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ABSTRACT 

 
Student, Sanjiv Kumar, Purdue University, May 2008. Studying the effect of spatial 
scaling on hydrologic model calibration using Soil and Water Assessment Tool (SWAT). 
Major Professor: Dr. Venkatesh Merwade. 

 
Calibration of model parameters is a critical step in any successful watershed 

modeling project. The calibrated values of model parameters, however, are influenced by 

sub-watershed divisions and resolution of input data. The objective of this research is to 

study the effects of sub watershed divisions and scale of soil data on calibration of the 

SWAT model (Soil and Water Assessment Tool) for the St. Joseph River Watershed 

(SJRW). Two sets of SJRW models one with SSURGO data (1:24,000 scale) and other 

with STATSGO data (1:250,000 scale), each set having six different level of sub-

watershed division varying from 12 sub-watersheds to 97 sub-watersheds, are 

independently calibrated using shuffled complex evolution algorithm for daily 

streamflow output at the watershed outlet. To further study issues of spatial scale, similar 

experiments are repeated for one of the major sub watersheds of SJRW, namely Cedar 

Creek. For Cedar Creek, two sets of watershed models are created with each set having 8 

different levels of watershed sub divisions. Twenty eight independently calibrated model 

results showed no significant difference in terms of model performance, however 

parameter uncertainty ranges were found to be dependent on sensitivity of individual 

parameters. Sensitive parameters showed very small uncertainty range compared to less 

sensitive parameters. 
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CHAPTER 1 INTRODUCTION 

 
1.1 Background 

 

Environmental modeling provides a tool to study impacts of human intervention in 

natural processes. As available landscape is being increasingly altered in the form of 

agricultural practices, fertilizer and pesticide application, urbanization, and industrial 

development to meet societal needs, the impact of these alterations on local and global 

environment has become a major concern.  Water quality and air quality are the two 

major issues that are being addressed by researchers in various disciplines. Better 

understanding of natural processes and prudent management of natural resources can aid 

in reducing adverse impacts of human interventions. Improvement in Great lakes water 

quality over the last 30 years through continued research and implementation of 

mitigation strategies is one such success story (State of Great Lakes, 2007).  

 

In agriculture-dominated mid-west region of the U.S., sediment, nutrient and 

pesticide coming out of agricultural fields are major non-point sources of pollution 

affecting stream water-quality in watersheds (Bernot et al. 2006, Yu et al. 2004). An 

understanding of source area and flow path of pollutants can greatly improve watershed 

management. Stream water quality is a complex function of natural variables and human 

induced changes in a catchment area. Natural variables include climate, topography, and 

soil characteristics, whereas human induced changes include point and non-point sources 

of pollution, land use changes and flow regulations. Changes in natural and human 

induced variables occur at different spatial and temporal scale. For example, under 

similar climatic conditions, land use pattern in a region changes within a range of few 

miles. Similarly, low flow conditions in summer and fall can make stream water quality 
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an alarming issue, whereas high flow conditions in winter and spring can dilute pollutants 

to such an extent where water quality is of no concern. Variability in spatial and temporal 

scale poses considerable challenges in data collection, archival, and analysis. In addition, 

integration of multi-scale, heterogeneous datasets to create prediction models pose more 

challenges.  

 

Lack of an integrated source for relevant data and suitable modeling tools has been 

a major stumbling block for conducting interdisciplinary environmental research. To fill 

this gap, a group of researchers at Purdue University is working on development of a web 

portal that will allow researchers to conduct a broad spectrum of environmental research 

at the watershed scale. This NSF sponsored project (Grant number 0619086) titled 

‘Cyberinfrastructure for End-to-End Environmental Explorations (C4E4)’ aims to 

combine heterogeneous datasets with sate-of-the-art modeling and visualization tools 

through a web portal. The web portal will allow users to query or retrieve different 

datasets, run appropriate models, and analyze and visualize results to make decisions.  

 

1.2 Problem Statement and Objectives 
 

The first step in developing the C4E4 portal is to have a calibrated watershed 

model that will allow researchers and watershed managers to evaluate effects of different 

Best Management Practices (BMPs) on stream water quality. A well-calibrated 

hydrologic model is a prerequisite to simulate other watershed processes (sediment, 

nutrient and pesticide), but model representation and parameters depend on several 

factors such as spatial resolution of input data (digital elevation model, soil data, land use 

data) and threshold area for stream generation (number of sub watersheds). A calibrated 

model is just one realization out of several other possible realizations in which watershed 

hydrology can be represented and simulated. One may get a different model and 

associated set of parameters if model spatial scale is changed. Therefore, to develop a 

robust base model for the C4E4 portal, it is necessary to understand sensitivity of model 

parameters to different spatial scales.    
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With the broader aim of creating a robust base model for C4E4 portal, this thesis 

has the following objectives: 

a. To study effects of watershed sub-division (spatial scale) on model representation 

(watershed attributes). 

b. To study effects of watershed sub-division (spatial scale) on model calibration 

and validation (model performance). 

c. To study effects of STATSGO (1:250,000 scale) and SSURGO (1: 24,000 scale) 

soil data on model results. 

d. To study sensitivity of calibrated parameters to model spatial scale and soil data. 

 

1.3 Approach 
 

The objectives of this research are accomplished by creating a set of watershed 

configurations representing different spatial scale for a study area, and studying the 

effects of these configurations on calibrated parameters and model output. A brief 

description of the study area, model, and overall approach is provided below. 

 

Watershed: The St. Joseph River Watershed (SJRW) located at the intersection of 

Michigan, Ohio and Indiana States is used as a test bed for this study. SJRW is a source 

water protective watershed with many environmental groups monitoring water quality in 

the watershed. St. Joseph River is the main source of drinking water for 200,000 people 

in Fort Wayne, Indiana. Peak level of Atrazine (an herbicide) higher than 3 ppb, (EPA 

drinking water standard) was reported in the watershed between 1995 and 1998 (Amabile 

et al., 2006). More details on SJRW are provided in Section 3.1.  

 

Model: A comprehensive model is required for this research that can (a) continuously 

simulate watershed hydrology and its response to different management scenarios over 

long time periods, (b) incorporate physical variability in the watershed, and (c) track flow 

path of pesticide and nutrients in the watershed. Considering these requirements, Soil and 

Water Assessment Tool (SWAT) is selected as a candidate model for this study (Arnold 
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et al., 1998; Neitsch et al., 2005; Gassman et al., 2007). More details on SWAT model 

are provided in Section 3.3. 

 

Methodology: Seven SJRW watershed configurations are created by using different 

critical source areas (CSAs) for stream generation ranging from 0.3% to 7.0 % of total 

watershed area, thus creating SWAT models representing different spatial scale. The 

effect of soil data resolution is incorporated by using two types of soil data (SSURGO 

and STATSGO) for each configuration, thus creating 14 (2*7) model sets. All models are 

independently calibrated for flow output at the watershed outlet to study effects of spatial 

scale and soil data on model calibration. Finally, to gain more insight with regard to 

spatial scaling, similar exercise is repeated for one of SJRW’s major sub watershed, 

namely Cedar Creek (1/4th of SJRW size).  

 

1.4 Thesis organization 
 

The thesis is organized in six chapters. Chapter Two provides a literature review 

of the research work related to effects of data resolution and watershed sub division on 

model outputs, model calibration, and parameter uncertainty in hydrologic modeling. 

Chapter Three presents description of study area, data and model used in this study. 

Effects of watershed sub division on model attributes are described in Chapter Four. 

Model calibration and validation, and parameter uncertainty, procedure, and results are 

presented in Chapter Five. Conclusions of this research are summarized in Chapter Six. 

Appendix A outlines procedure for processing of SSURGO data. SWAT hydrologic 

parameters from theoretical perspective are described in Appendix B. Control parameters 

for model calibration are documented in Appendix C. 
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CHAPTER 2 LITERATURE REVIEW 

 
2.1 Introduction 

 
A watershed is a complex system consisting of various hydrologic processes such 

as precipitation, interception, surface runoff, infiltration, groundwater percolation and 

evapotranspiration that occur at different spatial and temporal scales. The interaction or 

interplay among all watershed components is collectively represented by watershed 

response in the form of runoff hydrograph. Watershed response depends upon watershed 

topography (shape, size, slope, and orientation), land use pattern, soil types, magnitude 

and timing of rainfall events, and human interventions. For example, when land surface is 

parched after summer, even intense precipitation in fall season may not produce high 

runoff, but during winter or spring, such precipitation can cause flooding because soils 

are either saturated or frozen to convert most of precipitation to surface runoff. Similarly, 

an ill-managed agricultural farm can cause excessive erosion from fields, and contribute 

nutrients and pesticides to streams, creating water quality problems in a watershed. 

 

A hydrologic model represents a complex hydrologic system in simple and 

readily comprehensible manner to permit hydrologic simulation and prediction by 

establishing relationships between different watershed components (Black, 1991). 

Watershed models have come a long way since their inception in 1960’s from   lumped 

rainfall-runoff model such as Stanford Watershed Model (SWM) (Crawford and Linsley, 

1966), to more process based semi-distributed models such as SWAT that is capable of 

simulating runoff, sediment, nutrient and pesticide at various points in a watershed 

(Arnold et al., 1998). In addition, advances in computing resources and Geographic 

Information System (GIS) have played a significant role in development of recent 



 

 

6

hydrologic models. Today hydrologic models are used as a decision support tool for 

TDML (Total Daily Maximum Load) program and BMP (Best Management Practices) 

evaluation programs to alleviate water quality issues in watersheds (Santhi et al., 2003; 

Arabi et al., 2006). Therefore, it has become increasingly important to understand various 

steps involved in hydrologic modeling process and interpretation of model results with 

respect to input uncertainty and model constrains. Various steps involved in hydrologic 

modeling can be grouped under four broad categories: (1) Organization of input data, (2) 

Data preprocessing, (3) Watershed delineation and discretization, and (4) Model 

calibration and validation. 

 

Input data consist of static data (kept constant throughout modeling process in a 

model) such as Digital Elevation Models (DEM), land use and soil maps. If any of the 

data are not available in digital format, they can be generated from using legacy data such 

as paper maps or other sources (remote sensing images). For example DEM can be 

generated from contour maps, land use data can be extracted from remote sensing data 

(Landsat 5 and 7), soil data can be developed from field soil survey maps. Watershed 

characteristics such as area, slope, and basin curve number are determined based on 

information contained in static data. Another group of input data required is dynamic 

input such as daily time series of temperature and precipitation, and crop management 

information. 

 

Data preprocessing step includes projection of GIS data, filling of sinks in DEM, 

and formatting of dynamic data into model specified format. With the availability of 

weather data in different formats such as ASCII format, Net CDF (Network Common 

Data Form) format, and XMRG format, preprocessing of weather data takes considerable 

time.  

 

Step 3 includes delineating of watershed by generating a stream network based on 

user defined threshold area for stream origination called Critical Source Area (CSA). 

Higher CSA results into less number of sub watersheds and low density of drainage 
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network (total channel length/total watershed area) and vice-versa. In a semi distributed 

model such as SWAT each sub watershed is further divided into basic calculation units 

called HRUs (Hydrologic Response Units) based on minimum thresholds area of land use 

and soil type.  Since model does all calculation for individual HRUs, appropriate 

representation of watershed variability in HRUs are necessary. 

  

After delineating watershed boundary and defining calculation units (HRUs), the 

next step is to calibrate model parameters to reproduce observed watershed response 

(hydrograph, sediment yield, chemograph). Calibrated parameters are then validated by 

producing watershed response for another set of dynamic input data that are not included 

in calibration process. Once a model is calibrated and validated, it is used for watershed 

management planning and decision. The objective of this chapter is to describe related 

work on effect of input data and watershed sub division on hydrologic modeling process, 

model calibration and uncertainty in hydrologic modeling. 

  

2.2 Input data 

2.2.1 Digital Elevation Model (DEM) 
 

Different resolution DEMs (10, 30, 90 m) are available to users to create a 

watershed model. Di Luzio et al. (2005) found that selection of DEM data is critical for 

delineating 21.3 km2 Goodwin Creek watershed in Mississippi- a watershed delineation 

using 90 m DEM was incorrect. An incorrectly generated watershed from 90 m DEM 

resulted in 11 to 13% less watershed area compared to 30 m DEM. Incorrect 

geomorphologic parameters, reduced annual runoff, soil erosion and sediment yield.  In a 

similar study, Chaubey et al. (2005) compared SWAT model output produced by using 

DEM ranging from 30 m to 1000 m for 18.9 km2 Moores Creek watershed in Arkansas. 

