Regression #3: Properties of OLS Estimator

Econ 671

Purdue University
In this lecture, we establish some desirable properties associated with the OLS estimator.

These include proofs of *unbiasedness* and *consistency* for both $\hat{\beta}$ and $\hat{\sigma}^2$, and a derivation of the conditional and unconditional variance-covariance matrix of $\hat{\beta}$.
Unbiasedness

\[y_i = x_i \beta + \epsilon_i. \]

\[\hat{\beta} = (X'X)^{-1}X'y. \]

We continue with our standard set of regression assumptions, including
\[E(\epsilon|X) = 0 \] and \[E(\epsilon\epsilon'|X) = \sigma^2 I_n. \]

Theorem

What does this actually mean? Can you think of a situation where an unbiased estimator might not be preferred over a biased alternative?
Unbiasedness

Proof.

First, consider $E(\hat{\beta}|X)$. To this end, we note:

Therefore, by the law of iterated expectations,
Variance-Covariance Matrix

We now seek to obtain the variance-covariance matrix of the OLS estimator. To this end, we note:
Variance-Covariance Matrix

Another way to get this same result is as follows:

So, what do the elements of this $k \times k$ matrix represent? Why are they useful?
Variance-Covariance Matrix

To obtain an *unconditional* variance-covariance matrix, i.e., $\text{Var}(\hat{\beta})$, we note that, in general,

-

Thus, (why?)

-

In practice, we evaluate this at the observed X values:

-

Variance-Covariance Matrix

Another issue that arises is that the variance parameter, σ^2 is also unknown and must be estimated. A natural estimator arises upon considering its definition:

Replacing the population expectation with its sample counterpart, and using $\hat{\beta}$ instead of β, we obtain an intuitive estimator:
Variance-Covariance Matrix

Though this estimator is widely used, it turns out to be a biased estimator of σ^2. An unbiased estimator can be obtained by incorporating the degrees of freedom correction:

$$
\hat{\sigma}^2 = \frac{1}{n-k} \sum_{i=1}^{n} (y_i - \bar{y})^2
$$

where k represents the number of explanatory variables included in the model. In the following slides, we show that $\hat{\sigma}^2$ is indeed unbiased.
We seek to show

\[E(\hat{\sigma}^2|X) = \sigma^2. \]

Proof.

where the last result follows since \(X'M = MX = 0 \).
Proof.

It follows that

... is an unbiased estimator of σ^2, as claimed.
Consistency

Recall the definition of a *consistent* estimator, $\hat{\theta}(x_n) = \hat{\theta}_n$ of θ. We say $\hat{\theta}_n$ is consistent if for any $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr \left\{ |\hat{\theta}_n - \theta| > \epsilon \right\} = 0.$$

Relatedly, we say that $\hat{\theta}_n$ converges in *mean square* to θ if:

$$\lim_{n \to \infty} E(\hat{\theta}_n - \theta)^2 = 0.$$

The MSE criterion can also be written as the Bias squared plus the variance, whence

$$\hat{\theta}_n \xrightarrow{m.s.} \theta \quad \text{iff} \quad \text{Bias}(\hat{\theta}_n) \to 0 \quad \text{and} \quad \text{Variance} \ (\hat{\theta}_n) \to 0.$$
Consistency

We will prove that MSE can be written as the square of the bias plus the variance:

\[
E([\hat{\theta}_n - \theta]^2) = E([\hat{\theta}_n - E(\hat{\theta}_n) + E(\hat{\theta}_n) - \theta]^2)
\]

\[
= E([\hat{\theta}_n - E(\hat{\theta}_n)]^2) + 2E([\hat{\theta}_n - E(\hat{\theta}_n)][E(\hat{\theta}_n) - \theta])
\]

\[
+ E([E(\hat{\theta}_n) - \theta]^2)
\]

\[
= E([\hat{\theta}_n - E(\hat{\theta}_n)]^2) + [E(\hat{\theta}_n) - \theta]^2
\]

\[
= \text{Variance} + \text{Bias}^2
\]
Consistency

Convergence in mean square is also a *stronger* condition than convergence in probability:

Proof.

Fix $\epsilon > 0$ and note:

$$E \left[(\hat{\theta}(x_n) - \theta)^2 \right] = \int_{X_n} (\hat{\theta}(x_n) - \theta)^2 f_n(x_n) dx_n$$

$$\geq \int_{\{x_n:|\hat{\theta}(x_n) - \theta| > \epsilon\}} (\hat{\theta}(x_n) - \theta)^2 f_n(x_n) dx_n$$

$$\geq \epsilon^2 \int_{\{x_n:|\hat{\theta}(x_n) - \theta| > \epsilon\}} f_n(x_n) dx_n$$

$$= \epsilon^2 \Pr \left\{ |\hat{\theta}(x_n) - \theta| > \epsilon \right\}.$$
Consistency

Thus,

\[0 \leq \Pr \left\{ |\hat{\theta}(x_n) - \theta| > \epsilon \right\} \leq \frac{1}{\epsilon^2} E \left[(\hat{\theta}(x_n) - \theta)^2 \right]. \]

For fixed \(\epsilon \) and taking limits as \(n \to \infty \) gives the result.

The assumption of convergence in mean square therefore guarantees that the estimator converges in probability.
Consistency

Now, let us revisit $\hat{\beta}$.

To show that $\hat{\beta} \xrightarrow{p} \beta$ [or $\text{plim}(\hat{\beta}) = \beta$], it is enough to show that the bias and variance of $\hat{\beta}$ go to zero.

The estimator has already been demonstrated to be unbiased. As for the variance, note:
Consistency

Consider the matrix $X'X/n$.

A typical element of this matrix is a sample average of the form:

$$n^{-1} \sum_{i=1}^{n} x_{ij} x_{il}.$$

Provided these averages settle down to finite population means, it is reasonable to assume

where Q has finite elements and is nonsingular.
Consistency

Since the inverse is a continuous function, we have:

Thus,

whence

\[\text{plim}(\hat{\beta}) = \beta, \]

as needed.
Consistency

Let us now investigate the consistency of $\hat{\sigma}^2$. From before, we can write:

-

We can now use some properties of plim’s to simplify this result. First, note that:

-

by Chebyshev’s LLN. Similarly, note
Consistency

By assumption, we have \((X'X/n)^{-1} \overset{p}{\rightarrow} Q^{-1}\) and we also note

-

given that \(E(\epsilon|X) = 0\). Putting all of this together, we have

-

as needed.