, 2004.

[9] L. Devroye. Non-uniform random variate generation. Springer-Verlag
New York, 1986.

[10] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume Rendering. In
Computer Graphics, Proceedings of SIGGRAPH 88, volume 22, pages
65–74, 1988.

[11] F. Enders, N. Sauber, D. Merhof, P. Hastreiter, C. Nimsky, and M. Stam-
minger. Visualization of White Matter Tracts with Wrapped Streamlines.
IEEE Visualization, pages 51–58, 2005.

[12] O. Friman, G. Farneback, and C.-F. Westin. A Bayesian approach for
stochastic white matter tractography.Transactions on Medical Imaging,
25(8):965–978, 2006.

[13] O. Friman and C.-F. Westin. Uncertainty in fiber tractography. InEighth
International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI’05), Lecture Notes in Computer Science
3749, pages 107–114, Palm Springs, CA, USA, October 2005.

[14] E. Hsu. Generalized Line Integral Convolution Rendering of Diffusion
Tensor Fields.Proceedings of the International Society for Magnetic Res-
onance in Medicine (ISMRM), page 790, 2001.

[15] D. K. Jones, A. Simmons, S. C. R. Williams, and M. A. Horsfield. Non-
invasive assessment of axonal fiber connectivity in the human brain via
diffusion tensor MRI.Magn. Reson. Med., 42:37–41, 1999.

[16] G. Kindlmann. Superquadric tensor glyphs. InProceedings of IEEE
TVCG/EG Symposium on Visualization 2004, pages 147–154, May 2004.

[17] G. Kindlmann and C. Westin. Diffusion tensor visualization with glyph
packing. IEEE Transactions on Visualization and Computer Graphics,
12(5):1329–1335, 2005.

[18] G. L. Kindlmann and D. M. Weinstein. Hue-balls and lit-tensors for direct
volume rendering of diffusion tensor fields. InIEEE Visualization ’99,
pages 183–190, 1999.

[19] P. Kipfer, M. Segal, and R. Westermann. UberFlow: a GPU-based particle
engine.Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, pages 115–122, 2004.

[20] M. Koch, D. Norris, and M. Hund-Georgiadis. An investigation of func-
tional and anatomical connectivity using magnetic resonanceimaging.
Neuroimage, 16(1):241–250, 2002.

[21] P. Kondratieva, J. Kr̈uger, and R. Westermann. The application of GPU
particle tracing to diffusion tensor field visualization. In Proceedings
IEEE Visualization 2005, 2005.

[22] J. Kruger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering.Proceedings of the 14th IEEE Visualization 2003,
pages 287–292, 2003.

[23] D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J. Avalos, C. Readhead,
and R. E. Jacobs. Visualizing diffusion tensor images of the mouse spinal
cord. InProceedings of IEEE Visualization 1998, pages 127–134. IEEE
Computer Society Press, New York, October 1998.

[24] M. Lazar and A. Alexander. Bootstrap white matter tractography (BOOT-
TRAC). Neuroimage, 24(2):524–532, 2005.

[25] M. Lazar, D. M.Weinstein, J. S.Tsuruda, K. M.Hasan, K. Arfanakis,
M. E. Meyerand, B. Badie, H. A.Rowley, V. Haughton, A. Field,and
A. L.Alexander. White matter tractography using diffusion tensor deflec-
tion. Human Brain Mapping, 18:306–321, 2003.

[26] A. Lefohn, J. Cates, and R. Whitaker. Interactive, GPU-Based Level Sets
for 3D Segmentation.Medical Image Computing and Computer Assisted
Intervention (MICCAI), pages 564–572, 2003.

[27] A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker. A streaming narrow-
band algorithm: interactive computation and visualization of level sets.
Visualization and Computer Graphics, IEEE Transactions on, 10(4):422–
433, 2004.

[28] M. Levoy. Display of surfaces from volume data.IEEE Comput. Graph.
Appl., 8(3):29–37, 1988.

[29] J.-F. Mangin, C. Poupon, Y. Cointepas, D. Rivière, D. Papadopoulos-
Orfanos, C. A. Clark, J. Ŕegis, and D. L. Bihan. A framework based
on spin glass models for the inference of anatomical connectivity from
diffusion-weighted MR data.NMR in Biomedicine, 15:481–492, 2002.

[30] K. V. Mardia and P. Jupp.Directional Statistics. John Wiley and Sons
Ltd., New York, 2nd edition, 2000.

[31] T. McGraw, B. Vemuri, Z. Wang, Y. Chen, M. Rao, and T. Mareci. Line
integral convolution for visualization of fiber tract maps from DTI. In
Fifth Intl. Conf. on MICCAI, pages 615–622, Tokyo, Japan, 2002.

[32] D. Merhof, M. Sonntag, F. Enders, C. Nimsky, P. Hastreiter, and
G. Greiner. Hybrid visualization for white matter tracts using triangle
strips and point sprites.IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):1181–1188, 2006.

[33] B. Moberts, A. Vilanova, and J. van Wijk. Evaluation of Fiber Clustering
Methods for Diffusion Tensor Imaging.IEEE Visualization, pages 65–72,
2005.

[34] S. Mori, B. J. Crain, V. P. Chacko, and P. C. M. van Zijl. Three-
dimensional tracking of axonal projections in the brain by magnetic res-
onance imaging.Ann. Neurol., 45:265–269, 1999.

[35] S. Mori and P. C. van Zijl. Fiber tracking: principles and strategies - a
technical review.NMR Biomed, 15(7-8):468–480, 2002.