Although coarser DEM reduced streamflow and NO3-N (nitrate nitrogen), total P 

(Phosphorous) prediction did not always decrease with coarser DEM. Chaubey et al. 

concluded that effect of DEM resolution depends on model output variable of interest.  

DEM resolutions ranging from 100 m to 200 m produced streamflow, NO3-N, and total P 

within a relative error of +10%.  
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Chaplot (2005) studied the effect of DEM resolution (20 to 500 m) on SWAT 

model output, and recommended an upper limit of 50 m on DEM resolution to simulate 

watershed loads. Contrary to previous research, Chaplot found that SWAT runoff 

prediction was accurate across all DEM resolution, but beyond 50 m DEM resolution, 

sediment and NO3-N load were significantly decreased. The insensitivity of runoff 

prediction on DEM resolution is due to the SCS Curve Number method used in runoff 

calculation. In SCS Curve Number method (Soil Conservation Service, 1972), 

topography is given low importance in calculating surface storage, interception 

infiltration and retention. Therefore, runoff calculation is not affected by changing 

topography from different DEM resolutions. In the case of MUSLE equation (Modified 

Universal Soil Loss Equation) for sediment and NO3-N simulation, channel slope and 

length play a significant role, and get substantially affected (decreased) by smoothening 

of landscape at coarser DEMs, thus affecting respective outputs. 

 

2.2.2 Land Use data 
 

Land Use data along with soil hydrologic group are critical when SCS Curve 

Number method is used to determine curve number distribution in a watershed. However, 

fewer studies are available on the effect of spatial scale of land use data in hydrologic 

modeling. This may be due to non availability of different resolution land use data in 

public domain. 

 

Di Luzio et al. (2005) analyzed the effect of three land use data sets: LULC (Land 

Use Land cover USGS map 1:250,000 scale), LNSL (land use land cover map derived 

from Landsat 5 Thematic Mapper 1987, 30 m resolution) and NLCD-1992 (National 

Land Cover data 1992, 30 m resolution) on SWAT model output. Difference in model 

output (runoff and sediment yield) was mainly attributed to inherent discrepancy in land 

cover classification in the original datasets. For example, coarser resolution LULC 

included pasture class into agricultural class resulting in higher curve number and hence 

higher runoff. In addition, coarser resolution land cover map resulted in limited number 
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of HRUs, thus preventing more precise management practice strategy in a small 

watershed.  

 

Cotter et al. (2003) analyzed the effect of land cover data of varying resolution 

ranging from 30 m to 1000 m on hydrologic model output. Compared to 30 m resolution 

land use data, 1000 m resolution land use data overestimated forest cover (23%) by 

combining forest cover with pasture (16%) and urban land cover (7%). Increased forest 

cover resulted in reduced curve number for the watershed, which in turn produced 

reduced runoff (7%), sediment (19%) and nutrient output (NO3-N:11%, total P:41%) 

from the model. 

 

2.2.3 Soil data 
 

With the availability of high resolution 1:24,000 scale SSURGO (The Soil Survey 

and Geographic) soil data, there is a growing interest in comparing the effect of 

SSURGO on model simulation with respect to earlier available coarser resolution 

1:250,000 scale STATSGO (The State Soil and Geographic) soil data. By analyzing the 

effect of STATSGO and SSURGO soil data on SWAT model streamflow output in the 

snow melt dominated Elm River watershed, North Dakota, Wang and Melesse (2006) 

found that overall SSURGO model showed slightly better performance in predicting 

monthly, seasonal, and annual mean discharge. During validation period, STATSGO 

model predicted consistently higher mean discharge compared to SSURGO model. The 

difference between STATSGO and SSURGO model was more pronounced in upstream 

part of the watershed because of dominant overland hydrologic process compared to 

channel processes in the downstream part of the watershed. 

 

Di Luzio et al. (2005) presented a detailed analysis of SNSL (equivalent to 

SSURGO soil map) and STATGO soil data for Goodwin Creek watershed, Mississippi, 

and found that soil parameter differed significantly between these two soil datasets. 

Higher resolution SNSL soil data resulted in higher curve number for the watershed (a 4-

6 range) compared to STATSGO soil data. Saturated hydraulic conductivity for top most 
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soil layer was nearly double in the case of SNSL soil map compared to STATSGO, but 

soil available water capacity (sol_awc) and soil erodibility factor (USLE_K) remained 

unchanged between the two datasets. The combined effect was higher annual streamflow 

prediction (5-10%) in the case of SNSL soil data, but sediment output remained 

unchanged.  

 

Chaplot (2005) compared effects of three soil datasets: 1:25,000 SSURGO, 

1:250,000 STATSGO, and 1:500,000 soil data derived from STATSGO, on SWAT 

model output for Walnut Creek watershed in central Iowa. The result showed that the 

mean monthly value of runoff prediction was not significantly affected by soil data, but 

nitrogen and sediment load were significantly reduced for coarser scale soil data. 

Sediment and nitrogen load were underestimated by 40% and 25% for STATSGO and 

1:500,000 scale soil data, respectively compared to load prediction from SSURGO soil 

data. 

 

2.2.4 Weather Input (precipitation and temperature) 
 

Precipitation and temperature data are used as the source input to simulate 

hydrologic process at watershed scale (at regional and global scale temperature drives 

hydrologic cycle), and therefore, representative distribution of weather input is required 

to create a hydrologic model. Generally hydrologic models are calibrated against 

observed streamflow at the watershed outlet in response to rainfall distribution in the 

watershed, but rainfall distribution used in the model is based on point measurement at 

few gauging stations in the watershed, which may or may not represent the actual rainfall 

distribution. Therefore, uncertainty associated with rainfall distribution in the model, and 

subsequent error transmitted to model result is a major area of research in hydrology. 

 

  Chaplot et al. (2005) used 51 km2 Walnut Creek (WC) in Iowa with 15 rain 

gauging stations and 918 km2 Bosque River watershed (BUR) in Texas with 14 rain 

gauging stations to study effect of number of rain gauging stations on prediction of runoff 

and nitrogen flux. Watershed conditions in WC and BUR were simulated by considering 
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a range of rain gauging stations, including climatic data from nearest National Weather 

Service station. Result showed that mean monthly runoff and nitrogen fluxes varied only 

slightly with decreasing rain gauges. However, statistical parameters such as root mean 

standard difference (RMSD) indicated that model errors were higher and more skewed 

when the number of rain gauging stations reduced to half or below. Based on findings 

Chaplot et al. recommended use of highest available number of rain gauges for watershed 

modeling.  

 

 Kalin and Hantush (2006) compared SWAT model output (streamflow, baseflow 

and surface runoff) for 120 km2 Pocono Creek watershed in Pennsylvania by using 

precipitation input from rain gauging stations and from 4 x 4 km resolution NEXRAD 

(Next Generation Weather Radar) data. NEXRAD precipitation matched well (R2 ~ 0.90) 

with rain gauging station measurement on daily and monthly basis. Hydrographs 

generated from both rain gauging stations and NEXRAD data were similar and matched 

well with observed data on daily and monthly basis. Although NEXRAD data did not 

show any improvement in model results compared to rain gauging stations, it was 

suggested that simulation at sub watershed level may shed more light on advantages of 

using spatially distributed NEXRAD data. 

 

2.3 Watershed sub divisions 
 

Watershed sub division is another major area which has been researched 

extensively to study the effects of spatial scale on hydrologic modeling. Model 

parameters are aggregated at user defined spatial scale through watershed sub division, 

and model results are found to be highly sensitive to this aggregation. Often attempts 

have been made by various researchers (Bingner et al., 1997; Jha et al., 2004; Arabi et al., 

2006) to define optimum sub-watershed division level for different model outputs, but no 

standard set of framework exists for watershed sub division.  

 

Mammilaplli (1998) suggested existence of a basin dependent threshold 

configuration beyond which there is no or minimal increase in model efficiency. 
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Mammilaplli also suggested that land use and soil type combination (represented by the 

number of HRUs) have more impact on the streamflow output than the topography of the 

basin (represented by the number of sub watersheds) because of the use of curve number 

method for runoff calculation. Bingner et al. (1997) did not find annual runoff to be 

sensitive to the sub watershed division in 21 km2 Goodwin Creek watershed (GCW) in 

Mississippi, but annual sediment yield was sensitive to the level of watershed sub 

divisions. Increase in sediment yield at finer resolution watershed division was attributed 

to two factors: (1) increase in overland slope (topography), and (2) representation of land 

use distribution in HRUs. At coarser resolution, most erosive land use type (crop land) 

had very little coverage, which increased with finer resolution of watershed sub division, 

and became constant after a threshold resolution.  

 

Jha et al. (2005) found that optimum value of watershed sub division is dependent 

upon the output of interest and suggested 3%, 2%, and 5% (of total watershed area) as 

minimum threshold sub watershed size for sediment, nitrate, and inorganic phosphorous 

prediction, respectively. Jha et al. attributed the difference in sediment yield to channel 

process (deposition and degradation) due to change in drainage density and slope, and not 

to the overland slope as suggested by Bingner et al. (1997). Findings of Jha et al. seem 

more logical because overland slope is calculated based on DEM data resolution and 

therefore sub watershed division level is not expected to have any significant effect on 

overland slope. Drainage density and channel slope on the other hand are dependent upon 

sub watershed division level, and therefore can affect sediment yield. 

 

FitzHugh and Mackay (2000) also found that sediment prediction was very 

sensitive to size of sub watersheds. Effect on sediment yield was due to the sensitivity of 

runoff component in MUSLE (Modified Universal Soil Loss Equation) equation.  

FitzHugh and Mackay also emphasized the importance of channel time of concentration 

in MUSLE equation, and recommended further research to determine model behavior for 

watersheds larger than the one considered (48 km2) in their study. Both Jha et al. and 
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FitzHugh and Mackay did not find streamflow output to be sensitive to sub watershed 

divisions. 

 

Arabi et al. (2006) found that BMP simulations (sediment and nutrient load) to be 

very sensitive to sub watershed division in SWAT. They suggested that a threshold 

average sub watershed size of 4% of total watershed area is required to model BMP 

effectiveness in 6.2 km2 Dreisbach watershed in Indiana and 7.3 km2 Smith Fry watershed 

in Indiana. Consistent with previous findings by Jha et al. and FitzHugh and Mackay, 

channel slope and sediment generation from upland area were cited as critical factors 

affecting model results. 

 

2.4 Parameter estimation 
 

Distributed watershed models are highly parameterized – SWAT, for example, 

has twenty six parameters for flow components, six for sediment, and nine for water 

quality, and many of these parameters can have different values for each basic calculation 

unit (HRUs) in the model. Model results can be in acceptable range for one set of 

parameter values, but can become totally unacceptable for another set of parameter 

values for the same given input. Therefore determining acceptable set of parameters is 

critical in creating a successful watershed model. However, it is not feasible to determine 

these parameters from experiments because of several reasons such as cost involved in 

experimental setup, physical variability present in the watershed, interaction among 

different parameters and scale issues. Consequently, parameter values are determined by 

calibration process within the modeling framework (Eckhardt and Arnold 2001, Rouhani 

et al. 2007). 

 

There are two calibration approaches: manual and automatic calibration. Manual 

calibration for SWAT model is explained in detail by Santhi et al. (2001), but this process 

is time consuming and subjective depending on modeler preference and expertise. 

Therefore, manual calibration is not a preferable option when large numbers of 

parameters are involved (Eckhardt and Arnold 2001, Eckhardt et al. 2005). 
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 Duan et al. (1992) suggested Shuffled Complex Evolution- University of Arizona 

(SCE-UA) algorithm for automatic model calibration that has been extensively used in 

hydrologic model calibration (Sorooshian et al. 1993, Eckhardt and Arnold 2001, Van 

Griensven et al. 2002, Eckhardt et al. 2005). SCE-UA is a global search algorithm 

belonging to the family of genetic algorithms. It samples population (parameter set) from 

entire feasible space (upper and lower bound specified by user) and based on 

evolutionary steps, entire population converges towards the neighborhood of global 

optimum. Eckhardt and Arnold (2001) used SCE-UA algorithm for calibrating 18 

parameters of SWAT-G model, and concluded that automatic calibration can be 

successfully used for calibration of complex distributed hydrologic models.  

