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Abstract. High angular resolution diffusion imaging (HARDI) permits
the computation of water molecule displacement probabilities over a
sphere of possible displacement directions. This probability is often re-
ferred to as the orientation distribution function (ODF). In this paper
we present a novel model for the diffusion ODF namely, a mixture of
von Mises-Fisher (vMF) distributions. Our model is compact in that it
requires very few variables to model complicated ODF geometries which
occur specifically in the presence of heterogeneous nerve fiber orienta-
tion. We also present a Riemannian geometric framework for computing
intrinsic distances, in closed-form, and performing interpolation between
ODFs represented by vMF mixtures. As an example, we apply the intrin-
sic distance within a hidden Markov measure field segmentation scheme.
We present results of this segmentation for HARDI images of rat spinal
cords – which show distinct regions within both the white and gray mat-
ter. It should be noted that such a fine level of parcellation of the gray
and white matter cannot be obtained either from contrast MRI scans or
Diffusion Tensor MRI scans. We validate the segmentation algorithm by
applying it to synthetic data sets where the ground truth is known.
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1 Introduction

High angular resolution diffusion imaging (HARDI) has become a popular dif-
fusion imaging mechanism lately in the research communities of MR imaging
and analysis. Diffusion tensor models have been used in the past to explain the
local geometry of the diffusivity function characterizing the tissue being imaged.
A diffuson tensor model primarily assumes a single dominant direction of dif-
fusion and hence is well suited for modeling tissue that exhibits unidirectional
diffusivity behavior. In general however, more general mathematical models are
needed to represent the diffusivity function which may exhibit X-shaped local
geometry corresponding to crossing fibers or bifurcating fibers. The DTI model
is well known for its deficiency in coping with such complex local geometries
and HARDI is one way to overcome this problem. Several research articles have
been published that describe techniques for processing HARDI data sets. For
example, Tuch [1, 2] developed the HARDI acquisition and processing and later
Frank [3] used the spherical harmonics expansion of the HARDI data to charac-
terize the local geometry of the diffusivity profiles. Neither one of these methods
address the issue of segmenting the field of probability distributions. A level-set
approach to segmenting HARDI data has been given by Jonasson et al. [4].

Several research groups have actively pursued the problem of segmenting DTI
data sets. Some have used scalar-valued maps computed from DTI and applied
standard level-set based scalar image segmentation methods to them [5] while,
Feddern et al., [6] extended the geodesic active contour model to accomodate ten-
sor field segmentation. A region-based active contour was used with a Frobenius
norm based tensor distance in Wang et. al., [7] and Rousson et. al., [8] developed
an extension of the classical surface evolution scheme by incorporating region
based statistics computed from the tensor field. Recently, Wang et. al., [9, 10]
introduced an affine invariant tensor dissimilarity and used it to reformulate the
active contour implementation of the Mumford-Shah piecewise constant version
[11] and the piecewise smooth version [12] of the segmentation model to suit
tensor field segmentation. The piecewise constant DTI segmentation model was
generalized by Lenglet et al. [13] to the case of regions with piecewise constant
non-unit variances.

Since HARDI data have the ability to resolve fiber crossings, it would be nat-
ural to expect a better parcellation of the fiber connectivity pattern than that
obtained using DTI. In this paper, we will present results on synthetic data sets
that will demonstrate the truth of this hypothesis. We will also present segmen-
tation results on real HARDI data acquired from a rat spinal cord. These results
were visually validated, but quantitative validation of real data segmentation
will be the focus of future work.
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2 Modeling Diffusion

In DTI, data are modeled in terms of the diffusion tensor. The apparent diffusion
coefficient is a quadratic form involving the tensor, and the diffusion displace-
ment pdf is a Gaussian with covariance matrix equal to a constant multiple of
the inverse of the tensor. For HARDI, we will model neither the diffusivity nor
the displacement pdf, but will instead model the diffusion ODF.

In order to design efficient algorithms, we wish to find a continuous parametric
model for the ODF with a small number of parameters, which is capable of
describing diffusion in the presence of intravoxel orientational heterogeneity. To
put our proposed model in perspective we will first review some models for
diffusion used in previous literature.

