Least Squares Temporal Difference Learning

Yaroslav Rosokha

April 26, 2011

Random Walk

Consider a random walk example from chapter 6:

Our objective is to learn value function $V(s)$ for $s \in\{L, A, B, C, D, E, R\}$

- Matrix/vector representation of the initial state C, one step transition probabilities, and rewards:
$\mathbf{S}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right] \mathbf{P}=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ .5 & 0 & .5 & 0 & 0 & 0 & 0 \\ 0 & .5 & 0 & .5 & 0 & 0 & 0 \\ 0 & 0 & .5 & 0 & .5 & 0 & 0 \\ 0 & 0 & 0 & .5 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & .5 & 0 & .5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right] \mathbf{R}=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
- What about two-step transition probabilities and rewards?

A Solution (when we know the model...)

Two-step transition probabilities and rewards:

$$
\mathbf{P} \times \mathbf{P}=\mathbf{P}^{\mathbf{2}}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
.5 & 0.25 & 0 & .25 & 0 & 0 & 0 \\
.25 & 0 & .5 & 0 & .25 & 0 & 0 \\
0 & .25 & 0 & .5 & 0 & .25 & 0 \\
0 & 0 & .25 & 0 & .5 & 0 & .25 \\
0 & 0 & 0 & .25 & 0 & .25 & .5 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \mathbf{R}_{\mathbf{2}}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A Solution (when we know the model...)

Two-step transition probabilities and rewards:

$$
\mathbf{P} \times \mathbf{P}=\mathbf{P}^{\mathbf{2}}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
.5 & 0.25 & 0 & .25 & 0 & 0 & 0 \\
.25 & 0 & .5 & 0 & .25 & 0 & 0 \\
0 & .25 & 0 & .5 & 0 & .25 & 0 \\
0 & 0 & .25 & 0 & .5 & 0 & .25 \\
0 & 0 & 0 & .25 & 0 & .25 & .5 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \mathbf{R}_{\mathbf{2}}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- And so on...

$$
\mathbf{P}^{\infty}=\left[\begin{array}{ccccccc}
1.0 & 0 & 0 & 0 & 0 & 0 & 0 \\
.833 & 0 & 0 & 0 & 0 & 0 & .167 \\
.667 & 0 & 0 & 0 & 0 & 0 & .333 \\
.500 & 0 & 0 & 0 & 0 & 0 & .500 \\
.333 & 0 & 0 & 0 & 0 & 0 & .667 \\
.167 & 0 & 0 & 0 & 0 & 0 & .833 \\
0 & 0 & 0 & 0 & 0 & 0 & 1.0
\end{array}\right] \quad \mathbf{R}_{\infty}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A Solution (when we know the model...)

Two-step transition probabilities and rewards:
$\mathbf{P} \times \mathbf{P}=\mathbf{P}^{\mathbf{2}}=\left[\begin{array}{ccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ .5 & 0.25 & 0 & .25 & 0 & 0 & 0 \\ .25 & 0 & .5 & 0 & .25 & 0 & 0 \\ 0 & .25 & 0 & .5 & 0 & .25 & 0 \\ 0 & 0 & .25 & 0 & .5 & 0 & .25 \\ 0 & 0 & 0 & .25 & 0 & .25 & .5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right] \quad \mathbf{R}_{\mathbf{2}}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array} 0.11\right]$

- And so on...

$$
\mathbf{P}^{\infty}=\left[\begin{array}{ccccccc}
1.0 & 0 & 0 & 0 & 0 & 0 & 0 \\
.833 & 0 & 0 & 0 & 0 & 0 & .167 \\
.667 & 0 & 0 & 0 & 0 & 0 & .333 \\
.500 & 0 & 0 & 0 & 0 & 0 & .500 \\
.333 & 0 & 0 & 0 & 0 & 0 & .667 \\
.167 & 0 & 0 & 0 & 0 & 0 & .833 \\
0 & 0 & 0 & 0 & 0 & 0 & 1.0
\end{array}\right] \quad \mathbf{R}_{\infty}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Which implies the following value function

$$
V=\left[\begin{array}{lllllll}
0 & .167 & .333 & .500 & .667 & .833 & 0
\end{array}\right]
$$

Notation

a featurizer $\phi(x)$ maps states to feature vectors

- For a single-state-per-feature representation, $\phi(x), \mathrm{C}$ is represented by $\phi(C)=\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

Example

Suppose L, C, R represeted by $[1,0,0][0,1,0]$, and $[0,0,1]$ repspectively. What will be representation of states A and B if we interpolate linearly?