 

 Van Griensven et al. (2002) employed auto calibration preceded by sensitivity 

analysis with multi objective and multi site criterion for river water quality modeling in 

Belgium using ESWAT (Extended SWAT). Total seventeen objective functions (OFs) 

were defined at three sites (representing flow, Dissolve Oxygen, Biological Oxygen 

Demand, Ammonia, Nitrate, and Phosphate at three sites) in Dender River watershed, and 

they were normalized to form Global Optimization Criterion (GOC). SCE-UA algorithm 

was used to minimize GOC for 32 parameters selected during sensitivity analysis. 

Because streamflow and water quality are related, using multi-objective calibration 

(instead of doing step by step calibration i.e. first flow then water quality) put more 

constraints on many parameters and improves their indentifiability. Results showed that 

GOC also correspond to optimum for individual OFs with few exceptions, and simulated 

results were in good agreement with measured observations for streamflow and water 

quality. Because of its wide range of applicability, SCE-UA algorithm has been 

incorporated in SWAT-2005 as auto calibration tool along with sensitivity analysis tool 

(van Griensven et al. 2006). 

 

 Regardless of calibration procedures used in estimating model parameters, it is 

not possible to find parameter values that represent the true parameter set. Because of 

inherent assumptions and simplifications in model structure, and errors associated with 
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input and observed datasets, there can be several parameter sets that can produce similar 

model response for a given input. This concept of non-unique parameter sets is called 

‘equifinality’ (Beven, 1993). Identification of uncertainty associated with different stages 

in modeling process such as input data uncertainty, parameter uncertainty and model 

output uncertainty, is a major area of research in hydrologic modeling.  

 

 Many studies exist where model output uncertainty have been documented 

(Muleta and Nicklow 2005, Arabi et al. 2007 (a)), but these studies are based on one 

model configuration (spatial scale). As explained in previous sections (Sections 2.2 and 

2.3) model spatial scale itself can be a major factor affecting model output, but little 

information is available on how model spatial scale affects calibrated model parameters 

and results. Therefore the focus of present research is to study the effect of model spatial 

scale on model calibration and parameter uncertainty.  

 

2.5 Summary 
 

Previous works related to effect of input data resolution and watershed sub 

division on hydrologic modeling are summarized in this chapter. Resolution of input data 

in combination with watershed sub division determines model spatial scale. Effect of 

model spatial scale depends on output of interest, and in general, coarser resolution 

model resulted in erroneous results compared to finer resolution model. Apart from 

model spatial scale, work related to calibration of semi distributed hydrologic model is 

also covered in this chapter. Because of large number of parameters associated with semi 

distributed model such as SWAT, manual calibration is very difficult if not impossible. 

Shuffled Complex Evolution algorithm (SCE-UA) developed by Duan et al. (1992) has 

been extensively used as auto calibration tool in hydrologic studies. Further, work related 

to non uniqueness of model parameter set is presented.  
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CHAPTER 3 STUDY AREA, DATA AND MODEL DESCRIPTION 

 
3.1 Study Area 

 
St. Joseph River watershed located at intersection of Michigan, Ohio and Indiana 

states (Figure 3.1 (a)) is used as test bed for research in this study. SJRW is an 8-digit 

HUC (Hydrologic Cataloging Unit) watershed with HUC number: 04100003. The 100 

mile St. Joseph River originates at the Hillsdale County in Michigan and flows in NE-SW 

direction through south central Michigan, northwest Ohio and northeast Indiana covering 

8 counties (Figure 3.1 (b)). St. Joseph River meets St Mary River near the city of Fort 

Wayne in Indiana to form river Maumee, which flows to Lake Erie, one of the Great 

Lakes. Indiana covers major portion (56%) of 280,000 ha SJRW, whereas Ohio and 

Michigan cover 22% each. SJRW has varied topography, starting from rolling hills in 

upstream part to level plain downstream.  

 

Located in the heart of mid-west, SJRW is an agriculture-dominated watershed 

(53.6%) with major crops being corn and soybeans (Amabile et al., 2006). Other 

dominant land use types are hay (17.4%), deciduous forest (10.8%), and urban land 

(7.4%). St. Joseph River is the main source of drinking water for 200,000 people in the 

city of Fort Wayne. Peak level of Atrazine (an herbicide) higher than 3 ppb (EPA 

drinking water standard) was reported in this watershed between 1995 and 1998 

(Amabile et al., 2006).  
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(a) (b) 
Figure 3.1 SJRW (a) in Great Lakes region, USA (b) with counties and                     

Cedar Creek (CDR) 
 

St. Joseph River Watershed Initiative (SJRWI), which is one of the several 

environmental groups working towards improving water quality of St. Joseph River 

through environmental friendly land use management practices (http://www.sjrwi.org/) 

has been monitoring water quality in SJRW since 1996. In 2005, SJRWI had 25 water 

quality sampling stations in the watershed, and reported decreasing trend in the atrazine 

concentration, but found elevated concentration of metolachlor concentration (another 

herbicide). SJRWI identified sediment loading as one of the major concerns in several 

areas of SJRW. USDA ARS (United States Department of Agriculture Agriculture 

Research Service) National Soil Erosion Research Laboratory (West Lafayette, Indiana) 

is also working in SJRW to study agricultural chemicals concentration in drinking water 

source and effect of Best Management Practices (Flanagan et al., 2003; Amabile et al., 

2006).   

 

 Besides SJRW, Cedar Creek, one of the major sub watersheds within SJRW is 

also used in this study. Cedar Creek (Figure 3.1 (b)) has total drainage area of 70731 

http://www.sjrwi.org/
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hectares, covering part of Allen, De-Kalb and Nobel counties in Indiana. Cedar creek is 

included in Indiana’s State Natural, Scenic and Recreational River System, which 

protects this sub-watershed from any major human alteration or interference (SJRWI, 

2006). 

 

3.2 Data 
 

Selection of appropriate data to build a model is a vital part of hydrologic modeling 

process. Resolution of input data determines the extent to which physical variability can 

be incorporated in the model. Although one may want to incorporate maximum 

watershed variability in a model, there are constraints in terms of resolution of available 

data and model’s computational efficiency. The overall approach in creating a hydrologic 

model is to achieve a good compromise among model’s realizations of actual hydrologic 

system, data availability, and computational efficiency. This section provides a brief 

description of data used to create SJRW model based on literature review and modeling 

objectives. 

 

3.2.1 Digital Elevation Model (DEM) 
 

One arc second (30m resolution) Nation Elevation Dataset (NED) DEM available 

from USGS is used in this study. The DEM is downloaded from http://seamless.usgs.gov/ 

and projected to Universal Transverse Mercator (UTM) NAD83 (North American Datum 

1983), Zone 16 (Figure 3.2 (a)).  

 

3.2.2 National Hydrographic Dataset (NHD) 
 

High (1:24,000 scale) and medium resolution (1:100,000 scale) NHD are 

downloaded from http://nhdgeo.usgs.gov/ and projected to NAD 1983, UTM Zone 16 

(Figure 3.2 (b)). NHD sub watershed feature is used to define the extent for data pre-

processing and high resolution NHD flow line features are used to burn stream line into 

the DEM during watershed delineation process. 

http://seamless.usgs.gov/
http://nhdgeo.usgs.gov/
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Figure 3.2 (a) DEM (b) NHD sub watershed and flowline (c) NLCD 2001 land cover data 
(d) STATSGO soil data (e) SSURGO soil data (f) Weather and Stream gauging 
stations for SJRW 
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3.2.3 Land Cover  
 

National Land Cover Dataset (NLCD) 2001 is obtained form USGS website 

(http://seamless.usgs.gov/). NLCD-2001 is developed by Multi-Resolution Land 

Characteristics Consortium (MRLC) and has 16 land cover classes over conterminous 

U.S.A. Land cover data are generated from standardized set of data layers consisting of 

multi-season Landsat 5, Landsat 7 imagery, and DEM and its derivatives (slope, aspect, 

positional index) collected during year 2001 (Homer et al., 2007). In addition to land 

cover classes, it has separate data layers for tree canopy percentage and urban 

imperviousness percentage. For the SWAT model, only land cover data are used because 

SWAT does not have the provision to incorporate other NLCD layers in the model. Land 

cover data for SJRW is shown in Figure 3.2 (c). Table 3.1 describes mapping of NLCD 

2001 land cover classes to SWAT land Use class (LU SWAT). Brief definitions of the 

major land cover classes in the watershed are given below 

(http://www.mrlc.gov/nlcd_definitions.asp).  

Cultivated Crops - Area used for annual crop production including orchards and 

vineyards. Crop vegetation accounts for more than 20 % of total vegetation cover. 

Pasture/Hay - Area planted for livestock grazing such as grass and legumes, or for the 

production of seeds and hay crops. Pasture/Hay vegetation are more that 20 % of the total 

vegetation cover. 

Deciduous Forest - More than 20% of the vegetation cover are dominated by trees taller 

than 5 meters. 75% or more trees shed foliage simultaneously in response to seasonal 

changes. 

Woody Wetland – More than 20% of the vegetation cover is forest or shrub-land. Soil or 

substrate is periodically saturated or covered with water. 

Developed, Open Space – Mixture of some constructed or paved surfaces (less than 

20%), but mostly vegetation in the form of lawn grasses such as parks and golf courses. 

Developed, Low Intensity – Mixture of constructed or paved surfaces (20-49%) and 

vegetation such as single-family housing units. 

Open Water– All area of open water, vegetation and soil cover less than 25%. 

http://seamless.usgs.gov/
http://www.mrlc.gov/nlcd_definitions.asp
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Developed, Medium Intensity – Impervious surface 50-79%, remaining area is covered 

by vegetation. 

Developed High Intensity – Highly developed residential/commercial/industrial area, 

impervious surface 80 to 100%. 

 

Table 3.1 Land Use classes in the St. Joseph River Watershed 
 

LU SWAT NLCD-2001 Land Cover Class % Area 

AGRR Cultivated Crops 53.64 

HAY Pasture/Hay 17.37 

FRSD Deciduous Forest 10.79 

WETF Woody Wetland 7.17 

URLD Developed, Open Space 5.16 

URMD Developed, Low Intensity 2.2 

WATR Open Water 1.16 

RNGB Shrub/ Scrub 0.59 

RNGE Grassland/ Herbaceous 0.59 

URHD Developed, Medium Intensity 0.46 

WETN Emergent Herbaceous Wetland 0.37 

UIDU Developed, High Intensity 0.2 

FRSE Evergreen Forest 0.19 

FRST Mixed Forest 0.06 

SWRN Barren Land (Rock, Sand, Clay) 0.05 
 
 

 
3.2.4 Soil Data 

 
STATSGO (The Sate Soil and Geographic) and SSURGO (The Soil Survey and 

Geographic) soil data available from USDA NRCS (United Sates Department of 

Agriculture Natural Resource Conservation Services) are used in this study. Brief 

descriptions of these datasets are provided below. 
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STATSGO data set 
 

The 1:250,000 scale Sate Soil and Geographic (STATSGO) data has map units 

that have a minimum area of 1544 acres or larger.  Unlike land use data that are generated 

using satellite data (Landsat 5 and 7), soil data are developed based on field soil surveys. 

Field survey maps are used to create soil data in spatial and tabular format that can be 

combined to form a GIS layer. STATSGO data set, which is also known as U.S. General 

Soil Map Coverage, can be downloaded from the soil data mart 

(http://soildatamart.nrcs.usda.gov/). SJRW has total 17 STATSGO soil types (Figure 3.2 

(d)). Because of its coarser resolution, STATSGO is not suitable for modeling at county 

level or below. Major soil hydrologic group (75%) present in SJRW is Class C.  

 

SSURGO data set 
 

The 1:24,000 scale Soil Survey Geographic (SSURGO) data are available county 

wise from USDA NRCS website (http://soildatamart.nrcs.usda.gov/) and contain most 

detailed information about soil types. Minimum single unit size in SSURGO data varies 

between 1.5 to 40 acres.  SSURGO data cannot be used directly in ArcSWAT, and the 

procedure used to incorporate SSURGO data into SWAT is described in Appendix A of 

this thesis. SSURGO data has 433 soil types as shown in Figure 3.2 (e). Major soil 

hydrologic group (90%) present in SJRW is Class C. 

 

3.2.5 Weather Data 
 

SJRW has five NCDC (National Climatic Data Center) weather stations as shown 

in Figure 3.2 (f) and Table 3.2. Daily precipitation (pcp) and temperature (maximum and 

minimum) data for these stations are available from NOAA (National Oceanic and 

Atmospheric Administration) website (http://www.ncdc.noaa.gov/oa/ncdc.html). Annual 

average precipitation for study period (1990-2003) is 955 mm. January is the coldest 

month with a daily average maximum temperature of 0.1 degree C and minimum of -8.4 

degree C. July is the warmest month with daily average maximum temperature of 28.5 

degree C and minimum of 15.9 degree C. SWAT uses inbuilt weather generator function 

http://soildatamart.nrcs.usda.gov/
http://soildatamart.nrcs.usda.gov/
http://www.ncdc.noaa.gov/oa/ncdc.html
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to generate solar radiation, relative humidity and wind speed data based on long term 

monthly average values available in the model. 