Gaussian mixture models (GMM) are one of the most commonly used models
for multimodal distributions. The GMM is a convex combination of Gaussian
density functions, N(x|µi, Σi). Each Gaussian component is characterized by a
3 × 3 covariance matrix, Σi, which has 6 independent elements. For diffusion
data, all components have a mean µ = 0.

The GMM, P (x) =
∑m

i=1 wiN(x|µi, Σi), where m is the number of components
in the mixture, can describe the 3-dimensional diffusion displacement pdf. Each
Gaussian component has its own 3× 3 covariance matrix, Σi, which will have 6
independent elements. For diffusion data, all components will have µi = 0.

However, we are primarily concerned with the directional characteristics of diffu-
sion. This can be characterized by the marginal distribution, P (θ, φ) obtained by
integrating over the radial component of P (x). Additionally, with the GMM, we
must be careful to impose the positive-definiteness constraint on the covariance
matrix of each component of the mixture. Previously Fletcher and Joshi [14]
have described geodesic analysis on the space of diffusion tensors. The analy-
sis includes an algorithm for computing the intrinsic mean of diffusion tensors.
Later in this paper we will describe a similar analysis on the space of ODFs
which will result in much simpler algorithms.

The spherical harmonic (SH) expansion is a useful representation for complex-
valued functions on the sphere. We can represent the diffusion with the expansion
d(θ, φ) =

∑L
l=0

∑l
m=−l al,mYl,m(θ, φ), where Yl,m are the spherical harmonic

basis functions. Note that the coefficients al,m are complex-valued, so that the
storage requirement is double that of an equivalent model with real variables,
and the arithmetic operations are more costly as well. Frank [15] suggests an ex-
pansion truncated at order L = 4 (or higher) to describe multiple fiber diffusion.
This requires at least 15 complex-valued coefficients per voxel. In general, the
order L expansion can describe diffusion with L/2 fiber directions. Özarslan [16]
has developed an extremely fast algorithm for computing a SH expansion for the
ODF given a SH expansion of the diffusivity. Chen et al. [17] have previously
presented a technique for estimating a regularized field of apparent diffusion
coefficient (ADC) profiles as a SH expansion.
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The diffusion tensor imaging model described previously represents diffusion
using a rank-2 tensor. Diffusion has been described more generally by Özarslan
et al. [18, 19] by considering tensors of higher rank. A cartesian tensor of rank I
will, in general, have 3I components. Due to symmetry, the number of distinct
components in a high rank diffusion tensor will be much smaller. By generalizing
the concept of trace, it is possible to quantify the anisotropy of diffusion described
by tensors of arbitrary rank [20].

Since tensors of odd rank imply negative diffusion coefficients, only even rank
tensors are appropriate for describing diffusion. For diffusion tensors of rank 4,6,
and 8, the number of distinct components are 15, 28, and 45 respectively. It is
not clear how to extract fiber directions from higher rank tensors.

2.1 von Mises-Fisher Mixture Model

Many statistical approaches involve data over ℜn. Since we are dealing with
multivariate data over the sphere, S2, we wish to express the data using distri-
butions over this domain. Distributions over spherical domains are discussed in
detail by Mardia and Jupp [21].

In this section we will present a directional model for the ODF in terms of
von Mises-Fisher distributions. This model has fewer variables than the previ-
ously discussed models, allows the fiber directions to be extracted easily, involves
constraints which are simpler to satisfy, and leads to a closed-form for several
useful measures. The von Mises distribution over the circle can be generalized

Fig. 1. Example vMF distributions (κ = 1, 5, 15, 25) with same mean direction, µ.

to spheres of arbitrary geometry by keeping the log of the distribution linear in
the random variable x as in

