Cloud-Based Cell Associations

Aly El Gamal

Department of Electrical and Computer Engineering
Purdue University

ITA Workshop, 02/02/16
Cloud Communication

Global Knowledge / Control available at Central nodes
Cloud-Based Interference Management

Enabling centralized approaches:

1. Learning the network / channel state information
2. Transmission schedules
3. Cell association decisions

Application in Multi-RAT Environments
Linear Interference Networks

\[M_1 \rightarrow \text{Tx}1 \rightarrow \text{Rx}1 \rightarrow \hat{M}_1 \]

\[M_2 \rightarrow \text{Tx}2 \rightarrow \text{Rx}2 \rightarrow \hat{M}_2 \]

\[M_3 \rightarrow \text{Tx}3 \rightarrow \text{Rx}3 \rightarrow \hat{M}_3 \]

Generic Time Varying Channel
Linear Interference Networks

M_1 BS1 MT1 M_1

M_2 BS2 MT2 M_2

M_3 BS3 MT3 M_3

BS: Base Station

MT: Mobile Terminal

Purdue ECE
Cloud-Based Cell Associations

Each Mobile Terminal can be associated with N Base Stations
Degrees of Freedom (DoF)

\[\text{DoF} = \lim_{{\text{SNR} \to \infty}} \frac{\text{sum capacity}}{\log \text{SNR}} \]

- **Objective:** Determine Per User DoF as a function of \(N \).

\[\text{PUDoF}(N) = \lim_{{K \to \infty}} \frac{\text{DoF}(K, N)}{K} \]

What is the optimal cell association?
What we know

For Uplink:

$$\text{PUDoF}(N) = 1, \forall N \geq 2$$

For Downlink:

$$\text{PUDoF}(N) = \frac{2N}{2N + 1}$$
Uplink: Achieving Full DoF

Associating each MT with two BSs connected to it

Interference-free Degrees of Freedom
Downlink: Exploiting Global Topology Knowledge

Achieving $\frac{4}{5}$ Per User DoF

$$\text{PUDoF}(N) = \frac{2N}{2N+1}$$
Average Uplink-Downlink DoF

Downlink Associations

\[N = 3 \]

Uplink Associations

\[PUDoF = \frac{1 + \frac{4}{5}}{2} = \frac{9}{10} \]
Average Uplink-Downlink DoF

\[\text{PUDoF}(N) = \frac{4N-3}{4N-2} \]
Further Questions

1. General network topologies
2. When to simplify into optimizing for uplink / downlink only
3. Constrain average number of cell associations
Next: Transmit Cooperation with no CSIT

We know that flexible cell association is useful ¹

We do not know whether cooperative transmission is useful

No CSIT: Linear Interference Networks

Theorem

Transmitter cooperation with no CSIT does not increase the asymptotic per user DoF in linear interference networks

\[\text{PUDoF}(N > 1) = \text{PUDoF}(1) = \frac{2}{3} \]
Converse Proof

- Channel is time varying with joint pdf
- Once message is transmitted, it appears at all connected receivers
- Coordinated Multi-Point transmission cannot be used to cancel interference
Next Tasks

- Can transmitter cooperation help in any network topology
- Characterize DoF for general network topologies
- Extend to other backhaul constraints
Coordinated Learning of Network Topology

• Earlier work for the broadcast problem\(^2\)

• Cloud communication can enable some of these ideas

Coordinated Learning of Network Topology

Lemma

For any $x_1, \cdots, x_s \leq n$, there exists a prime $p \leq s \log n$ such that,

$$x_i \neq x_j \mod p, \forall i, j \in \{1, \cdots, s\}$$

s : Connectivity parameter

n : total number of users
Coordinated Learning of Network Topology

Lemma

For any \(x_1, \cdots, x_s \leq n \), there exists a prime \(p \leq s \log n \) such that, \(x_i \neq x_j \mod p, \forall i, j \in \{1, \cdots, s\} \)

1. Let \(p_1, \cdots, p_m \) be the prime numbers in \(\{1, \cdots, s \log n\} \)
2. \(m \) phases of transmission
3. in \(i^{th} \) phase, \(x_j \) transmits in slot \(x_j \mod p_i \)
Coordinated Learning of Network Topology

Lemma

For any \(x_1, \cdots, x_s \leq n \), there exists a prime \(p \leq s \log n \) such that,

\[x_i \neq x_j \mod p, \forall i, j \in \{1, \cdots, s\} \]

1. Let \(p_1, \cdots, p_m \) be the prime numbers in \(\{1, \cdots, s \log n\} \)

2. \(m \) phases of transmission

3. In \(i^{th} \) phase, \(x_j \) transmits in slot \(x_j \mod p_i \)

\(O(s^2 \log^2 n) \) Communication rounds
Converse?

- Mimic Probabilistic method for broadcast channel?
- Slight variation of Group Testing?
Conclusions

Cloud-Based Wireless Networks:

- Enabling centralized approaches
- New questions and conclusions
- Value of flexible cell association
- Coordinated transmission / reception
- Different learning strategies
- Benefit with no CSIT / Ad-hoc networks?