 
3.2.6 Streamflow data 

 
SJRW has five active stream gauging stations as shown in Figure 3.2 (f) and 

Table 3.3. Annual average streamflow at Fort Wayne stream gauging station, which is 

considered as outlet for SJRW, is 29.10 m3/s for simulation period (1993-2003). Annual 

variability in precipitation and streamflow for study period is shown in Figure 3.3. 

Annual minimum and maximum values for precipitation are 757.7 mm (1994) to 1113.6 

mm (2003), respectively, and for streamflow are 231.4 mm (1995) and 467.0 mm (1997), 

respectively. To incorporate dry and wet years daily streamflow data from 1993 to 1999 

(7 years) are used for calibration and data from 2000 to 2003 (4 years) are used for 

validation. Three years from 1990 to 1992 as are taken as warm-up period for the model.  

 
Table 3.2 Weather gauging stations in the SJRW 

 
Sl. 
No. 

Stations COOPID Available Data 

1 Butler 1 SE, IN 121187 01 Sept. 1999 to present (only pcp) 

2 Garrett 1 S, IN 123207 23 Jan. 1989 to Present 

3 Hillsdale, MI 203823 01 Jan. 1948 to Present 

4 Montpelier, OH 335438 01 Jan. 1948 to Present 

5 Waterloo 2 NW, IN 129271 01 Dec. 1939 to 14 Dec. 2003 (only pcp) 
 
 

3.3 Model Description 
 

Soil and Water Assessment tool (SWAT) is a process based semi-distributed 

watershed model (Neitsch et al., 2005) developed by the United States Department of 

Agriculture (USDA) to study impact of land management practices on water, sediment 

and agricultural chemical yields in large ungaged basins. SWAT operates on daily time 

step, and is intended for long-term simulation (up to 50-100 years) (Arnold et al. 1998). 
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Figure 3.3: Annual Precipitation (basin average) and Streamflow at Fort Wayne 

 

 
Table 3.3 Stream gauging stations in SJRW 

 
Sl. 
No. 

Stations Station Number       Available Data 

1 St. Joseph River near 
Fort Wayne, IN 

4180500 08 Aug 1941 to present 

2 Cedar creek near 
Cedarville, IN 

4180000 30 Oct. 1946 to present 

3 St. Joseph River near 
Newville, IN 

4178000 21 Nov. 1946 to present 

4 Fish Creek near Artic, 
IN 

4177810 08 April 1998 to Present 

5 Fish Creek Near 
Hamilton, IN. 

4177720 01 Oct. 1969 to Present 
 
 

 

 In SWAT, a watershed is divided into a number of sub units at two levels. First a 

watershed is divided into sub watersheds and then each sub watershed is further sub 

divided into basic calculation units called Hydrologic Response Units (HRUs). A 

watershed is divided into sub watersheds by providing minimum source area for stream 

generation (Critical Source Area, CSA) during watershed delineation. HRUs are 

generated by fixing threshold values for land use and soil type as percentages of sub 

watershed area. Land use and soil type having area below specified thresholds are not 
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considered in the model and those areas are proportionally assigned to the land use and 

soil types having higher percentage area in respective sub watersheds. Therefore HRU is 

an unique combination of land use and soil type in a sub watershed. All calculations in 

SWAT are performed at HRUs level. Major components of SWAT include surface 

runoff, percolation, groundwater, evapotranspiration, channel routing, plant growth, 

fertilizer and pesticide application, pond and reservoir storage, and water transfer. A brief 

description of SWAT hydrologic component is provided in the following section. 

Sediment and water quality components are not described and, one may refer to SWAT 

Theoretical Documentation (Neitsch et al., 2005) for complete model description. 

 

3.3.1 Hydrology 
 

Hydrologic component in SWAT works on water balance equation for soil water 

content in the root zone (Figure 3.4) as given in Equation 3.1.  

∑
=

−−−−+=
t

t
iiiisurfit QLPETQRSWSW

1
0 )(   3.1 

 
Where SWt is final soil water content (mm water), SWo is initial soil water content (mm 

water), t is time (days), Ri is precipitation, Qsurf i is surface runoff, Pi is percolation and 

QLi is lateral flow on day i (mm water). Percolation becomes a part of groundwater and a 

portion of groundwater appears as baseflow in the stream, whereas lateral flow (QLi) 

directly contributes to streamflow in the basin. 

 
Surface Runoff 

 
SWAT uses two methods for surface runoff calculation: (1) SCS curve number 

method, and (2) Green -Ampt infiltration method (Green and Ampt, 1911). It is reported 

in literature that SCS curve number performs better than Green-Ampt method (Ponce and 

Hawkins 1996, Kannan et al. 2007). In addition, Green-Ampt infiltration method requires 

hourly precipitation data, and flow routing at hourly time step which makes the model 

computationally demanding for long-term simulations. Therefore SCS Curve Number 

method is used in this study. Curve Number for antecedent moisture condition II (CN2) 
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are adjusted for sub watershed slope in the model, and these values are updated on daily 

time step based on soil moisture conditions in the root zone. 

 
Percolation 

 
Soil is divided into several layers and water is assumed to percolate through these 

layers to reach shallow aquifer depending upon moisture condition in each layer. When 

soil moisture present in a layer is more than field capacity (water content corresponding 

to 1/3 bar suction pressure), water can travel to another layer below. Percolation rate is 

maximum (saturated hydraulic conductivity) at saturation and decreases to zero at field 

capacity. Storage routing technique combined with crack flow is used to model flow 

through each soil layer. When the soil is dry and cracked, water can just drain through the 

cracked layer without affecting its water content. Temperature also affects the percolation 

rate, which drops to zero when soil temperature is below zero degree C. Water that 

percolate through all layers becomes part of groundwater, thus partly contributing 

baseflow to a stream. 

 

Lateral flow 
 

Soil water above saturation flows laterally to streams. A kinematic storage model 

(Sloan et al., 1983) is used to model lateral flow through each soil layer. Lateral flow 

volume depends upon soil layer properties (saturated hydraulic conductivity and 

porosity), terrain slope, and flow length. 

 

Groundwater flow 
 

Groundwater component in SWAT is modeled as two aquifer system consisting 

of shallow (unconfined) and deep aquifer (confined) (Figure 3.4). Recharge to shallow 

aquifer from percolation is divided into two parts: one part goes into deep aquifer and 

never returns to the stream, while the remaining part in shallow aquifer contributes to the 

stream as baseflow besides satisfying a portion of evaporative demand in the root zone 

(revap).  
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Figure 3.4  Hydrologic components in a HRU (adopted from Arnold et al. 1998) 
 

The time for water leaving the root zone and reaching shallow aquifer is modeled 

through groundwater delay factor (Gw_dealy) as proposed by Venetis (1969). A user 

defined fraction (deep aquifer percolation coefficient) is used divide total recharge into 

deep aquifer recharge and shallow aquifer recharge. If water in shallow aquifer is more 

than user defined threshold value (Gwqmn), then it will contribute to stream as baseflow. 

Water table fluctuations are modeled as change in baseflow rate from shallow aquifer to 

the stream using a constant factor defined as baseflow recession constant (αbf). If soil 

profile is not able to meet its evaporative demand, then a portion of the evaporative 

demand (defined by revap coefficient) is met by shallow aquifer if it has more water than 

the specified threshold value (revap threshold).  

 
Evapotranspiration 

 
SWAT has three options to calculate potential evapotranspiration: Hargreaves 

(Hargreaves and Samani, 1985), Priestley-Taylor (Priestley and Taylor, 1972) and 
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Penman-Monteith (Monteith, 1965). Hargreaves method requires only daily air 

temperature, Priestley-Taylor requires solar radiation and air temperature, whereas 

Penman-Monteith method requires solar radiation, air-temperature, wind-speed, and 

relative humidity as inputs. Kannan et al. (2007) found that Hargreaves method performs 

as good as more complex energy based Penman-Monteith method.  

 

Potential evapotranspiration is the maximum amount of evapotranspiration that 

can take place in a HRU. Actual evapotranspiration in SWAT is calculated based on 

availability of water in different storage volume such as canopy storage and soil moisture. 

Actual evapotraspiration may or may not match potential evapotranspiration. Evaporative 

demand is met in a sequential order i.e., at any stage in the sequence if potential 

evapotranspiration demand is met, no further demand will be there from the stages below. 

First all canopy water is removed, and then remaining evaporative demand is met by 

plant transpiration and soil moisture evaporation. If ground is covered with snow then 

soil evaporation demand is first met by sublimation of snow. During the period of high 

plant use, evaporative demand from soil layer decreases. 

 

Transmission loss 
 

When a channel runs through a semi arid region, it looses water when water table 

is at lower level compared to the channel bottom. SWAT calculates transmission loss 

using Lane’s method (USDA, 1983) as a function of channel width, length and flow 

duration. 

 

Snow Hydrology 
 

Input daily time series of precipitation is partitioned into rainfall and snow based 

on threshold value of average daily temperature. If average daily temperature is less than 

the threshold temperature (Sftmp) then precipitation is classified as snow. Snow melt 

occurs when the average of snow pack temperature (Tsnow) and daily maximum air 

temperature (Tmax) is more that base temperature required for snow melt to occur 
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(Smtmp). Snow melt factor (bmlt, mm water/day-degree C) varies for different days of the 

year, it is maximum for June 21 and minimum for December 21. Snow melt factor also 

varies for different land use types. For example, in urban areas snow melt rate can be 

higher (3 to 8 mm water/day-degree C) because of high vehicular and pedestrian traffic, 

but in rural area it can be lower (1.4 to 6.9 mm water/day-degree C).  Snow melt is 

treated same as rainfall for surface runoff and percolation calculation except that rainfall 

energy is set to zero (no erosion) and peak runoff rate is estimated by assuming uniformly 

distributed rainfall for 24 hour duration. 

 

3.3.2 Flow Routing 
 

Volume of water to be routed (surface runoff + lateral flow + baseflow– 

transmission loss) are calculated for each HRU and then added to find out total volume of 

water to be routed from a sub watershed. Channel length in each sub watershed is 

computed using stream network, and channel dimension are provided by user (bank full 

width, depth and side slope). Cross sectional area for flow is calculated by dividing 

volume of flow to be routed by length of the channel. Manning’s equation (manning’s n 

is provided by user) for uniform flow is used to determine flow rate and velocity.  

 

In SWAT, water can be routed though channel network by using either the 

variable storage method (Williams, 1969) or Muskingum River routing method using 

daily time step. In addition to transmission loss, channel also looses water through 

evapotranspiration, which is a function of water surface area in the channel. Evaporation 

loss in each reach (channel segment) is subtracted from total volume before routing the 

flow through next reach.   

 

3.4 Summary 
 

A brief description of study area, data and model used for the study are provided 

in this chapter. Agricultural dominated SJRW located at intersection of Indiana Ohio and 

Michigan states is used as test bed in this study. Datasets used for modeling SJRW are 
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DEM, NHD flow line and sub watershed feature, NLCD 2001 land cover data, SSURGO 

and STATGO soil data, daily temperature and precipitation data from five National 

Weather Service stations, and daily streamflow data from two USGS gauging stations. 

Soil and Water Assessment Tool (SWAT) is used as modeling tool in the study. 
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CHAPTER 4 WATERSHED DISCRETIZATION AND ATTRIBUTES 

 
4.1 Introduction 

 
Discretization of a watershed into smaller units or sub divisions plays an important 

role in representing physical variability of the watershed in a hydrologic model. 

Discretization essentially represents the scale of integration of input information in the 

model. Finding an optimum level of discretization that can maintain hydrologically 

significant variability in the model without affecting computational efficiency for 

calibration and long term prediction is a critical step in creating a hydrologic model. The 

objective of this chapter is to study the effect of watershed discretization on watershed 

attributes such as number of sub watersheds and HRUs, drainage density (DD), Curve 

Number (CN2), sub watershed and channel slope, and soil characteristics. First SJRW 

was discretized and then one of SJRW’s sub watershed, Cedar Creek was discretized to 

see how discretization affects watershed attributes for larger and smaller watersheds.  