[36] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. Lefohn,
and T. Purcell. A survey of general-purpose computation on graphics
hardware.Computer Graphics Forum, 26(1 or 2):to appear, 2007.

[37] G. Parker and D. Alexander. Probabilistic monte carlo based mapping
of cerebral connections utilising whole-brain crossing fibre information.
In Proc. of Information Processing in Medical Imaging, pages 684–695,
2003.

[38] G. Parker and D. Alexander. Probabilistic anatomical connectivity de-
rived from the microscopic persistent angular structure of cerebral tissue.
Philosophical Transactions of the Royal Society B: Biological Sciences,

360(1457):893–902, 2005.
[39] C. Pierpaoli and P. J. Basser. Toward a quantitative assessment of diffu-

sion anisotropy.Magn. Reson. Med., 36:893–906, 1996.
[40] C. Pierpaoli, P. Jezzard, P. J. Basser, A. Barnett, and G. D. Chiro. Dif-

fusion tensor mr imaging of the human brain.Radiology, 201:637–648,
1996.

[41] C. Poupon, C. A. Clark, V. Frouin, J. Régis, I. Bloch, D. L. Bihan, and
J.-F. Mangin. Regularization of diffusion-based direction maps for the
tracking of brain white matter fascicles.Neuroimage, 12(2):184–195,
2000.

[42] C. Poupon, J. Mangin, C. Clark, V. Frouin, J. Regis, D. L.Bihan, and
I. Bloch. Towards inference of human brain connectivity fromMR diffu-
sion tensor data.Med. Image Anal., 5(1):1–15, 2001.

[43] G. Reina, K. Bidmon, F. Enders, P. Hastreiter, and T. Ertl. GPU-Based
Hyperstreamlines for Diffusion Tensor Imaging. InProceedings of EU-
ROGRAPHICS - IEEE VGTC Symposium on Visualization 2006, pages
35–42, 2006.

[44] R. Rost.OpenGL Shading Language. Addison-Wesley, 2006.
[45] M. Rumpf and R. Strzodka. Level set segmentation in graphics hardware.

Image Processing, 2001. Proceedings. 2001 International Conference on,
3, 2001.

[46] M. Rumpf and R. Strzodka. Nonlinear diffusion in graphics hardware.
Proceedings of Eurographics/IEEE TCVG Symposium on Visualization,
pages 75–84, 2001.

[47] T. Schiwietz, T. Chang, P. Speier, and R. Westermann. MR image recon-
struction using the GPU.Proceedings of the SPIE, Advanced Optical and
Quantum Memories and Computing III., 6142:1279–1290, 2006.

[48] A. Sorensen, O. Wu, W. Copen, T. Davis, R. Gonzalez, W. Koroshetz,
T. Reese, B. Rosen, V. Wedeen, and R. Weisskoff. Human acute cerebral
ischemia: Detection of changes in water diffusion anisotropy by using
MR imaging.Radiology, 212:785–792, 1999.

[49] R. Strzodka, M. Droske, and M. Rumpf. Fast image registration in DX9
graphics hardware.Journal of Medical Informatics and Technologies,
6(43-49):143, 2003.

[50] R. Strzodka, M. Droske, and M. Rumpf. Image Registration by a Reg-
ularized Gradient Flow. A Streaming Implementation in DX9 Graphics
Hardware.Computing, 73(4):373–389, 2004.

[51] T. Sumanaweera and D. Liu. Medical image reconstruction with the FFT.
GPU Gems 2: Programming Techniques for High-Performance Graphics
and General-Purpose Computation, 2005.

[52] The Scientific Computing and Imaging (SCI) Institute, University of
Utah. Diffusion tensor MRI datasets (http://www.sci.utah.edu/∼gk/DTI-
data/). 2000.

[53] T.Preußer and M. Rumpf. Anisotropic nonlinear diffusion in flow visual-
ization. InIEEE Visualization, pages 325–332, 1999.

[54] D. Werring, C. Clark, G. Barker, D. Miller, G. Parker, M.Brammer,
E. Bullmore, V. Giampietro, and A. Thompson. The structural andfunc-
tional mechanisms of motor recovery: complementary use of diffusion
tensor and functional magnetic resonance imaging in a traumatic injury
of the internal capsule.Journal of Neurology, Neurosurgery & Psychia-
try, 65(6):863–869, 1998.

[55] D. Werring, C. Clark, G. Barker, A. Thompson, and D. Miller. Diffusion
tensor imaging of lesions and normal-appearing white matter inmultiple
sclerosis.Neurology, 52:1626, 1999.

[56] D. Werring, A. Toosy, C. Clark, G. Parker, G. Barker, D. Miller, and
A. Thompson. Diffusion tensor imaging can detect and quantifycorti-
cospinal tract degeneration after stroke.J Neurol Neurosurg Psychiatry,
69:269–272, 2000.

[57] C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and
R. Kikinis. Processing and visualization of diffusion tensor MRI. Medical
Image Analysis, 6(2):93–108, 2002.

[58] F. Xu and K. Mueller. Accelerating popular tomographic reconstruction
algorithms on commodity pc graphics hardware.IEEE Transactions on
Nuclear Science, 52(3):654–663, 2005.

[59] S. Zhang, Ç. Demiralp, and D. H. Laidlaw. Visualizing diffusion tensor
MR images using streamtubes and streamsurfaces.IEEE Transactions on
Visualization and Computer Graphics, 9(4):454–462, 2003.

[60] X. Zheng and A. Pang. Hyperlic. InVIS ’03: Proceedings of the 14th
IEEE Visualization 2003 (VIS’03), page 33, Washington, DC, USA, 2003.
IEEE Computer Society.