Mp(x|µ, κ) =
(κ

2

)p/2−1 1

2πΓ (p/2)Ip/2−1(κ)
exp(κµT x) (1)

where |x| = 1 and |µ| = 1, κ is the concentration parameter and Ik denotes the
modified Bessel function of the first kind, order k. The concentration parameter,
κ, quantifies how tightly the function is distributed around the mean direction
µ. For κ = 0 the distribution is uniform over the sphere. The distributions are
unimodal and rotationally symmetric around the direction µ.
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For p = 3 the distribution is called the von Mises-Fisher (vMF) distribution,
and can be written

M3(x|µ, κ) =
κ

4π sinh(κ)
exp(κµT x). (2)

A useful characteristic of the vMF distribution is that the product of two vMFs
may also be written as an unnormalized vMF. Since

exp(κiµ
T
i x) exp(κjµ

T
j x) = exp((κiµi + κjµj)

T x) (3)

we have

M3(x|µi, κi)M3(x|µj , κj) ∝ M3(x|(
κiµi + κjµj

ρ(κi, κj , µi, µj)
), ρ(κi, κj , µi, µj)),

ρ(κi, κj , µi, µj) =
√

κ2
i + κ2

j + 2κiκj(µi · µj). (4)

Since the vMF distribution is unimodal, we require a combination of these dis-
tributions to represent a general ODF. In fact, since the ODF is antipodally
symmetric, we will need a mixture to describe diffusion in even a single fiber
region. Since the antipodal pair have µ1 = −µ2, we can specify a mixture with
only 3 variables per component: the two spherical coordinate angles describing
µ, and κ. The general ODF will have the form

ODF (x) =
m

∑

i=1

wiM3(x|µi, κi) (5)

where m is the number of components in the mixture. Choosing a convex com-
bination of vMF distributions, the weights have the property

∑m
i=1 wi = 1 and

wi ≥ 0. This ensures that the mixture still has nonnegative probabilities, and
will integrate to 1. Since vMF distributions obey the property (3), the product
of two von Mises-Fisher mixture models is also proportional to a vMF mixture
model.

It can also be shown [22] that the Renyi entropy (order α) of the vMF mixture
has closed form (for certain values of α). This is useful since the entropy of the
mixture model can be used as measure of anisotropy. It can also be shown, using
property ??, that there is a closed-form equation for the L2 distance between
two vMF mixtures.

2.2 Fitting the vMF Mixture

In this section we describe a nonlinear least-squares technique for computing
the vMF mixture model. We will assume that we have been given a discrete set
of samples of the ODF. We seek a mixture of vMFs which agrees with these
samples in the least-squares sense while obeying the constraints imposed on the
vMF parameters.
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Using the spherical coordinates x = [cos θ sinφ, sin θ sin φ, cos φ]T and µ = [cos α sinβ, sin α sin β, cos β]T ,
we may write the vMF in polar form:

M3(θ, φ|α, β, κ) =
κ

4π sinh(κ)
exp(κ[cos φ cos β + sin φ sinβ cos(θ − α)]) (6)

The energy function we will seek to minimize is

min
w,κ,µ

N
∑

i=1

[p(xi) −
m/2
∑

j=1

wj

2
(M(xi|κj , µj) + M(xi|κj ,−µj))]

2

−γ1

m/2
∑

j=1

log(wj) + γ2(1 −
m/2
∑

j=1

wj)
2 − γ3

m/2
∑

j=1

log(κj) (7)

where the first term is the least-squares error. Note that we are fitting the data,
p(x), to a mixture of m/2 antipodal vMF pairs. The second term, with weight
γ1, is a barrier function which constrains the weights, wj , to be greater than
zero. The third term, with weight γ2, constrains the sum of the weights to be
1. The fourth term, with weight γ3, is a barrier function which constrains the
concentration parameters, κj , to be greater than zero. Equation (7) is solved
using Levenberg-Marquardt.

It is likely that most voxels will fit a mixture of 4 vMF pairs (4 fiber orientations
per voxel) quite well. In this case the mixture of 8 vMF distributions requires
only 15 real-valued parameters to completely describe due to pairwise antipodal
symmetry. Once we have fit the vMF mixture to the ODF, we can directly
extract the fiber directions, {µ}.