 

4.2 SJRW configurations 
 

Seven SJRW model configurations are created corresponding to CSA of 0.3%, 

0.5%, 1.0%, 2.0%, 3.0%, 5.0% and 7.0% of the total watershed area. Each configuration 

resulted into different stream network, and the watershed is delineated for stream gauging 

station at Fort Wayne (station number: 4180500) as the watershed outlet (Figure 3.2 (f)). 

Because same DEM and watershed outlet are used for creating different watershed 

configurations, the delineated watershed area (257990 ha) is unchanged for all watershed 

configurations. Each configuration is further divided into HRU’s using 10% threshold for 

land use (NLCD-2001 land use data) and 5% threshold for two different soil types 

(STATSGO and SSURGO), thus creating 14 configurations (7 for STATSGO and 7 for 



 

 

32

SSURGO). SJRW configurations with SSURGO data are referred as AX, and SJRW 

configurations with STATSGO data are referred as BX wherever necessary, where X is 

%CSA for the configuration. For example A1.0 stands for SJRW configuration with 

1.0% CSA and SSURGO soil data, and B1.0 stands for SJRW configuration with 1% 

CSA and STATSGO soil data. Watershed attributes corresponding to each configuration 

are discussed in following section. 

 

4.3 Watershed Attributes for SJRW 

4.3.1 Sub watersheds 
 

Number of sub-watersheds decreased from 180 for 0.3% CSA to 10 for 7.0% 

CSA (Table 4.1, Figure 4.1). Sub watershed size affects further discretization of 

watersheds into HRUs. Larger sub watershed size will eliminate many minor land use 

and soil type having area below the threshold specified for land use (10%) and soil type 

(5%).  Eliminated land use and soil type area are assigned to dominant land use and soil 

types (having area higher than the specified threshold) thus making the model biased 

towards dominant land use and soil types. One such example for soil hydrologic group is 

discussed in section 4.3.7.   

 

4.3.2 Drainage Density (DD) 
 

Drainage density (DD) is ratio of the total channel length to total watershed area 

(km/km2). DD decreased from 0.33 km/km2 for 0.3% CSA to 0.08 km/km2 for 7.0% CSA 

(Table 4.1, Figure 4.2, and 4.3 (a)). DD for medium resolution (1:100,000 scale) NHD 

flow line is 0.65 km/km2. DD can affect instream processes such as transmission losses, 

flow rate and velocity, channel bed erosion, and deposition.  
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Table 4.1  Watershed attributes for SJRW configurations 
 

DD Ch_slope B_slope Lp # of HRUs Average CN2 Mode
l 

 
CSA 
(%) 

# Sub 
watersheds 

(km/km2) (%) (%) (km) SSURGO STATSGO SSURGO STATSGO

0.3 180 0.33 0.14 2.21 12 2283 903 78.86 78.19 

0.5 97 0.27 0.13 2.21 18 1209 558 79.34 78.28 

1.0 58 0.21 0.11 2.21 23 750 401 79.66 78.3 

2.0 36 0.15 0.09 2.21 30 391 273 80.04 78.29 

3.0 24 0.12 0.07 2.21 37 320 209 80.04 78.43 

5.0 12 0.09 0.05 2.21 54 145 110 80.48 78.7 

7.0 10 0.08 0.05 2.21 58 124 97 80.52 78.92 

NHD flow line 
(stream/river) 

0.65 0.27 

S J R
 W

 

NHD flow line 
(All) 

0.76 0.28 Not Applicable  

CSA: Critical Source Area as % of total watershed area, DD: Drainage density, Ch_slope: Average channel slope, 
B_slope: Average basin slope, Lp: Average longest path in sub basin, NHD flow line (All) includes artificial path, 
canal, ditch, connector and stream/ river 
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(a) (b) (c) 

(d) (e) (f) 
 

(g)  (h)  
 

 
Figure 4.1  Sub watersheds of SJRW for (a) 0.3% CSA, (b) 0.5% CSA, (c) 1.0% CSA (d) 

2.0% CSA (e) 3.0% CSA, (f) 5.0% CSA, and (g) 7.0% CSA, and (h) NHD HUC-
04100003 sub watershed feature and delineated watershed boundary 
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(a) (b) (c) 

  
(d) (e) (f) 

 
(g) (h) (i) 

 
 

Figure 4.2  Drainage Density of SJRW configurations for (a) 0.3% CSA, (b) 0.5% CSA, 
(c) 1.0% CSA (d) 2.0% CSA (e) 3.0% CSA, (f) 5.0% CSA, and (g) 7.0% CSA (h) 
NHD flow line density (Stream and River), and (i) NHD flow line density (all) 
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Figure 4.3 Watershed attributes for SJRW configurations (a) Drainage density (km/km2), 
(b) Average channel slope (%), (c) Average sub basin slope (%) (d) Average 
longest flow path in a sub basin (km), (e) # of HRUs, and (f) Average CN2 
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4.3.3 Channel Slope (ch_slope) 
 

Average channel slope decreased from 0.14% for 0.3 % CSA to 0.05% for 7% 

CSA (Table 4.1, and Figure 4.3 (b)). The average slope for medium resolution NHD flow 

line is 0.27%. Channel slope affects flow velocity (manning’s equation) which in turn 

affects sediment load transport capacity of the channel. Increased slope can lead to higher 

peak velocities and higher transport capacities of the channel. 

 

4.3.4 Sub-basin Slope (b_slope) and longest flow path (Lp) in the sub basin 
 

Average sub-basin slope remained constant (2.2%) for all CSAs (Table 4.1, and 

Figure 4.3 (c)). Longest flow path in a sub-basin is the path traveled by water from 

farthest point in the sub-basin to the sub-basin outlet (named as tributary channel in 

SWAT). Lp increased from 12 km for 0.3% CSA to 58 km for 7% CSA (Table 4.1, and 

Figure 4.3 (d)). Lp has greater impact on channel time of concentration and after a certain 

threshold it becomes a dominant factor in reducing sediment generation from sub basins.  

 

4.3.5 Hydrologic Response Unit (HRUs) 
 

HRUs are the basic calculation unit in SWAT model. Any physical feature to be 

represented in SWAT model should have at least one HRU. Because SSURGO has total 

433 soil types compared to 17 soil types in STATSGO, use of SSURGO data resulted in 

a higher number of HRUs compared to STATGO data. The difference in the number of 

HRUs is more accentuated at lower CSA values. The total number of HRUs for 0.3% 

CSA using SSURGO and STATGO are 2383 and 903, respectively; whereas for 7% 

CSA, total number of HRUs decreased to 124 and 97 for SSURGO and STATSGO, 

respectively (Table 4.1, and Figure 4.3(e)). To incorporate small field level details such 

as land management practices and differential fertilizer or pesticide application rate in the 

model, SSURGO data is a better option. For example, in the case of 1% CSA, average 

HRU area for SSURGO model is 344 ha, whereas for STATGO model, it is 643 ha. 

 



 

 

38

4.3.6 Average CN2 
 

Average CN2 for SJRW show slight increase with the increasing CSA (Table 4.1, 

Figure 4.3 (f)). The increase in CN2 from 0.3% CSA to 7% CSA is 2% in the case of 

SSURGO, and 1% in the case of STASGO. Watershed configurations with SSURGO 

have slightly higher average CN2 compared to that from STATSGO. Because SCS Curve 

number method is used to calculate surface runoff, CN2 value becomes an important 

factor in determining surface runoff. 

 

4.3.7 Soil Hydrologic Group 
 

Soil hydrologic group distribution for SSURGO and STATSGO data are given in 

Table 4.2. Major soil hydrologic group (Group C) area increased from 82.3% for 0.3% 

CSA to 94.7% for 7.0% CSA in the case of SSURGO, and from 74.3% for 0.3% CSA to 

77.2% for 7.0% CSA in the case of STATGO. Group B soil area decreased from 13.5% 

for 0.3% CSA to 3.5% for 7.0% CSA in the case of SSURGO, and from 22.7% for 0.3% 

CSA to 21.0% for 7.0% CSA in the case of STATSGO. 

 

4.3.8 Average Soil Available Water capacity (sol_awc) 
 

Soil available water capacity is the difference between water content at the field 

capacity and the water content at wilting point. SWAT calculates field capacity of a soil 

layer based on the available water capacity of the layer. Water is allowed to percolate 

through a layer if water content in the layer exceeds field capacity. Higher sol_awc leads 

to higher field capacity of the soil layer. Average Sol_Awc remained constant across all 

CSA in SSURGO and STATGO configurations. However, SSURGO sol_awc is 25% 

lower than STATSGO sol_awc (Table 4.3). Figure 4.4 (a) and (b) show cumulative 

distribution of Sol_Awc for two extreme watershed configurations (0.3% and 7.0% CSA) 

for SSURGO and STATSGO data, respectively. 
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Table 4.2  Soil Hydrologic Group distribution for SJRW 
 

Soil Hydrologic Group (% of watershed area) 
SSURGO  STATSGO Model CSA  

A B C D  A B C D 

0.3 3.9 13.5 82.3 0.4  3.1 22.7 74.3 0.0 

0.5 3.1 10.6 86.1 0.2  3.0 22.7 74.4 0.0 

1.0 2.2 9.0 88.6 0.2  3.0 23.2 74.8 0.0 

2.0 2.3 4.5 93.2 0.0  3.0 22.0 75.3 0.0 

3.0 2.3 5.0 92.7 0.0  2.8 22.0 75.2 0.0 

5.0 1.8 3.9 94.3 0.0  2.6 22.0 75.5 0.0 

S J R
 W

 

7.0 1.8 3.5 94.7 0.0  1.8 21.0 77.2 0.0 
 
 

 

Table 4.3 Average sol_awc and sol_k for SJRW  
 

sol_awc* sol_k* Model CSA  

SSURGO STATSGO SSURGO STATSGO 

0.3 0.118 0.154 26.64 21.07 

0.5 0.118 0.154 20.95 20.46 

1.0 0.115 0.154 17.20 19.97 

2.0 0.114 0.155 12.72 19.46 

3.0 0.113 0.154 12.72 19.31 

5.0 0.111 0.154 11.64 18.40 

S J R
 W

 

7.0 0.110 0.153 11.42 16.97 
 
            *Sol_awc: mm water/mm soil, sol_k mm/hr; these values are depth across a soil 

profile 
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Figure 4.4  Cumulative distribution (a) sol_awc  with SSURGO data (b) sol_awc with 
STATSGO data (c) sol_k with SSURGO data (d) sol_k with STATSGO data for 
SJRW configurations  

 
4.3.9 Average Soil Saturated Hydraulic Conductivity (sol_k) 

 
Saturated hydraulic conductivity determines the rate of percolation in each soil 

layer. Average sol_k decreased from 26.64 mm/hr for 0.3% CSA to 11.42 mm/hr for 

7.0% CSA in the case of SSURGO, and from 21.07 mm/hr for 0.3% CSA to 16.97 mm/hr 

in the case of STATGO (Table 4.3). Figure 4.4 (c) and (d) show cumulative distribution 

of sol_k for two extreme watershed configurations (0.3% and 7.0% CSA) for SSURGO 

and STATSGO data, respectively. 
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4.4 Cedar Creek 
 

To look into the issue of spatial scale in more detail, and also to compare the 

findings of this research with other related work (Fitzhugh and Mackay, 2000; Muleta et 

al. 2007), one of the major sub watersheds of SJRW, Cedar Creek (25% of SJRW area) 

was discretized using different CSAs and soil data (STATGO and SSURGO). Cedar 

Creek watershed is delineated using stream gauging station at Cedarville (station number: 

4180000, Figure 3.2 (f)) as the watershed outlet. CSA values for Cedar creek ranged from 

0.5% to 10%, and land use and soil type threshold for HRU delineation are 5% each. 

Findings from discretization of Cedar Creek are similar to that from SJRW and are 

presented in Table 4.4, and Figures 4.5, 4.6, and 4.7.  
 

