Environment TD LSTD

Least Squares Temporal Difference Learning

Yaroslav Rosokha

April 26, 2011

Yaroslav Rosokha Least Squares Temporal Difference Learning

글 🖌 🖌 글 🛌

Consider a random walk example from chapter 6:

Our objective is to learn value function V(s) for $s \in \{L, A, B, C, D, E, R\}$

• Matrix/vector representation of the initial state C, one step transition probabilities, and rewards:

• What about two-step transition probabilities and rewards?

くぼう くほう くほう

A Solution (when we know the model...)

Two-step transition probabilities and rewards:

	1		0	0	0	0	0	7	Γo	0	0	0	0	0	°]
	.5	0.25	0	.25	0					0	0	0	0	0	0
	.25	0	.5	0	.25	0	0		0	0	0				0
$\mathbf{P}\times\mathbf{P}=\mathbf{P}^{2}=$	0	.25	0	.5	0	.25	0	$R_2 =$	0	0	0	0	0	0	0
	0	0	.25	0	.5	0	.25	1 -	0	0	0	0 0	0	0	1
	0	0	0	.25			.5		0	0	0	0	0	0	1
	0	0	0	0	0	0	1		Lo	0	0	0	0	0	0

イロト イヨト イヨト --

э.

A Solution (when we know the model...)

Two-step transition probabilities and rewards:

$P \times P = P^2 =$	1 .5 .25 0 0 0 0	0 0.25 0 .25 0 0 0	0 0 .5 0 .25 0 0	0 .25 0 .5 0 .25 0	.25 0 .5	0 0 .25 0 .25 0	0 0 0 .25 .5 1	R ₂	=		0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 1 1 0
• And so	on															
$P^{\infty} =$.8 .6 .5 .3	.0 0 33 0 67 0 00 0 33 0 67 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 .167 .333 .500 .667 .833 1.0] R∝			0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 1 1 1 1 1 0]

▲ 御 ▶ ▲ 注 ▶ ▲ 注 ▶ …

æ

A Solution (when we know the model...)

Two-step transition probabilities and rewards:

$P \times P = P^2 =$	1 .5 0 0 0 0	0 0.25 0 .25 0 0 0	0 0 .5 0 .25 0 0	0 .2! 0 .5 0 .2! 0		0 0 .25 0 .5 0 0	0 0 .25 0 .25 0	0 0 0 .25 .5 1	R ₂	=	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 1 1 0	
And so	on																	
$P^{\infty} =$	1.0 .83 .66 .50 .33 .16 0	3 0 7 0 10 0 13 0 147 0 157 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 .167 .333 .500 .667 .833 1.0	R₀	0 =		0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 1 1 1 1 1 0		

• Which implies the following value function

 $V = \begin{bmatrix} 0 & .167 & .333 & .500 & .667 & .833 & 0 \end{bmatrix}$

Yaroslav Rosokha Least So

Least Squares Temporal Difference Learning

	Environment TD LSTD	Random Walk (Example 6.2) Solution Notation
Notation		

a *featurizer* $\phi(x)$ maps states to feature vectors

• For a single-state-per-feature representation, $\phi(x)$, C is represented by $\phi(C) = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

Example

Suppose L, C, R represented by [1,0,0] [0,1,0], and [0,0,1] repspectively. What will be representation of states A and B if we interpolate linearly?

a *featurizer* $\phi(x)$ maps states to feature vectors

• For a single-state-per-feature representation, $\phi(x)$, C is represented by $\phi(C) = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

Example

Suppose L, C, R represented by [1,0,0] [0,1,0], and [0,0,1] repspectively. What will be representation of states A and B if we interpolate linearly?

•
$$\begin{bmatrix} \frac{2}{3} & \frac{1}{3} & 0 \end{bmatrix}$$
 and $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{bmatrix}$

くぼう くほう くほう

	Environment TD LSTD	Random Walk (Example 6.2) Solution Notation
Notation		

How do we construct feature's eligibility vector Z?

Example

Suppose we start in state C at time t = 1 and transition to B at time t = 2. What are Z_1 and Z_2 for some general λ and single-state-per-feature $\phi(x)$? $[Z_{t+1} = \lambda Z_t + \phi(x)]$

글 돈 옷 글 돈

	Environment TD LSTD	Random Walk (Example 6.2) Solution Notation
Notation		

How do we construct feature's eligibility vector Z?

Example

Suppose we start in state C at time t = 1 and transition to B at time t = 2. What are Z_1 and Z_2 for some general λ and single-state-per-feature $\phi(x)$? $[Z_{t+1} = \lambda Z_t + \phi(x)]$

•
$$Z_1 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 and $Z_2 \begin{bmatrix} 0 & 0 & 1 & 1 imes \lambda & 0 & 0 \end{bmatrix}$

프 () (프)

Environment	
LSTD	Notation

More Notation

- β a coeficient vector for which $V(x) = \beta \cdot \phi(x)$. For the example above: $\beta = \begin{bmatrix} 0 & .167 & .333 & .500 & .667 & .833 & 0 \end{bmatrix}^T$ and $\phi(C) = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}^T \implies V(C) = .5$
- One step TD error

$$R + (\phi(C) - \phi(B))^{T}\beta = 0 + \left(\begin{bmatrix} 0\\0\\0\\1\\0\\0\\0\\0 \end{bmatrix} - \begin{bmatrix} 0\\0\\1\\0\\0\\0\\0\\0 \end{bmatrix} \right)^{T} \begin{bmatrix} \beta_{1}\\\beta_{2}\\\beta_{3}\\\beta_{4}\\\beta_{5}\\\beta_{6}\\\beta_{7} \end{bmatrix} = -\beta_{3} + \beta_{4}$$