3 The Space of vMF Distributions

The von Mises-Fisher distribution is parameterized by two variables: the con-
centration parameter κ ∈ ℜ+ and µ ∈ S2. For each point in ℜ+ × S2 there is
a corresponding vMF distribution. The curved geometry of this space of vMF
distributions will influence how we formulate distances, geodesics, interpolation
functions and means. A general treatment of the geometry of the spaces formed
by parametric distributions is given by Amari [23, 24].

3.1 Riemannian Geometry

The space of vMF distributions forms a differentiable manifold, a space which
locally behaves like Euclidean space. A Riemannian manifold is a smooth mani-
fold supplied with a Riemannian metric. This metric takes the form of an inner
product, 〈v, w〉p defined on the tangent space, TpM , for each point, p, on the
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manifold, M . The Riemannian metric allows us to measure the length of a curve,
γ(t) between two points, p, q on M .

L(γ) =

∫ q

p

(〈γ′(t), γ′(t)〉γ(t))
1

2 dt (8)

We will see how the notions of metric, distance, geodesics, interpolation and
mean are all related. The mean can be defined in terms of the distance, d, as
the point, µ, which satisfies

min
µ∈M

N
∑

i=1

d2(µ, xi). (9)

Interpolation can be defined in terms of a weighted mean, so we can interpolate
between the distributions p, q by minimizing

min
µ∈M

td(µ, p) + (1 − t)d(µ, q). (10)

3.2 Riemannian Exp and Log Maps

Let M be some manifold, and TpM be the tangent space at p ∈ M . Consider all
geodesics going through the point, p, on M . Given a tangent vector, v ∈ TpM ,
it is known that there is a unique geodesic, γ, such that γ(0) = p, and γ′(0) = v.
If the manifold is geodesically complete, as it is in our case, the Riemannian
exponential map, Expp : TpM → M , can be defined as Expp(v) = γ(1).

The Riemannian log map is the inverse of the exponential map, Logp : M →
TpM . This map only exists in the region near p where the Exp map is invertible.
If the log map, Logp exists at q, we can write the Riemannian distance between
p and q as d(p, q) = ||Logp(q)||p.

3.3 Overview of the Geodesic Analysis

In this section we will give a brief overview of the geodesic analysis of the space of
vMF mixtures. The complete analysis is given by McGraw [22]. Similar analysis
has been presented by Fletcher and Joshi [14] for the space of diffusion tensors,
and by Fletcher et al. [25] for the space of shapes represented by medial atoms.
An outline of our analysis is given below:

1. Show that ℜ+ and S2 are symmetric spaces.

2. Show that M = ℜ+ × S2 is a symmetric space.

3. Find a transitive Lie group action on M .

4. Formulate arbitrary geodesics on M by applying the Lie group action to a
known geodesic.
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5. Formulate the Exp and Log maps for M .

A symmetric space [26] is a connected Riemannian manifold such that at each
point on the manifold there exists a distance preserving mapping which reverses
geodesics through that point. Such a mapping can be computed for the spaces
ℜ+ and S2. It can also be shown that the direct product of symmetric spaces is
also a symmetric space.

Now we can consider a vMF distribution to be a point in a symmetric space. If
M1 and M2 are two metric spaces and x1, y1 ∈ M1 and x2, y2 ∈ M2, then the
metric for M1 × M2 is d((x1, x2), (y1, y2))

2 = d(x1, y1)
2 + d(x2, y2)

2. This result
allows us to formulate distances between vMF distributions in terms of distances
on the spaces ℜ+ and S2.

The action of group G on M is called transitive if for any two x, y ∈ M there
exists a g ∈ G such that g · x = y. If the group action is transitive then M
can be shown to be a homogeneous space, and the action of G does not change
distances on M : d(g · p, g · q) = d(p, q). Geodesics on a homogeneous space can
then be computed by applying the group action to other geodesics.