 

   
(a)  (b)  (c)  

 
(d) (e) (f) 

   
 
Figure 4.5 Sub watersheds of Cedar Creek configurations for (a) 0.5% CSA (b) 1.0% 

CSA (c) 2.0% CSA, (d) 3.0% CSA, (e) 5.0% CSA, and (f) 7.0% CSA 
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Table 4.4  Watershed attributes for Cedar Creek configurations 
 

 CSA DD Ch_slope B_slope Lp # of HRUs  Average CN2 Model 

(% ) 

# Sub-
watersheds 

(km/km2) (%) (%) (km) SSURGO STATSGO SSURGO STATSGO

0.5 97 0.47 0.18 2.23 7.8 1624 607 79.41 79.45 

1.0 53 0.35 0.14 2.23 12.2 951 356 79.64 79.47 

1.5 41 0.28 0.12 2.23 11.6 722 310 79.89 79.49 

2.0 23 0.24 0.11 2.23 17.2 365 216 80.73 79.62 

2.5 17 0.22 0.11 2.23 21 305 174 80.78 79.56 

3.0 17 0.21 0.1 2.23 21 305 164 80.78 79.66 

4.0 17 0.19 0.11 2.23 21 305 145 80.78 79.68 

5.0 15 0.17 0.1 2.23 21.7 266 133 80.79 79.66 

7.0 9 0.11 0.09 2.23 29 139 98 81.59 79.66 

10.0 7 0.08 0.09 2.23 31 107 62 81.76 79.89 

NHD flow line 
(stream/river) 

0.43 0.2 

C
edar C

reek 

NHD flow line 
(All) 

0.62 0.22 Not Applicable  

CSA: Critical Source Area as % of total watershed area, DD: Drainage density, Ch_slope: Average channel slope, B_slope: 
Average basin slope, Lp: Average longest path in sub basin, NHD flow line (All) includes artificial path, canal, ditch, 
connector and stream/ river  
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(a) (b) (c) 

 
(d) (e) (f) 

  
(g) (h) (i) 

 
 

Figure 4.6  Drainage Density of Cedar Creek configurations for (a) 0.5% CSA, (b) 1.0% 
CSA, (c) 2.0% CSA (d) 3.0% CSA (e) 5.0% CSA, (f) 7.0% CSA, (g) 10.0% CSA 
(h) NHD flow line density (Stream and River), and (i) NHD flow line density (all) 
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Figure 4.7 Watershed attributes for Cedar Creek configurations (a) Drainage density 
(km/km2), (b) Average channel slope (%), (c) sub basin slope (%), (d) Average 
longest flow path in a sub basin (km), (e) # of HRUs, and (f) Average CN2 
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Cedar Creek configurations with SSURGO data are referred as CX, and Cedar 

Creek configurations with STATSGO data are referred as DX wherever necessary, where 

X is %CSA for the configuration. For example C1.0 stands for Cedar Creek configuration 

with 1.0% CSA and SSURGO soil data, and D1.0 stands for Cedar Creek configuration 

with 1.0% CSA and STATSGO data. 
 

 
4.5 Summary 

 
Watershed attributes of SJRW and Cedar Creek models corresponding to different 

watershed configurations are discussed in this chapter. Many watershed attributes are 

found to be sensitive to different levels of watershed discretization. In general, areal 

characteristics such as total watershed area, average CN2, average sol_awc, and sub basin 

slope are found to be insensitive to level of watershed discretization; whereas channel 

characteristics such as drainage density, channel slope and longest flow path changed 

significantly. However average CN2, average sol_awc, average sol_k are different for 

two soil datasets. Effects of different discretization on model calibration and validation 

are discussed in Chapter 5.  
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CHAPTER 5 MODEL CALIBRATION AND VALIDATION 

 
5.1 Introduction 

 
Semi-distributed nature of SWAT makes the model calibration process 

computationally intensive because of representation of HRUs and parameters associated 

with each HRU. For example, if there are 100 HRUs and 10 model parameters, model 

calibration essentially involves tuning of 10 x 100 = 1000 parameters, thus requiring an 

auto-calibration procedure. The auto calibration procedure incorporated in SWAT (van 

Griensven et al. 2006) is based on SCE-UA (Shuffled Complex Evolution-University of 

Arizona, Duan et al., 1992) algorithm is used in this study. An upper and lower bound are 

provided for each parameter based on literature and available data to keep parameters in 

acceptable range. The SWAT model has twenty six parameters for flow, six parameters 

for sediment and nine parameters for water quality, but only the flow component is 

considered in this study. To evaluate whether all twenty six parameters related to flow 

should be included or a sub-set can be included, sensitivity analysis is performed as the 

first step to pick sensitive parameters for calibration. After sensitivity analysis, the model 

is calibrated for daily streamflow from 1993- 1999, and validated form 2000-2003. The 

process of calibration-validation (C-V) is repeated for all SJRW and Cedar Creek 

watershed configurations. Results from all configurations are presented in this chapter. 

 

5.2 Sensitivity Analysis and Parameter Selection 
 

Sensitivity analysis tool in SWAT 2005 (Van Griensven, 2005) uses Latin 

Hypercube (LH, McKay et al. 1979, McKay 1988) sampling method combined with One-

factor-At-a-Time (OAT, Morris 1991) to study the effect of change in individual 
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parameters on model output. Sum of square of error (SSE) as defined in Equation 5.1 is 

used as objective function for sensitivity analysis.  

2
mod,

1
, )( eli

n

i
observedi xxSSE −= ∑

=

  5.1 

 
where observedix ,  is observed daily streamflow and elix mod,  is the daily model streamflow.   

The output from the sensitive analysis is a ranked set of parameters with highest rank 

assigned to the most sensitive parameter and other parameters are ranked in descending 

order. A sample output from sensitivity analysis for A1.0 model is shown in Table 5.1. 

CN2 is found to be the most sensitive parameter followed by Alpha_Bf, Surlag, Esco, and 

Ch_k2 in top five.  Most sensitive parameters are related to surface runoff, followed by 

parameters related to groundwater flow and snow. Similar results as shown in Table 5.1 

are found for other SJRW and Cedar Creek configurations.  

 

It should be noted that results obtained from sensitivity analysis depend upon the 

objective function selected for the analysis, which may or may not capture all watershed 

responses equally well (Rao and Han, 1987). For example, the objective function used in 

this study (SSE) is found to be biased towards peak flow (Muleta and Nicklow, 2005), 

thus underestimating groundwater contribution in overall flow results. Sensitivity 

analysis results can also be affected by parameter ranges provided (default parameter 

ranges provided by model developers were used in this study) and the Latin Hypercube 

sampling method (limited number of sampling, 10 in this case). Considering these 

factors, and related work in the literature, a total of 19 parameters for SJRW (Table 5.2) 

and 14 parameters for Cedar Creek (Table 5.3) are selected for calibration. Although 

most parameters selected for calibration ranked high in sensitivity analysis result (Table 

5.1), some parameters that are not highly ranked such as Gwqmn, Gw_revap, and 

Gw_delay are also included because they are reported to be very important for calibration 

of baseflow component in the model (Neitsch et al., 2002). Parameters that are physically 

based or estimated from available data such as Sol_z (depth of individual soil layer), 

Slope (channel slope) and Slsubbsn (sub basin slope length) are not included in 

calibration process.   
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Table 5.1  Parameter sensitivity for A1.0 configuration 
     

Parameter Rank Related hydrologic process 
CN2 1 Surface runoff 
Alpha_Bf 2 baseflow recession constant 
Surlag 3 Surface runoff lag in a sub-basin/reach 
Esco 4 Evapotranspiration from soil 
Ch_K2 5 transmission loss in channel 
Blai 6 maximum leaf area index, initial abstraction 
Sol_Z 7 root zone hydrologic process 
Ch_n 8 flow rate and velocity 
Timp 9 snow pack temperature 
Sol_Awc 10 root zone water movement and evapotranspiration 
Canmx 11 Initial abstraction/evapotranspiration 
Biomix 12 soil erosion 
Epco 13 evapotranspiration 
Gw_Revap 14 groundwater for evapotranspiration 
Smtmp 15 snow melt 
Sol_K 16 root zone water movement 
Slsubbsn 17 soil erosion in a sub-basin 
Sol_Alb 18 evapotranspiration 
Slope 19 flow rate and velocity 

Gw_Delay 20 
water movement from vadose zone to unconfined 
aquifer 

Revapmin 21 groundwater for evapotranspiration 
Gwqmn 27 groundwater for baseflow 
Smfmx 27 snow melt maximum rate  
Smfmn 27 snow melt minimum rate  
Sftmp 27 snow fall temperature 
Tlpas 27 temperature lapse rate  

 

Three options are available to change parameters during auto calibration. These are 

(1) change by value, (2) change by addition to initial value, and (3) change by percentage 

of initial value. Options 2 and 3 change parameter values relative to initially assigned 

values, whereas option (1) assigns new absolute value to the parameter in each model 

run. Change options used for selected parameters are given in Tables 5.2 and 5.3 for 

SJRW and Cedar Creek, respectively. Default parameters ranges provided by model 

developers are used for Cedar Creek model calibration. For SJRW models, some of these 
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ranges are changed to more stringent criteria for parameters whose initial distributions are 

known. For example CN2 and sol_awc are allowed to change within + 25 % of their 

initial value instead of default range of  +50 % so that calibrated values are closer to 

available data.  

  

Table 5.2  Parameters for SJRW model calibrations 
 

Sl. 
No. Parameter  Rank Default 

value 
Lower 
bound 

Upper 
bound 

      Unit 

1 Alpha_Bf (1) 1 0.048 0 1 days 
2 Cn2 (3) 2 mgt file -25 25 na 
3 Surlag (1) 3 4.000 0 10 days 
4 Ch_N (1) 4 0.050 0 1 na 
5 Esco (1) 5 0.000 0 1 na 
6 Ch_K2 (1) 6 0.000 0 150 mm/hr 
7 Blai (3) 7 crop data -25 25 na 
8 Timp (1) 8 1.000 0 1 na 

9 Sol_Awc (3) 9 soil data -25 25 
mm H2O/mm 

soil 
10 Canmx (1) 11 0.000 0 10 mm 
11 Biomix (1) 12 0.200 0 1 na 
12 Epco (1) 13 0.000 0 1 na 
13 Smtmp (3) 14 0.500 -25 25 degree C 

14 
Gw_Revap 
(2) 17 0.020 -0.036 0.036 na 

15 Sol_Alb (3) 18 soil data -25 25 na 
16 Sol_K (3) 19 soil data -25 25 mm/hr 

17 
Gw_Delay 
(2) 20 31.000 -10 10 days 

18 Revapmin (1) 21 1.000 0 500 mm 
19 Gwqmn (1) 27 0.000 0 5000 mm  

Number in parenthesis next to parameter represent the option used for changing 
parameter values during calibration. (1) change by value, (2) change by addition to new 
value, and (3) change by percentage of initial value. na: Not applicable       
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Table 5.3  Parameters for Cedar Creek Model Calibrations 
 

Sl. 
No. Parameter  Rank Default 

value 
 

Lower 
bound 

Uppe
r 

boun
d 

      Unit 

1 CN2 (3) 1 mgt file  -50 50 na 
2 Ch_k2 (1) 2 0.00  0 150 mm/hr 
3 Surlag (1) 3 4.00  0 10 days 

4 
Alpha_bf 
(1) 4 0.05  0 1 days 

5 Esco (1) 9 0.00  0 1 na 

6 Sol_awc (3) 11 soil type  -50 50 
mm H2O/mm 

soil 
7 Canmx (1) 13 0.00  0 10 mm 
8 ch_n (3) 13 0.05  -20 20 na 
9 Gwqmn (1) 15 0.00  0 5000 mm 

10 
rchrg_dp 
(1) 17 0.05  0 1 na 

11 Epco (1) 22 0.00  0 1 na 

12 
Gw_revap 
(1) 23 0.02  0.02 0.2 na 

13 
Gw_dealy 
(1) 24 31.00  0 100 days 

14 
Revapmn 
(1) 25 1.00  0 500 mm 

Other value changed manualy before auto calibration 
15 Timp 5 1.0 0.74 na 
16 Sftmp 8 1.0 1.44 Degree C 
17 Smtmp 7 0.5 0.56 Degree C 

18 Smfmx 7 4.5 1.51 
mm 

H2O/degree 
C-day 

19 Smfmn   4.5 

C
hanged value 

1.51 
mm 

H2O/degree 
C-day  

Number in parenthesis next to parameter represent the option used for changing 
parameter values during calibration. (1) change by value, (2) change by addition to new 
value, and (3) change by percentage of initial value. na: Not Applicable       

  

First Cedar Creek configurations are calibrated with 14 parameters, and then five 

more parameters are added to SJRW configurations creating a set of 19 parameters for 
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SJRW. Numbers of parameters for SJRW are increased to evaluate the performance of 

SWAT auto calibration program in calibrating a larger model compared to Cedar Creek 

with more parameters. 

