33. Let X be a random variable with probability density

$$f(x) = \begin{cases} c(1 - x^2), & -1 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

(a) What is the value of c?
(b) What is the cumulative distribution function of X?

34. Let the probability density of X be given by

$$f(x) = \begin{cases} c(4x - 2x^2), & 0 < x < 2 \\ 0, & \text{otherwise} \end{cases}$$

(a) What is the value of c?
(b) $P \left\{ \frac{1}{2} < X < \frac{3}{2} \right\} =$?

35. The density of X is given by

$$f(x) = \begin{cases} 10/x^2, & \text{for } x > 10 \\ 0, & \text{for } x \leq 10 \end{cases}$$

What is the distribution of X? Find $P\{X > 20\}$.

36. A point is uniformly distributed within the disk of radius 1. That is, its density is

$$f(x, y) = C, \quad 0 \leq x^2 + y^2 \leq 1$$

Find the probability that its distance from the origin is less than x, $0 \leq x \leq 1$.

37. Let X_1, X_2, \ldots, X_n be independent random variables, each having a uniform distribution over $(0,1)$. Let $M = \max(X_1, X_2, \ldots, X_n)$. Show that the distribution function of M, $F_M(\cdot)$, is given by

$$F_M(x) = x^n, \quad 0 \leq x \leq 1$$

What is the probability density function of M?

38. If the density function of X equals

$$f(x) = \begin{cases} ce^{-2x}, & 0 < x < \infty \\ 0, & x < 0 \end{cases}$$

find c. What is $P\{X > 2\}$?

39. The random variable X has the following probability mass function

$$p(1) = \frac{1}{2}, \quad p(2) = \frac{1}{3}, \quad p(24) = \frac{1}{6}$$

Calculate $E[X]$.
40. Suppose that two teams are playing a series of games, each of which is independently won by team A with probability \(p \) and by team B with probability \(1 - p \). The winner of the series is the first team to win four games. Find the expected number of games that are played, and evaluate this quantity when \(p = 1/2 \).

41. Consider the case of arbitrary \(p \) in Exercise 29. Compute the expected number of changeovers.

42. Suppose that each coupon obtained is, independent of what has been previously obtained, equally likely to be any of \(m \) different types. Find the expected number of coupons one needs to obtain in order to have at least one of each type.

Hint: Let \(X \) be the number needed. It is useful to represent \(X \) by

\[
X = \sum_{i=1}^{m} X_i
\]

where each \(X_i \) is a geometric random variable.

43. An urn contains \(n + m \) balls, of which \(n \) are red and \(m \) are black. They are withdrawn from the urn, one at a time and without replacement. Let \(X \) be the number of red balls removed before the first black ball is chosen. We are interested in determining \(\text{E}[X] \). To obtain this quantity, number the red balls from 1 to \(n \). Now define the random variables \(X_i, i = 1, \ldots, n \), by

\[
X_i = \begin{cases}
1, & \text{if red ball } i \text{ is taken before any black ball is chosen} \\
0, & \text{otherwise}
\end{cases}
\]

(a) Express \(X \) in terms of the \(X_i \).
(b) Find \(\text{E}[X] \).

44. In Exercise 43, let \(Y \) denote the number of red balls chosen after the first but before the second black ball has been chosen.

(a) Express \(Y \) as the sum of \(n \) random variables, each of which is equal to either 0 or 1.
(b) Find \(\text{E}[Y] \).
(c) Compare \(\text{E}[Y] \) to \(\text{E}[X] \) obtained in Exercise 43.
(d) Can you explain the result obtained in part (c)?

45. A total of \(r \) keys are to be put, one at a time, in \(k \) boxes, with each key independently being put in box \(i \) with probability \(p_i \), \(\sum_{i=1}^{k} p_i = 1 \). Each time a key is put in a nonempty box, we say that a collision occurs. Find the expected number of collisions.
46. If X is a nonnegative integer valued random variable, show that

$$ E[X] = \sum_{n=1}^{\infty} P\{X \geq n\} = \sum_{n=0}^{\infty} P\{X > n\} $$

Hint: Define the sequence of random variables I_n, $n \geq 1$, by

$$ I_n = \begin{cases}
1, & \text{if } n \leq X \\
0, & \text{if } n > X
\end{cases} $$

Now express X in terms of the I_n.

