Quiz 16
Ma 16200
March 24th, 2016

Problem 1:

\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \]

We see that \(a_n = \frac{1}{n} \) is a sequence of all positive terms and we check the following:

\[a_{n+1} = \frac{1}{n + 1} < \frac{1}{n} = a_n \]

and \(\lim_{n \to \infty} \frac{1}{n} = 0 \)

Therefore by the Alternating Series Test the series converges.

Problem 2:

\[\sum_{n=1}^{\infty} (-1)^{n-1} e^{\frac{1}{n}} \]

Again we try to apply the Alternating Series Test however we see for \(b_n = e^{\frac{1}{n}} \):

\[\lim_{n \to \infty} b_n = \lim_{n \to \infty} e^{\frac{1}{n}} = e^0 = 1 \neq 0 \]

Therefore the series diverges.
Problem 3:

How many terms are needed to approximate the following series within 0.01?

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3}
\]

We need to find the first \(n \) value such that:

\[
\frac{1}{n^3} < 0.01 = \frac{1}{100}
\]

Then we will only require \(n-1 \) terms.

\[
\frac{1}{n^3} < \frac{1}{100} \Rightarrow 100 < n^3
\]

Remember \(n \) is always taken to be an integer. We then see:

\[
100 \leq 64 = 4^3 \text{ but } 100 < 125 = 5^3
\]

Therefore because \(n=5 \) is the first term such that the above inequality is satisfied, we only require \(4 \text{ terms} \) to approximate our series within the given error.