1. Calculate each of the following.

 a. \[\begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \]

 b. \[\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \]

 c. \[\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \]

 d. \[\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}^{-1} = \]

2. Which of the following appears to be a convex or concave (or neither) function of \(x \)?

 a. [Graphs of functions]

 Convex ________ ________ ________
 Concave ________ ________ ________
 Neither ________ ________ ________
b. \(\ln(x) \) on \(x > 0 \). (Show me what you check to draw your conclusions.)

c. \(\exp(x) \) on \(-\infty < x < \infty \). (Show me what you check to draw your conclusions.)

d. \(x^2 + xy + y^2 \) on \(-\infty < x < \infty \) and \(-\infty < y < \infty \). (Show me what you check to draw your conclusions.)

(15) 3. Which of the following is a convex set? (The shaded region is outside the set – the set is in white.)

![Convex set](image.png)

Convex ______

Not Convex ______

Convex ______

Not Convex ______
4. Circle the graph that is most likely to correspond to the following functions. (The axes intersect at the point [0,0].)

a. \(f(x) = 4x^{0.2} \)

b. \(f(x) = -3\exp(-\alpha x) \) where \(\alpha > 0 \). (The axes intersect at the point [0,0].)
5. Indicate whether each of the following problems is (i) a convex program, (ii) a strictly convex program, or (iii) not a convex program. (Indicate what you are checking, and state your conclusions clearly.)

\[
\begin{align*}
\text{minimize} & \quad x^2 + y^2 \\
\text{subject to:} & \quad 5x + 3y \geq 2 \\
& \quad 4x - 2y \leq 5 \\
& \quad x, y \geq 0
\end{align*}
\]

a.

\[
\begin{align*}
\text{maximize} & \quad x + y \\
\text{subject to:} & \quad x^2 + xy + y^2 \leq 7 \\
& \quad x, y \geq 0
\end{align*}
\]
6. Indicate the signs of the Lagrange multipliers for any locally optimal solution for each of the constraints in each of the problems in question 5.