  

5.3 Auto Calibration 
 

Auto calibration tool in SWAT 2005 uses Shuffled Complex Evolution (SCE-UA) 

algorithm developed by Duan et al. (1992) to optimize the parameter values. Shuffled 

complex evolution method belongs to the family of genetic algorithms. As a first step, 

initial population (parameter space defined by its upper and lower bound) is partitioned 

into several communities called complexes. In each complex, different combinations of 

individual parameters produces offspring using simplex procedure of Nadler and Mead 

(1965). The probability of individual set taking part in the reproduction is proportional to 

its fitness. Individuals of lower fitness are replaced by their offspring to direct the search 

in an improvement direction. These complexes are shuffled at periodic interval and points 

are re-distributed among different complexes to ensure the information sharing. As search 

progresses, entire population converges towards the global optimum value (Duan et al., 

1992).  

 

Sum of square of error (Equation 5.1) for daily flow output at the watershed outlet 

is used as objective function for calibration. Similar to sensitive analysis, calibration 

results are also dependent upon objective function selected (Gupta et al., 1998, 

Sorooshian and Gupta, 1995). Model’s performance is evaluated in terms of commonly 

used Nash-Sutcliff efficiency coefficient ( 2
NSR , Nash and Sutcliff, 1970) and Mbias as 

defined below (Arabi et al., 2007; Eckhardt and Arnold, 2001; Santhi et al., 2001; White 

and Chaubey, 2005). 
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where observedix ,  and elix mod, are daily observed and model streamflow, respectively, and  

observedx  and elxmod  are averages of observed and model streamflow. A negative value of 

Mbias indicates that model is under estimating streamflow and vice versa.  

 

All auto calibration programs are run on Purdue Tera-Grid computers. The 

average CPU (Central Processing Unit) runtime for individual calibration program is two 

weeks. Out of 34 individual calibration programs (14 configurations of SJRW and 20 

configurations of Cedar Creek), 28 resulted into successful termination within provided 

control parameters for auto calibration (Appendix C). Results of 28 successful calibration 

programs are discussed in following sections. 

 

5.3.1 Calibration and validation results for SJRW 

 
All SJRW model configurations (Table 5.4) are calibrated from 1993-1999 and 

validated from 2000-2003. Years 1990-1992 are used as warm up period for the model. 

The calibration and validation results for SJRW are presented in Table 5.4. The average 
2
NSR  for SJRW configurations with SSURGO data is 0.57 during calibration phase and 

0.66 during validation phase. For STATGO data the average 2
NSR  is 0.56 during 

calibration phase and 0.66 during validation phase. The average Mbias for SJRW 

configurations with SSURGO data is -19.8% during calibration phase and -4.93% during 

validation phase. For STATGO data, the average Mbias is -18.6% during calibration phase 

and -3.4% during validation phase.  Model performances are different for different year 

of simulation, with 1995 being worst performing year and 2001 being best performing 

year. Table 5.5 and Figure 5.1 show yearly model performance in terms of 2
NSR  for all 

SJRW configurations. Average 2
NSR  are 0.10 for year 1995 and 0.72 for year 2001, for 

SJRW configurations. Model performance is found to be sensitive to shift in precipitation 
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trends (Figure 5.1). If a dry year is preceded by a dry year or a wet year is preceded by a 

wet year, then model seems to perform well. However, if a wet year is preceded by dry 

year or a dry year is preceded by wet year, model performance drops. For example, in 

year 1995 and 2000 precipitation trend shifted from negative to positive producing an 

average 2
NSR  of 0.10 and 0.14, respectively, whereas in year 1998 and 1999 precipitation 

trend remain unchanged producing an average 2
NSR  of 0.62 and 0.65, respectively.  

 
Table 5.4  Model performance (SJRW) before and after calibration 

 
After Calibration  Before Calibration 

Calibration period Validation Period 
1993-1999 1993-1999 2000-2003 Model 

R2
NS Mbias R2

NS Mbias R2
NS Mbias 

A0.5 0.10 -30.9 0.61 -17.8 0.68 -4.6 

A1.0 0.37 -30.2 0.57 -25.0 0.67 -4.0 

A2.0 0.47 -29.6 0.64 -18.6 0.68 -6.4 

A3.0 0.47 -30.8 0.54 -18.4 0.65 -3.2 

A5.0 0.35 -31.7 0.45 -20.5 0.62 -5.3 

A7.0 0.47 -30.1 0.59 -18.7 0.66 -3.0 
       

B0.5 0.15 -35.1 0.60 -11.0 0.62 9.8 

B1.0 0.38 -34.7 0.63 -19.7 0.68 -5.9 

B2.0 0.45 -34.2 0.63 -18.0 0.62 -5.4 

B3.0 0.46 -36.3 0.59 -17.9 0.68 -3.4 

B5.0 0.34 -37.7 0.41 -25.7 0.59 -11.7 

B7.0 0.46 -35.3 0.51 -19.5 0.63 -3.9  
A0.5 to A7.0 represents SJRW configurations with SSURGO data and B0.5 to B7.0 

represent SJRW configurations with STATSGO data 

 

Figures 5.2 and 5.3 show daily hydrographs for 1997 during calibration and 2001 

during validation, respectively for all SJRW configurations with SSURGO data. Most 

model configurations exhibit similar behavior with respect to hydrograph response. 
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Figure 5.1 Yearly model performance for SJRW configurations with (a) SSURGO data 

(b) STATSGO data and annual precipitation, Error bar represent + one standard 
deviation 
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Table 5.5  Yearly model performances (R2
NS) for SJRW configurations 

 
Model performances (R2

NS)  
Year 

Precipitation 
(mm) A0.5 A1.0 A2.0 A3.0 A5.0 A7.0 B5.0 B1.0 B2.0 B3.0 B5.0 B7.0 

1993 971 0.69 0.65 0.75 0.68 0.55 0.66 0.69 0.73 0.75 0.70 0.54 0.56 
1994 758 0.30 0.22 0.37 0.23 0.06 0.30 0.27 0.33 0.40 0.30 -0.01 0.21 
1995 859 0.16 0.20 0.24 -0.02 -0.26 0.16 0.27 0.21 0.27 0.21 -0.36 0.13 
1996 996 0.66 0.61 0.67 0.51 0.46 0.64 0.67 0.68 0.64 0.57 0.37 0.52 
1997 1024 0.61 0.60 0.63 0.55 0.53 0.57 0.60 0.61 0.57 0.60 0.48 0.53 
1998 997 0.67 0.62 0.67 0.59 0.53 0.63 0.60 0.69 0.66 0.65 0.52 0.58 
1999 903 0.67 0.67 0.71 0.64 0.58 0.67 0.70 0.70 0.70 0.68 0.56 0.58 
2000 1015 0.47 0.42 0.28 0.61 0.48 0.30 0.17 0.40 0.25 0.51 0.53 0.49 
2001 1057 0.76 0.75 0.68 0.68 0.68 0.78 0.71 0.77 0.70 0.75 0.67 0.72 
2002 806 0.63 0.63 0.76 0.59 0.55 0.62 0.67 0.64 0.62 0.65 0.50 0.56 
2003 1114 0.68 0.71 0.76 0.65 0.63 0.71 0.67 0.71 0.69 0.67 0.57 0.61  

 
A0.5 to A7.0 represent SJRW configurations with SSURGO data and B0.5 to B7.0 represent SJRW configurations with 
STATSGO data 
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Figure 5.2  Daily hydrographs for 1997 during calibration for SJRW configurations with 

SSURGO data (R2NS, Mbias) 
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Figure 5.3  Daily hydrographs for 2001 during validation for SJRW configurations with 

SSURGO data (R2NS, Mbias) 
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Figure 5.4  Daily hydrographs for 1997 during calibration for SJRW configurations with 
STATSGO data (R2NS, Mbias) 
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Figure 5.5 Daily hydrographs for 2001 during validation for SJRW configurations with 
STATSGO data (R2NS, Mbias) 
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Average 2
NSR  and Mbias during 1997 are 0.58 and -26.1%, and those during 2001 

are 0.72 and -0.5% respectively. There is a general tendency of under estimation during 

calibration phase, with poor simulation of mid range peaks (2-4 mm). The poor 

performance for low flows is due to selection of SSE as the objective function for model 

calibration, which is biased towards high flows (Dunn, 1999; Muleta and Nicklow, 2005). 

In year 2001, the overall performance is better for all configurations.  Figure 5.4 and 

Figure 5.5 show daily hydrographs for 1997 during calibration and 2001 during 

validation, respectively for all SJRW configurations with STATSGO data. The average 
2
NSR  and Mbias during 1997 are 0.56 and -25.54% and those during 2001 are 0.72 and 

0.2%, respectively. Hydrograph characteristics are similar as explained in the case of 

SSURGO data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6  Monthly hydrograph for A1.0 and B1.0 models for entire simulation period 
(1993-2003), (R2NS, Mbias for calibration and validation period) 
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simulating peak flows compared to SSURGO data during calibration period, but 

performance during validation phase is the same. Similar to daily hydrographs, monthly 

hydrographs in also show underestimation of peak flows particularly during calibration 

period. 

 
5.3.2 Calibration and validation results for Cedar Creek 

 
All Cedar Creek model configurations (Table 5.6) are also calibrated from 1993-

1999 and validated from 2000-2003. Years 1990-1992 are used as warm up period for the 

model. The calibration and validation results for Cedar Creek configurations are 

presented in Table 5.6. The average 2
NSR  for Cedar Creek configurations with SSURGO 

data is 0.71 during calibration phase and 0.53 during validation phase. For STATGO 

data, the average 2
NSR  is 0.75 during calibration phase and 0.61 during validation phase. 

The average Mbias for Cedar Creek configurations with SSURGO data is -14.6% during 

calibration phase and -25.0% during validation phase. For STATGO data, the average 

Mbias is 5.9% during calibration phase and 1.4% during validation phase.   

 

Table 5.7 and Figure 5.7 show yearly model performance in terms of 2
NSR  for all 

Cedar Creek configurations. Highest averages 2
NSR  is 0.84 for year 1993, and lowest 

average 2
NSR  is 0.34 for year 2000, for Cedar configurations. Similar to SJRW 

configurations, yearly model performance for Cedar Creek configurations are also 

sensitive to precipitation trends (Figure 5.7). For example, in year 1995 and 2000 

precipitation trend shifted from negative to positive producing an average R2
NS of 0.47 

and 0.34, respectively, whereas in year 1998 and 1999 precipitation trend remain 

unchanged producing an average 2
NSR  are 0.82 and 0.80, respectively.  

 

Figures 5.8 and 5.9 show daily hydrographs for 1997 during calibration and 2001 

during validation, respectively for all Cedar Creek configurations with SSURGO data. 

Most model configurations exhibit similar behavior with respect to hydrograph response.  
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Average 2
NSR  and Mbias during 1997 are 0.53 and -27.8%, respectively and during 2001 

are 0.69 and -25.5%, respectively. The general tendency of under estimation of low flows 

observed for SJRW configurations continues for both calibration phase and validation 

phase for Cedar Creek configurations with SSURGO data. 

