Map projections

- 3-dimensional Earth’s surface represented in 2-dimensions → distorsion of directions, distances, areas.

- **Scale**: ratio of a distance on a map and that same distance on Earth.

- Projections attempts to minimize distortions:
 - **Conformal**: scale is the same in all directions → meridians and parallel intersect at right angles.
 - **Equidistant**: distances from the center of the projection to points at equal distance appear equal on the map.
 - **Equi-direction**: azimuths are correctly portrayed on the map in all directions.
 - **Equal-area**: proportional relationship between areas is preserved on the map.
Map projections

- **Cylindrical**: projection of a spherical surface on a cylinder
- **Conic**: projection of a spherical surface on a cone
- **Planar or Azimuthal**: projection of a spherical surface on a plane
A cylindrical projection: Mercator

- Straight meridians and parallels that intersect at right angles.
- Scale is true at the equator or at two standard parallels equidistant from the equator.
- Often used for marine navigation because all straight lines are lines of constant azimuth.

In GMT:

- `Jmscale` or `-JMwidth`
 Give scale along equator (1:xxxxx or UNIT/degree)
- `Jmlon0/lat0/scale` or `-JMlon0/lat0/width`
 Give central meridian, standard latitude and scale along parallel (1:xxxxx or UNIT/degree)
A cylindrical projection: Mercator

```
pscoast -R-180/180/-70/70 -JM6i -B30g30 -W1/0 -G240 -Dc -P > mercator.ps
```
A conic projection: Lambert

- Lambert Conformal Conic
- Area and shape are distorted away from standard parallels.
- Directions are true in limited areas.
- Used for maps of North America.

-Jblon0/lat0/lat1/lat2/scale
-JBblon0/lat0/lat1/lat2/width

Give projection center, two standard parallels, and scale (1:xxxx or UNIT/degree).
A conic projection: Lambert

pscoast -R-20/90/15/65 -JL35/40/32/45/6i -B10g10 -W1/0 -G240 -Dc -P > lambertc.ps
An azimuthal projection: Stereographic

- Used for navigation in polar regions.
- Directions are true from the center point and scale increases away from the center point as does distortion in area and shape.

-\text{Jslon0/lat0/scale}\ or \ -\text{JSlon0/lat0/width}

\text{lon0/lat0} specifies the projection center.
Give scale as 1:xxxx (true at pole) or slat/1:xxxxx (true at standard parallel slat) or radius/lat (radius in UNIT from origin to the oblique latitude lat).
An azimuthal projection: Stereographic

pscoast -R-180/180/-90/-60 -Js0/-90/3i/-60 -B10g5
-W1/0 -G240 -Dc -P > stereo.ps
An azimuthal projection: Lambert

pscoast -R-140/-50/20/65 -JA-95/44/6i -W1/O -G240 -Bg10 -Di -A5000 -P > lamberta.ps
Choosing a projection

• Rule of thumb:
 – A country in the tropics asks for a cylindrical projection.
 – A country in the temperate zone asks for a conical projection.
 – A polar area asks for an azimuthal projection.

• Goal = minimize distortion:
 – Cylindricals are true at the equator and distortion increases toward the poles.
 – Conics are true along some parallel somewhere between the equator and a pole and distortion increases away from this standard.
 – Azimuthals are true only at their center point, but generally distortion is worst at the edge of the map.
Choosing a projection

gmtset BASEMAP_TYPE plain
pscoast -R-140/-50/20/65 -JM6i -W1/255/0/0 -Bg10 -Di -A5000 -K >! noam_proj.ps
pscoast -R-140/-50/20/65 -JL-95/44/20/65/6i -W1/0/255/0 -Bg10 -Di -A5000 -O >> noam_proj.ps