*47. Consider three trials, each of which is either a success or not. Let X denote the number of successes. Suppose that $E[X] = 1.8$.

(a) What is the largest possible value of $P\{X = 3\}$?

(b) What is the smallest possible value of $P\{X = 3\}$?

In both cases, construct a probability scenario that results in $P\{X = 3\}$ having the desired value.

48. If X is uniformly distributed over $(0,1)$, calculate $E[X^2]$.

*49. Prove that $E[X^2] \geq (E[X])^2$. When do we have equality?

50. Let c be a constant. Show that

(i) $\text{Var}(cX) = c^2 \text{Var}(X)$;

(ii) $\text{Var}(c + X) = \text{Var}(X)$.

51. A coin, having probability p of landing heads, is flipped until head appears for the rth time. Let N denote the number of flips required. Calculate $E[N]$.

Hint: There is an easy way of doing this. It involves writing N as the sum of r geometric random variables.

52. (a) Calculate $E[X]$ for the maximum random variable of Exercise 37.

(b) Calculate $E[X]$ for X as in Exercise 33.

(c) Calculate $E[X]$ for X as in Exercise 34.

53. If X is uniform over $(0,1)$, calculate $E[X^n]$ and $\text{Var}(X^n)$.

54. Let X and Y each take on either the value 1 or -1. Let

$$ p(1, 1) = P\{X = 1, Y = 1\}, $$

$$ p(1, -1) = P\{X = 1, Y = -1\}, $$

$$ p(-1, 1) = P\{X = -1, Y = 1\}, $$

$$ p(-1, -1) = P\{X = -1, Y = -1\} $$
Suppose that \(E[X] = E[Y] = 0 \). Show that

(a) \(p(1, 1) = p(-1, -1) \);
(b) \(p(1, -1) = p(-1, 1) \).

Let \(p = 2p(1, 1) \). Find

(c) \(\text{Var}(X) \);
(d) \(\text{Var}(Y) \);
(e) \(\text{Cov}(X, Y) \).

55. Let \(X \) be a positive random variable having density function \(f(x) \). If \(f(x) \leq c \) for all \(x \), show that, for \(a > 0 \),

\[
P\{X > a\} \geq 1 - ac
\]

56. There are \(n \) types of coupons. Each newly obtained coupon is, independently, type \(i \) with probability \(p_i, i = 1, \ldots, n \). Find the expected number and the variance of the number of distinct types obtained in a collection of \(k \) coupons.

57. Suppose that \(X \) and \(Y \) are independent binomial random variables with parameters \((n, p) \) and \((m, p) \). Argue probabilistically (no computations necessary) that \(X + Y \) is binomial with parameters \((n + m, p) \).

58. An urn contains \(2n \) balls, of which \(r \) are red. The balls are randomly removed in \(n \) successive pairs. Let \(X \) denote the number of pairs in which both balls are red.

(a) Find \(E[X] \).
(b) Find \(\text{Var}(X) \).

59. Let \(X_1, X_2, X_3, \) and \(X_4 \) be independent continuous random variables with a common distribution function \(F \) and let

\[
p = P\{X_1 < X_2 > X_3 < X_4\}
\]

(a) Argue that the value of \(p \) is the same for all continuous distribution functions \(F \).
(b) Find \(p \) by integrating the joint density function over the appropriate region.
(c) Find \(p \) by using the fact that all 4! possible orderings of \(X_1, \ldots, X_4 \) are equally likely.

60. Calculate the moment generating function of the uniform distribution on \((0, 1)\). Obtain \(E[X] \) and \(\text{Var}[X] \) by differentiating.

61. Suppose that \(X \) takes on each of the values 1, 2, 3 with probability \(\frac{1}{3} \). What is the moment generating function? Derive \(E[X] \), \(E[X^2] \), and \(E[X^3] \) by differ-
(i) Compute \(P\{X = i\} \).
(ii) Let, for \(i = 1, 2, \ldots, k; \ j = 1, 2, \ldots, n \),

\[
X_i = \begin{cases}
1, & \text{if the } i\text{th ball selected is white} \\
0, & \text{otherwise}
\end{cases}
\]

\[
Y_j = \begin{cases}
1, & \text{if white ball } j \text{ is selected} \\
0, & \text{otherwise}
\end{cases}
\]

Compute \(E[X] \) in two ways by expressing \(X \) first as a function of the \(X_i \)s and then of the \(Y_j \)s.