Notation

a featurizer $\phi(x)$ maps states to feature vectors

- For a single-state-per-feature representation, $\phi(x), \mathrm{C}$ is represented by $\phi(C)=\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

Example

Suppose L, C, R represeted by $[1,0,0][0,1,0]$, and $[0,0,1]$ repspectively. What will be representation of states A and B if we interpolate linearly?

- $\left[\begin{array}{lll}\frac{2}{3} & \frac{1}{3} & 0\end{array}\right]$ and $\left[\begin{array}{ccc}\frac{1}{3} & \frac{2}{3} & 0\end{array}\right]$

Notation

How do we construct feature's eligibility vector Z ?

Example

Suppose we start in state C at time $t=1$ and transition to B at time $t=2$. What are Z_{1} and Z_{2} for some general λ and single-state-per-feature $\phi(x) ?\left[Z_{t+1}=\lambda Z_{t}+\phi(x)\right]$

Notation

How do we construct feature's eligibility vector Z ?

Example

Suppose we start in state C at time $t=1$ and transition to B at time $t=2$. What are Z_{1} and Z_{2} for some general λ and single-state-per-feature $\phi(x) ?\left[Z_{t+1}=\lambda Z_{t}+\phi(x)\right]$

$$
\text { - } Z_{1}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \text { and } Z_{2}\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 \times \lambda & 0 & 0 & 0
\end{array}\right]
$$

More Notation

- β a coeficient vector for which $V(x)=\beta \cdot \phi(x)$. For the example above: $\beta=\left[\begin{array}{lllllll}0 & .167 & .333 & .500 & .667 & .833 & 0\end{array}\right]^{\top}$ and $\phi(C)=\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]^{T} \Longrightarrow V(C)=.5$
- One step TD error

$$
R+(\phi(C)-\phi(B))^{T} \beta=0+\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)^{T}\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4} \\
\beta_{5} \\
\beta_{6} \\
\beta_{7}
\end{array}\right]=-\beta_{3}+\beta_{4}
$$

```
\(T D(\lambda)\) for approximate policy evaluation:
    Given: - a simulation model for a proper policy \(\pi\) in MDP \(X\);
    - a featurizer \(\phi: X \rightarrow \Re^{K}\) mapping states to feature vectors, \(\phi(\) END \() \stackrel{\text { def }}{=} \mathbf{0}\);
    - a parameter \(\lambda \in[0,1]\); and
    - a sequence of stepsizes \(\alpha_{1}, \alpha_{2}, \ldots\) for incremental coefficient updating.
    Output: a coefficient vector \(\boldsymbol{\beta}\) for which \(V^{\pi}(x) \approx \beta \cdot \phi(x)\).
Set \(\beta:=0\) (or an arbitrary initial estimate), \(t:=0\).
for \(n:=1,2, \ldots\) do: \(\{\)
    Set \(\delta:=0\).
    Choose a start state \(x_{t} \in X\).
    Set \(\mathbf{z}_{t}:=\phi\left(x_{t}\right)\).
    while \(x_{t} \neq\) END, do: \{
        Simulate one step of the process, producing a reward \(R_{t}\) and next state \(x_{t+1}\).
        Set \(\delta:=\delta+\mathbf{z}_{t}\left(R_{t}+\left(\phi\left(x_{t+1}\right)-\phi\left(x_{t}\right)\right)^{\top} \beta\right)\).
        Set \(\mathbf{z}_{t+1}:=\lambda \mathbf{z}_{t}+\phi\left(x_{t+1}\right)\).
        Set \(t:=t+1\).
    \}
    Set \(\boldsymbol{\beta}:=\boldsymbol{\beta}+\alpha_{n} \boldsymbol{\delta}\).
\}
```

Figure 1. Ordinary $\mathrm{TD}(\lambda)$ for linearly approximating the undiscounted value function of a fixed proper policy.

Example

Suppose $\lambda=.5, \alpha=.1$, and suppose during first two episodes you only move to the right.