3.4 Exp and Log Maps for vMF Distributions

We have used the fact that the direct product of symmetric spaces is also a
symmetric space to deduce that the space of vMF distributions is symmetric.
Now we will use this fact to compute the Exp map for vMFs. For spaces which
are expressed as direct products, we can write the exponential map as the direct
product of the exponential maps for the constituent spaces. For a single vMF,
let p = (κ, µ) represent the distribution M3(x|κ, µ), and v = (a, u) ∈ TpM be
the tangent vector. Then

Expp(v) =






κ exp(a), Q







ux
sin ||u||
||u||

uy
sin ||u||
||u||

cos ||u||













T

(11)

where Q is the orthogonal matrix which transforms µ to [0, 0, 1]T . The distance

(a) γ(0) (b)
γ(0.25)

(c)
γ(0.5)

(d)
γ(0.75)

(e) γ(1)

Fig. 2. Points along the geodesic between two vMF distributions.
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between vMFs can be written using the Log maps as

d((κi, µi), (κj , µj)) =

√

log(
κj

κi
)2 + (cos−1(µi · µj))2. (12)

An example of interpolation between two vMF distributions computed using the
Exp and Log maps is shown in Figure 2.

4 The Space of vMF Mixtures

Now, let us investigate the space of mixtures of vMF distributions. The mixture
model of m components is given in Equation (5). At first, it may seem that
we can simply extend the results of the previous section, and consider these
mixtures to come from the space (ℜ+×ℜ+×S2)m. However, considering the set
of weights as an point in (ℜ+)m ignores the convexity constraint on the weights.
The space (ℜ+)m includes linear combinations of vMFs whose weights do not
sum to 1.

Instead, we consider the square roots of the weights, {√w1...
√

wm}. The convex-

ity constraint now becomes
∑m

i=1

√
wi

2 = 1 with wi >= 0. So, we can consider
the space of the square roots of the weights to be a hypersphere, Sm−1. Then,
the space of mixtures with m components is Sm−1 × (ℜ+ × S2)m.

4.1 Exp and Log Maps for the Space of vMF Mixtures

For the vMF mixture, the exponential map is the direct product of the exponen-
tial maps for each vMF, and the exponential map for Sm−1. Since we are quite
unlikely to have more than 4 fiber orientations present within a single voxel, we
will consider further the case of mixtures having 8 antipodal pairs, or 4 inde-
pendent weights. In this case, the space of the square roots of {w} is the unit
hypersphere S3. Fortunately, the space S3 is well studied, since this is equivalent
to the space of unit quaternions. In fact, S3 forms a Lie group with respect to
the quaternion multiplication operator.

The exponential map for S3 is

Expp(v) =

(

sin(1
2 ||v||)
||v|| v, cos(

1

2
||v||)

)T

(13)

and the log map is given by

Logp(q) =
2 cos−1(qw)

|qvec|
qvec (14)

where qvec and qw are the vector and scalar parts respectively of the quaternion
q. We may now simply extend the results of the previous section to formulate
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(a) γ(0) (b)
γ(0.25)

(c)
γ(0.5)

(d)
γ(0.75)

(e) γ(1)

Fig. 3. Points along the geodesic between two vMF mixtures.

the distance between mixtures. An example of interpolation between mixtures
is shown in Figure 3.

Previously, the intrinsic mean problem has been solved with a gradient descent
algorithm [27, 25, 28]. The gradient of the energy function in Equation (9) can
be written in terms of the Log map. The algorithm, as given by Fletcher and
Joshi [25] is

Given: x1, ..., xN ∈ M
Find: µ ∈ M , the intrinsic mean
µ0 = x1

repeat

∆µ = τ
N

∑N
i=1 Logµt

(xi)
µt+1 = Expµj

(∆µ)
until ||∆µ|| < ǫ

5 Application to Segmentation

The mean and distance formulations discussed in the previous section can be
quite useful in the context of model-based segmentation. In this section we will
present results obtained using the hidden Markov measure field (HMMF) model,
though the model we have developed may be used with many other segmentation
schemes. This method, presented by Marroquin et al. [29], is a variation on the
Markov random field segmentation model, but has fewer variables and can solved
without slow stochastic methods. We use the gradient projection Newtonian
descent algorithm for finding the resulting optimization problem.