 $TD(\lambda)$ for approximate policy evaluation: Given: • a simulation model for a proper policy π in MDP X; • a featurizer $\phi: X \to \Re^K$ mapping states to feature vectors, $\phi(\text{END}) \stackrel{\text{def}}{=} 0$; • a parameter $\lambda \in [0, 1]$; and • a sequence of *stepsizes* $\alpha_1, \alpha_2, \ldots$ for incremental coefficient updating. *Output*: a coefficient vector $\boldsymbol{\beta}$ for which $V^{\pi}(x) \approx \boldsymbol{\beta} \cdot \boldsymbol{\phi}(x)$. Set $\beta := 0$ (or an arbitrary initial estimate), t := 0. for $n := 1, 2, \dots$ do: { Set $\delta := 0$. Choose a start state $x_t \in X$. Set $\mathbf{z}_t := \boldsymbol{\phi}(x_t)$. while $x_t \neq \text{END}$, do: { Simulate one step of the process, producing a reward R_t and next state x_{t+1} . Set $\boldsymbol{\delta} := \boldsymbol{\delta} + \mathbf{z}_t (R_t + (\boldsymbol{\phi}(x_{t+1}) - \boldsymbol{\phi}(x_t))^{\mathsf{T}} \boldsymbol{\beta}).$ Set $\mathbf{z}_{t+1} := \lambda \mathbf{z}_t + \boldsymbol{\phi}(x_{t+1})$. Set t := t + 1. Set $\boldsymbol{\beta} := \boldsymbol{\beta} + \alpha_n \boldsymbol{\delta}$.

Figure 1. Ordinary $TD(\lambda)$ for linearly approximating the undiscounted value function of a fixed proper policy.

・ロト ・ 同ト ・ ヨト ・ ヨト

Example

Suppose $\lambda=.5,\,\alpha=.1,$ and suppose during first two episodes you only move to the right.

- What will be the value of δ and Z after:
 - one step? two steps? three steps?
- What will be the value of β after:
 - first episode? second episode?

while $x_t \neq \text{END}$, do: { Simulate one step of the process, producing a reward Set $\boldsymbol{\delta} := \boldsymbol{\delta} + \mathbf{z}_t (R_t + (\boldsymbol{\phi}(x_{t+1}) - \boldsymbol{\phi}(x_t))^\mathsf{T} \boldsymbol{\beta})$. Set $\mathbf{z}_{t+1} := \lambda \mathbf{z}_t + \boldsymbol{\phi}(x_{t+1})$. Set t := t + 1. } Set $\boldsymbol{\beta} := \boldsymbol{\beta} + \alpha_n \boldsymbol{\delta}$.

 $LSTD(\lambda)$ for approximate policy evaluation: Given: a simulation model, featurizer, and λ as in ordinary TD(λ). (No stepsize schedules or initial estimates of β are necessary.) *Output:* a coefficient vector $\boldsymbol{\beta}$ for which $V^{\pi}(x) \approx \boldsymbol{\beta} \cdot \boldsymbol{\phi}(x)$. Set A := 0, b := 0, t := 0. for $n := 1, 2, \dots$ do: { Choose a start state $x_t \in X$. Set $\mathbf{z}_t := \boldsymbol{\phi}(x_t)$. while $x_t \neq \text{END}$, do: { Simulate one step of the chain, producing a reward R_t and next state x_{t+1} . Set $\mathbf{A} := \mathbf{A} + \mathbf{z}_t (\boldsymbol{\phi}(x_t) - \boldsymbol{\phi}(x_{t+1}))^\mathsf{T}$. /* outer product */ Set $\mathbf{b} := \mathbf{b} + \mathbf{z}_t R_t$. Set $\mathbf{z}_{t+1} := \lambda \mathbf{z}_t + \boldsymbol{\phi}(x_{t+1})$. Set t := t + 1. Whenever updated coefficients are desired: Set $\beta := \mathbf{A}^{-1}\mathbf{b}$. /* Use SVD. */

Figure 2. A least-squares version of TD(λ) (compare figure 1). Note that **A** has dimension $K \times K$, and **b**, β , **z**, and $\phi(x)$ all have dimension $K \times 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Algorithm Example

LSTD

Example

Suppose $\lambda=$ 0, $\alpha=$.1, and suppose during first two episodes you only move to the right.

- What will be the value of Z, A, and b after:
 - one step? two steps?
 - first episode? second episode?

・ 同 ト ・ ヨ ト ・ ヨ ト

Environment TD LSTD Algorithm Example

TD vs LSTD: RMS error $\lambda = .5$

Which one does better?

nvironment TD LSTD Algorithm Example

TD vs LSTD: RMS error $\lambda = .5$

Which one does better?

٠

Yaroslav Rosokha Least Squares Temporal Difference Learning

nvironment: TD LSTD Algorithm Example

TD vs LSTD: RMS error $\lambda = .5$

Which one does better?

• What if we change λ to .1?

Yaroslav Rosokha Least Squares Temporal Difference Learning

nvironment TD LSTD Algorithm Example

TD vs LSTD: RMS error $\lambda = .5$ vs $\lambda = .1$

イロト イヨト イヨト イヨト

æ

Environment TD LSTD Example

TD vs LSTD: time performance

Example

Suppose we vary number of intermediate states:

from

Which one is faster? More accurate?

・ 同 ト ・ ヨ ト ・ ヨ ト

Environment TD LSTD Algorithr Example

TD vs LSTD: time performance

▶ < ∃ >