- What will be the value of δ and Z after:
- one step? two steps? three steps?
while $x_{t} \neq$ END, do: \{
Simulate one step of the process, producing a reward
Set $\delta:=\delta+\mathrm{z}_{t}\left(R_{t}+\left(\phi\left(x_{t+1}\right)-\phi\left(x_{t}\right)\right)^{\top} \boldsymbol{\beta}\right)$.
Set $\mathbf{z}_{t+1}:=\lambda \mathbf{z}_{t}+\boldsymbol{\phi}\left(x_{t+1}\right)$.
Set $t:=t+1$.
\}
Set $\boldsymbol{\beta}:=\boldsymbol{\beta}+\alpha_{n} \boldsymbol{\delta}$.
- What will be the value of β after:
- first episode? second episode?

LSTD

```
\(\operatorname{LSTD}(\lambda)\) for approximate policy evaluation:
    Given: a simulation model, featurizer, and \(\lambda\) as in ordinary \(\operatorname{TD}(\lambda)\).
    (No stepsize schedules or initial estimates of \(\boldsymbol{\beta}\) are necessary.)
    Output: a coefficient vector \(\boldsymbol{\beta}\) for which \(V^{\pi}(x) \approx \boldsymbol{\beta} \cdot \phi(x)\).
Set \(\mathbf{A}:=0, \mathbf{b}:=0, t:=0\).
for \(n:=1,2, \ldots\) do: \(\{\)
    Choose a start state \(x_{t} \in X\).
    Set \(\mathbf{z}_{t}:=\phi\left(x_{t}\right)\).
    while \(x_{t} \neq\) END, do: \{
    Simulate one step of the chain, producing a reward \(R_{t}\) and next state \(x_{t+1}\).
    Set \(\mathbf{A}:=\mathbf{A}+\mathbf{z}_{t}\left(\boldsymbol{\phi}\left(x_{t}\right)-\phi\left(x_{t+1}\right)\right)^{\top} . \quad / *\) outer product */
    Set \(\mathrm{b}:=\mathrm{b}+\mathrm{z}_{t} R_{t}\).
    Set \(\mathbf{z}_{t+1}:=\lambda \mathbf{z}_{t}+\boldsymbol{\phi}\left(x_{t+1}\right)\).
    Set \(t:=t+1\).
    \}
    Whenever updated coefficients are desired: Set \(\beta:=\mathbf{A}^{-1} \mathbf{b} . /^{*}\) Use SVD. */
\}
```

Figure 2. A least-squares version of $\operatorname{TD}(\boldsymbol{\lambda})$ (compare figure 1). Note that \mathbf{A} has dimension $K \times K$, and $\mathbf{b}, \boldsymbol{\beta}, \mathbf{z}$, and $\phi(x)$ all have dimension $K \times 1$.

LSTD

Example

Suppose $\lambda=0, \alpha=.1$, and suppose during first two episodes you only move to the right.

- What will be the value of Z, A, and b after:
- one step? two steps?
- first episode? second episode?
while $x_{t} \neq$ END, do: $\{$
Simulate one step of the chain, producing a reward
Set $\mathbf{A}:=\mathbf{A}+\mathbf{z}_{t}\left(\boldsymbol{\phi}\left(x_{t}\right)-\phi\left(x_{t+1}\right)\right)^{\top}$. $\quad{ }^{*}$ or
Set $\mathbf{b}:=\mathrm{b}+\mathrm{z}_{t} R_{t}$.
Set $\mathbf{z}_{t+1}:=\lambda \mathbf{z}_{i}+\boldsymbol{\phi}\left(x_{i+1}\right)$.
Set $t:=t+1$.

TD vs LSTD: RMS error $\lambda=.5$

Which one does better?

TD vs LSTD: RMS error $\lambda=.5$

Which one does better?

RMS error of value function over all states

TD vs LSTD: RMS error
 $\lambda=.5$

Which one does better?
RMS error of value function over all states

- What if we change λ to .1 ?

TD vs LSTD: RMS error $\lambda=.5$ vs $\lambda=.1$

RMS error of value function over all states

TD vs LSTD: time performance

Example

Suppose we vary number of intermediate states:
from

to

$$
L \stackrel{0}{\longleftrightarrow} A \stackrel{0}{\leftrightarrow} B \stackrel{0}{\leftrightarrow} C \underset{\text { START }}{\leftrightarrow} \stackrel{0}{\leftrightarrow} E \stackrel{0}{\leftrightarrow} \mathrm{~F} \stackrel{0}{\leftrightarrow}(\mathrm{C} \xrightarrow{1} R
$$

Which one is faster? More accurate?

TD vs LSTD: time performance