*72. Show that \(\text{Var}(X) = 1 \) when \(X \) is the number of men who select their own hats in Example 2.31.

73. For the multinomial distribution (Exercise 17), let \(N_i \) denote the number of times outcome \(i \) occurs. Find

(i) \(E[N_i] \);
(ii) \(\text{Var}(N_i) \);
(iii) \(\text{Cov}(N_i, N_j) \);
(iv) Compute the expected number of outcomes that do not occur.

74. Let \(X_1, X_2, \ldots \) be a sequence of independent identically distributed continuous random variables. We say that a record occurs at time \(n \) if \(X_n > \max(X_1, \ldots, X_{n-1}) \). That is, \(X_n \) is a record if it is larger than each of \(X_1, \ldots, X_{n-1} \). Show

(i) \(P(\text{a record occurs at time } n) = 1/n \);
(ii) \(E[\text{number of records by time } n] = \sum_{i=1}^{n} 1/i \);
(iii) \(\text{Var}(\text{number of records by time } n) = \sum_{i=1}^{n} (i - 1)/i^2 \);
(iv) Let \(N = \min\{n: n > 1 \text{ and a record occurs at time } n\} \). Show \(E[N] = \infty \).

Hint: For (ii) and (iii) represent the number of records as the sum of indicator (that is, Bernoulli) random variables.

75. Let \(a_1 < a_2 < \cdots < a_n \) denote a set of \(n \) numbers, and consider any permutation of these numbers. We say that there is an inversion of \(a_i \) and \(a_j \) in the permutation if \(i < j \) and \(a_j \) precedes \(a_i \). For instance the permutation \(4, 2, 1, 5, 3 \) has 5 inversions—(4, 2), (4, 1), (4, 3), (2, 1), (5, 3). Consider now a random permutation of \(a_1, a_2, \ldots, a_n \)—in the sense that each of the \(n! \) permutations is equally likely to be chosen—and let \(N \) denote the number of inversions in this permutation. Also, let

\[
N_i = \text{number of } k: k < i, \ a_i \text{ precedes } a_k \text{ in the permutation}
\]

and note that \(N = \sum_{i=1}^{n} N_i \).
2 Random Variables

(i) Show that N_1, \ldots, N_n are independent random variables.
(ii) What is the distribution of N_i?
(iii) Compute $E[N]$ and $\text{Var}(N)$.

76. Let X and Y be independent random variables with means μ_x and μ_y and variances σ_x^2 and σ_y^2. Show that

$$\text{Var}(XY) = \sigma_x^2 \sigma_y^2 + \mu_x^2 \sigma_y^2 + \mu_x^2 \sigma_y^2$$

77. Let X and Y be independent normal random variables, each having parameters μ and σ^2. Show that $X + Y$ is independent of $X - Y$.

Hint: Find their joint moment generating function.

78. Let $\phi(t_1, \ldots, t_n)$ denote the joint moment generating function of X_1, \ldots, X_n.

(a) Explain how the moment generating function of X_i, $\phi_{X_i}(t_i)$, can be obtained from $\phi(t_1, \ldots, t_n)$.
(b) Show that X_1, \ldots, X_n are independent if and only if

$$\phi(t_1, \ldots, t_n) = \phi_{X_1}(t_1) \cdots \phi_{X_n}(t_n)$$

References

7. Suppose \(p(x, y, z) \), the joint probability mass function of the random variables \(X, Y, \) and \(Z \), is given by

\[
\begin{align*}
 p(1, 1, 1) &= \frac{1}{8}, & p(2, 1, 1) &= \frac{1}{4}, \\
 p(1, 1, 2) &= \frac{1}{8}, & p(2, 1, 2) &= \frac{3}{16}, \\
 p(1, 2, 1) &= \frac{1}{16}, & p(2, 2, 1) &= 0, \\
 p(1, 2, 2) &= 0, & p(2, 2, 2) &= \frac{1}{4}
\end{align*}
\]

What is \(E[X|Y = 2] \)? What is \(E[X|Y = 2, Z = 1] \)?