5.1 Results

The proposed vMF fitting technique was applied to a synthetic dataset. This data
simulated anisotropic Gaussian diffusion in a medium with a single dominant
orientation. The orientation varies spatially according to a sinusoidal function.
The result of the fitting is shown in Figure 4. The angular difference between the
known dominant orientation and the mean direction, µ, of the dominant vMF
component was computed at each voxel. The average angular error was 0.026
degrees. The results of the HMMF segmentation using the geodesic distance
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Fig. 4. vMF model fit to synthetic data.

applied to synthetic HARDI data are presented below. The first two datasets
are piecewise constant vMF fields with two regions. The results are presented
in Figure 5a and b. Figure 5a shows the segmentation obtained from a field

(a) (b) (c)

(d) (e) (f)

Fig. 5. HMMF segmentation of synthetic data.

where the two regions differ in direction. In Figure 5b, the regions differ only
in the concentration parameter, κ. There are no classification errors. In Figure
5c the results for segmentation of vMF mixtures is shown. The data consists of
several piecewise constant areas and a crossing. Here the algorithm has correctly
segmented each region and the crossing.

Next the algorithm was tested on curved regions. A synthetic dataset consisting
of a circular region with vMFs oriented tangentially was created. A two region
segmentation was computed in Figure 5d, and a three phase segmentation was
computed in Figure 5e. Note that the two phase segmentation has identified
nearly the entire circular region, even though the segmentation model is piecewise
constant. Three regions was sufficient to segment the entire circular region.
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The algorithm was then tested on a dataset with curved geometry and crossings.
The results are shown in Figure 5f. In this case, the algorithm was able to
discriminate between adjacent regions with multiple directions.

Finally the algorithm was applied to the lumbar region of a rat spinal cord. The
data were acquired at the McKnight Brain Institute on a 14.1 Tesla Bruker
Avance Imaging system with a diffusion weighted spin echo pulse sequence.
Imaging parameters were : effective TR = 2000 ms, ∆ = 17.5 ms, δ = 1.5
ms. Diffusion-weighted images were acquired with 46 different gradient direc-
tions with b = 1500 and a single image was acquired with b ≈ 0. The image field
of view was 60 x 60 x 300 µm3, and the acquisition matrix was 72 x 72 x 40.

The RMS difference between the vMF model and a 6th order spherical harmonic
expansion of the ODF are shown in Table (1). The spherical harmonic expan-
sion was computed using the diffusion orientation transformation described by
Özarslan et al. [16]. The RMS differences were computed for real and synthetic
data in regions with one and two fibers per voxel. The single-fiber synthetic data

Single Fiber Double Fiber

Synthetic Data 0.0003 0.0013

Real Data 0.0018 0.0022
Table 1. RMS fitting error between vMF model and 6th order SH expansion.

show the best fitting results. The single and double-fiber fitting errors for the
real data are comparable.

The results of the segmentation are shown in the left side of Figure 6. The

Fig. 6. Segmentation of spinal cord dataset (left) and anatomy from atlas (right).

anatomical atlas shown in the right side of Figure 6 shows the the gray matter
and white matter in an axial slice of the lumbar region of the spinal cord in
gray and white respectively. Several of the distinct regions of the gray matter
we would like to be able to segment are depicted in this image. Due to the low
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resolution of the data, we are unable to segment some of the finer structures.
We are, however, able to distinguish the lateral motor neurons (labeled A in
the atlas) and the dorsal gray commissure (labeled B in the atlas) from the
remainder of the gray matter.

6 Conclusion

We have introduced a novel model for orientational diffusion with mixtures of
von Mises-Fisher distributions. This model leads to closed-form expressions for
distances and anisotropy measures. A geodesic framework for working with this
model was also presented. The results were applied within the hidden Markov
measure field segmentation framework, and the results were presented for syn-
thetic and real data. The technique was able to distinguish between regions of
gray matter in the rat spinal cord which correspond to known anatomy.
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