8. An unbiased die is successively rolled. Let \(X \) and \(Y \) denote, respectively, the number of rolls necessary to obtain a six and a five. Find (a) \(E[X] \), (b) \(E[X|Y = 1] \), (c) \(E[X|Y = 5] \).

9. Show in the discrete case that if \(X \) and \(Y \) are independent, then

\[
E[X|Y = y] = E[X] \quad \text{for all } y
\]

10. Suppose \(X \) and \(Y \) are independent continuous random variables. Show that

\[
E[X|Y = y] = E[X] \quad \text{for all } y
\]

11. The joint density of \(X \) and \(Y \) is

\[
f(x, y) = \frac{(y^2 - x^2)}{8} e^{-y}, \quad 0 < y < \infty, \quad -y \leq x \leq y
\]

Show that \(E[X|Y = y] = 0 \).

12. The joint density of \(X \) and \(Y \) is given by

\[
f(x, y) = \frac{e^{-x/y} e^{-y}}{y}, \quad 0 < x < \infty, \quad 0 < y < \infty
\]

Show \(E[X|Y = y] = y \).

*13. Let \(X \) be exponential with mean \(1/\lambda \); that is,

\[
f_X(x) = \lambda e^{-\lambda x}, \quad 0 < x < \infty
\]

Find \(E[X|X > 1] \).

14. Let \(X \) be uniform over \((0, 1)\). Find \(E[X|X < \frac{1}{2}] \).

15. The joint density of \(X \) and \(Y \) is given by

\[
f(x, y) = \frac{e^{-y}}{y}, \quad 0 < x < y, \quad 0 < y < \infty
\]

Compute \(E[X^2|Y = y] \).
16. The random variables X and Y are said to have a bivariate normal distribution if their joint density function is given by

$$f(x, y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp \left\{ -\frac{1}{2(1-\rho^2)} \times \left[\left(\frac{x-\mu_x}{\sigma_x} \right)^2 - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} + \left(\frac{y-\mu_y}{\sigma_y} \right)^2 \right] \right\}$$

for $-\infty < x < \infty$, $-\infty < y < \infty$, where σ_x, σ_y, μ_x, μ_y, and ρ are constants such that $-1 < \rho < 1$, $\sigma_x > 0$, $\sigma_y > 0$, $-\infty < \mu_x < \infty$, $-\infty < \mu_y < \infty$.

(a) Show that X is normally distributed with mean μ_x and variance σ_x^2, and Y is normally distributed with mean μ_y and variance σ_y^2.

(b) Show that the conditional density of X given that $Y = y$ is normal with mean $\mu_x + (\rho\sigma_x/\sigma_y)(y - \mu_y)$ and variance $\sigma_x^2(1-\rho^2)$.

The quantity ρ is called the correlation between X and Y. It can be shown that

$$\rho = \frac{E[(X-\mu_x)(Y-\mu_y)]}{\sigma_x\sigma_y} = \frac{\text{Cov}(X, Y)}{\sigma_x\sigma_y}$$

17. Let Y be a gamma random variable with parameters (s, α). That is, its density is

$$f_Y(y) = Ce^{-\alpha y}y^{s-1}, \quad y > 0$$

where C is a constant that does not depend on y. Suppose also that the conditional distribution of X given that $Y = y$ is Poisson with mean y. That is,

$$P\{X = i|Y = y\} = e^{-y}y^i/i!, \quad i \geq 0$$

Show that the conditional distribution of Y given that $X = i$ is the gamma distribution with parameters $(s + i, \alpha + 1)$.

18. Let X_1, \ldots, X_n be independent random variables having a common distribution function that is specified up to an unknown parameter θ. Let $T = T(X)$ be a function of the data $X = (X_1, \ldots, X_n)$. If the conditional distribution of X_1, \ldots, X_n given $T(X)$ does not depend on θ then $T(X)$ is said to be a sufficient statistic for θ. In the following cases, show that $T(X) = \sum_{i=1}^n X_i$ is a sufficient statistic for θ.