 

Table 5.6  Model performance (Cedar Creek) before and after calibration 
 

After Calibration  Before Calibration 
Calibration period Validation Period 

1993-1999 1993-1999 2000-2003 
Model 

R2
NS Mbias R2

NS Mbias R2
NS Mbias 

C1.5 -0.90 -15.2 0.70 -21.7 0.52 -31.8 

C2.0 -0.49 -14.8 0.71 -23.1 0.55 -28.3 

C2.5 -0.46 -14.9 0.71 -28.3 0.58 -34.9 

C3.0 -0.46 -14.9 0.71 -30.4 0.44 -37.7 

C4.0 -0.46 -14.8 0.71 -26.0 0.51 -33.3 

C5.0 -0.46 -15.2 0.71 -26.6 0.55 -33.1 

C7.0 -0.23 -13.6 0.71 -20.6 0.54 -29.6 

C10.0 -0.24 -13.3 0.71 -23.2 0.58 -29.5 

       

D1.5 -1.13 48.5 0.73 -1.4 0.61 -3.0 

D2.0 -1.02 47.9 0.75 7.4 0.62 2.4 

D2.5 -0.79 48.0 0.75 6.5 0.62 2.2 

D3.0 -0.69 48.3 0.75 7.9 0.61 3.5 

D4.0 -0.66 48.2 0.75 8.5 0.61 3.7 

D5.0 -0.68 48.4 0.75 6.4 0.59 0.9 

D7.0 -0.64 48.1 0.74 5.9 0.60 1.3 

D10.0 -0.56 48.8 0.75 5.9 0.60 0.7  
C1.5 to C10.0 represents Cedar Creek configurations with SSURGO data and D1.5 to 
D10.0 represents Cedar Creek configurations with STATSGO data. 
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Figure 5.7  Yearly model performance for Cedar Creek configurations with (a) SSURGO 

data (b) STATSGO data and annual precipitation, Error bar represent + one 
standard deviation 
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Table 5.7  Yearly model performances (R2
NS) for Cedar Creek configurations 

 
Model performances (R2

NS)  
Year 

Precipitation 
(mm) C1.5 C2.0 C2.5 C3.0 C4.0 C5.0 C7.0 C10.0 D1.5 D2.0 D2.5 D3.0 D.0 D5.0 D7.0 D10.0 

1993 1004 0.84 0.82 0.81 0.83 0.84 0.86 0.85 0.81 0.79 0.87 0.86 0.87 0.86 0.85 0.84 0.86
1994 827 0.59 0.58 0.60 0.55 0.56 0.59 0.58 0.53 0.59 0.65 0.63 0.63 0.63 0.63 0.63 0.63
1995 922 0.39 0.48 0.58 0.34 0.41 0.40 0.45 0.45 0.53 0.48 0.50 0.49 0.50 0.52 0.46 0.50
1996 1135 0.77 0.75 0.69 0.75 0.76 0.78 0.78 0.81 0.74 0.73 0.76 0.76 0.75 0.76 0.74 0.76
1997 1047 0.53 0.54 0.49 0.49 0.53 0.54 0.56 0.58 0.52 0.54 0.57 0.54 0.56 0.56 0.54 0.56
1998 954 0.80 0.76 0.83 0.73 0.75 0.78 0.79 0.77 0.88 0.86 0.86 0.85 0.86 0.85 0.85 0.85
1999 903 0.72 0.77 0.81 0.71 0.71 0.75 0.74 0.75 0.88 0.86 0.86 0.85 0.86 0.86 0.87 0.87
2000 1009 0.20 0.24 0.47 -0.12 0.06 0.25 0.33 0.42 0.31 0.43 0.43 0.46 0.45 0.47 0.48 0.50
2001 1063 0.71 0.69 0.72 0.64 0.68 0.72 0.71 0.67 0.68 0.72 0.71 0.70 0.70 0.69 0.69 0.69
2002 808 0.42 0.39 0.40 0.31 0.36 0.38 0.43 0.38 0.51 0.54 0.55 0.56 0.55 0.54 0.53 0.53
2003 1035 0.45 0.59 0.55 0.46 0.52 0.57 0.42 0.51 0.68 0.61 0.60 0.58 0.58 0.54 0.56 0.54 

C1.5 to C10.0 represent Cedar Creek configurations with SSURGO data and D1.5 to D10.0 represent Cedar Creek configurations 

with STATSGO data 
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Figure 5.8 Daily hydrographs for 1997 during calibration for Cedar Creek configurations 

with SSURGO data (R2NS, Mbias) 
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Figure 5.9 Daily hydrographs for 2001 during validation for Cedar Creek configurations 

with SSURGO data (R2NS, Mbias) 
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Figure 5.10 Daily hydrographs for 1997 during calibration for Cedar Creek 

configurations with STATSGO data (R2NS, Mbias) 
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Figure 5.11 Daily hydrographs for 2001during validation for Cedar Creek configurations 

with STATSGO data (R2NS, Mbias) 
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Figure 5.10 and Figure 5.11 show daily hydrographs for 1997 during calibration 

phase and 2001 during validation phase, respectively for all Cedar Creek configurations 

with STATSGO data. Average 2
NSR  and Mbias during 1997 are 0.55 and -0.8% and those 

during 2001 are 0.70 and 6.7%, respectively. Except for D1.5 all configurations show 

similar results. Cedar creek configurations with STATSGO data are performing better 

with respect to Mbias compared to configurations with SSURGO data. Better performance 

of STATSGO data is also visible in monthly hydrograph shown in Figure 5.12 for C5.0 

and D5.0 configurations. Configuration with SSURGO data (C5.0) under estimates flows 

during calibration and validation phase. For the entire simulation period (1993-2003), 

R2
NS and Mbias are 0.86 and 4.4%, respectively for STATSGO data, whereas for SSURGO 

data R2
NS and Mbias are 0.68 and -28.9%, respectively.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12  Monthly hydrograph for C5.0 and D5.0 models for entire simulation period 

(1993-2003), (R2NS, Mbias for calibration and validation period) 
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5.4 Manual adjustment of SWAT parameters 
 

The two indicators of performance R2
NS and Mbias show different results with R2

NS 

showing relatively better results compared to Mbias for most cases. As mentioned earlier, 

the success of R2
NS can be attributed to the bias of objective function (SSE) towards high 

flows1. To investigate the effect of model parameters on Mbias, the distribution of total 

precipitation among different hydrologic components of the model is explored in this 

section. 

 

Table 5.8 compares the distribution of 978 mm of precipitation among different 

hydrologic components for two configurations C5.0 and D5.0. The overall performance 

of configuration D5.0 is good in terms of R2
NS and Mbias but configuration C5.0 under 

estimate flows during calibration and validation phase. According to Table 5.8, while 

surface runoff is approximately same (~250-260 mm) for both configurations, but 

groundwater Q is not contributing (groundwater Q=0) to streamflow (WYLD) in the case 

of C5.0 configuration. In addition, percolation through soil layer is low (51 mm 

compared to 110 mm), and a major portion of that (39 mm out of 51 mm) is going into 

deep aquifer without contributing to streamflow. As a result, the baseflow component of 

C5.0 configuration is very low, thus underestimating low flow (Figure 5.13) and 

eventually affecting Mbias. Less volume of percolation is compensated by higher volume 

of evapotranspiration in C5.0 configuration. 

 

To improve the performance of C5.0 configuration, parameters that affect 

groundwater contribution to stream (Gwqmn and Rechrge_dp) are manually adjusted to 

increase baseflow contribution to streamflow. Similarly some other parameters such as 

sol_awc are adjusted (lowered) to increase percolation though soil profile and to decrease 

evapotranspiration. These changes resulted in significant improvement in Mbais 

performance during calibration and validation phase for C5.0 configuration as shown in 

                                                 
1 Please note that R2

NS is normalized value of SSE, so in effect both are representing the same quantity on 
different scale 
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Table 5.9 and Figure 5.14.  Because R2
NS  is biased towards high flows, no significant 

change in R2
NS  is observed as a result of manual adjustment. 

 

Table 5.8  Major water balance components (yearly average value, 1993-2003) and 
model performances for C5.0 and D5.0 configurations 

 
          Value (mm) 

Sl. No. Component C5.0 D5.0 
1 Precipitation 978 978 
2 Snow Fall 113 118 
4 snow melt 105 116 
3 Sublimation 6 0 
4 Surface Runoff 250 268 
5 Lateral Q 7 2 
6 Groundwater Q 0 93 
7 Revap 1 1 
8 Deep Aq Recharge 39 17 
9 Percolation through soil 51 110 

10 WYLD 252 356 
11 Evapotranspiration 671 598 
12 Transmission loss 5 7 

Model performance 
 Calibration                 R2

NS  0.71 0.75 
 (1993-1999) Mbais -26.6% 6.4% 
  Validation                R2

NS  0.55 0.59 
 (2000-2003) Mbais -33.1% 0.9%  

 

 

Similar adjustments are made for other Cedar Creek configurations with 

SSURGO data and SJRW configurations with SSURGO and STATSGO data and results 

are presented in Table 5.10. Main parameters changed during manual adjustment are 

sol_awc and Gwqmn (values lowered). As result of manual adjustments, Mbais show 

significant improvement without any effect on 2
NSR  compared to model performances 

shown in Table 5.4 and 5.6. 
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Figure 5.13 Calibrated daily hydrograph in year 1998 for C5.0 and D5.0 configurations 

(R2NS, Mbias)  
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Figure 5.14  Calibrated daily hydrograph in year 1998 for C5.0 configurations before and 

after manual adjustment (R2NS, Mbias)  
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Table 5.9 Major water balance components (annual average value, 1993-2003) and   
model performances before and after manual adjustment for C5.0 model 

 

                 Value (mm) 

Sl. No. Component 
Before manual 
adjustment 

After manual 
adjustment 

1 Precipitation 978.0 978.0 

2 Snow Fall 113.0 113.1 

4 snow melt 105.4 105.4 

3 Sublimation 6.5 6.5 

4 Surface Runoff 250.0 286.4 

5 Lateral Q 7.1 2.2 

6 Groundwater Q 0.0 70.4 

7 Revap 1.0 0.0 

8 Deep Aq Recharge 38.9 12.4 

9 
Percolation through 
soil 51.2 82.8 

10 WYLD 252.3 353.8 

11 Evapotranspiration 671.0 607.8 

12 Transmission loss 4.8 5.1 

 Model performance 
  Calibration R2

NS  0.71 0.68 
(1993-
19999) Mbais -26.6% -0.7% 
Validation R2

NS  0.55 0.56 
(2000-2003) Mbais -33.0% -0.3% 

  
 

Final model performances for all configurations are comparable with values 

reported in literature for daily flow calibration. For example, Wang and Melesse (2006) 

have reported 2
NSR  of 0.51 and 0.31 for calibration and validation period, respectively for 

Elm River sub-watershed in North Dakota. 
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Table 5.10  Final model performance after manual adjustment 
 

Calibration period Validation Period 

1993-1999 2000-2003 Model 

R2
NS Mbias R2

NS Mbias 

A0.5 0.65 -7.8 0.66 6.5 

A1.0 0.61 -4.9 0.59 9.8 

A2.0 0.66 -11.8 0.67 0.3 

A3.0 0.59 -12.2 0.61 1.9 

A5.0 0.46 -12.2 0.60 4.2 

A7.0 0.60 -6.5 0.61 11.6 
     

B0.5* 0.60 -11.0 0.62 9.8 

B1.0 0.66 -9.3 0.66 4.6 

B2.0 0.66 -10.7 0.61 1.9 

B3.0 0.61 -11.9 0.66 2.1 

B5.0 0.43 -10.8 0.50 5.5 

B7.0 0.52 -8.3 0.61 9.5 
     

C1.5 0.69 -4.1 0.54 -5.7 

C2.0 0.68 -4.4 0.56 -5.3 

C2.5 0.67 -2.1 0.58 -2.5 

C3.0 0.70 -2.1 0.54 -3.6 

C4.0 0.70 -5.3 0.55 -7.3 

C5.0 0.68 -0.7 0.56 -0.3 

C7.0 0.69 -0.2 0.56 -0.9 

C10.0 0.70 -2.1 0.58 -3.7 
* No manual adjustment is performed in case of B0.5 
model  
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Vazquez-Amabile et al. (2006) found maximum 2
NSR value of 0.65 for calibration period 

and 0.60 for validation period for SJRW (same watershed as in this research). As 

explained earlier, 2
NSR  value alone cannot be used as a sufficient criterion for evaluating 

model performance because even a high 2
NSR  value can result into poor model 

performance in terms of Mbais. Therefore, additional indicators such as Mbais should be 

included along with 2
NSR  while evaluating model results (all referred 2

NSR  values are 

taken from Gassman et al. 2007).  

 

Twelve SJRW and sixteen Cedar Creek configurations show different watershed 

attributes and parameter sets for each configuration, but overall calibration and validation 

performances in terms of R2
NS and Mbias is approximately the same for all configurations. 

These results are concurrent with the concept of equifinality as suggested by Beven 

(1993). Parameter uncertainty is explored in more details in Section 5.5. 

 

5.5 Parameter Uncertainty 
 

Parameter uncertainty is evaluated by fixing a threshold value of objective function. 

If a parameter set gives objective function value below threshold objective function 

during SCE-UA optimization program, it is characterized as good parameter set. 

Threshold value has been defined by χ2-statistics corresponding to 97.5 % confidence 

level. If x* (x*1, x*2,…... x*p) is the optimum parameter vector corresponding to which 

SCE-UA algorithms has determined minimum value of objective function (SSE*) in a 

particular calibration program, then threshold value for good parameter set (SSET) is 

defined as below: 

  )1(*
2

975.0,

pn
SSESSE p

T −
+×=
χ

     5.4 

 

where n is number of records used in calibration (n = 2556 for 7 years), and p is number 

of parameters (19 for SJRW configurations and 14 for Cedar Creek configurations), and 
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2
975.0,pχ is 2χ value corresponding to p degree of freedom and 97.5 % confidence region. 

For n = 2556 and p = 19, SSET = 1.0129 x SSE*, i.e. SSET is 1.29% greater than SSE*. 

Please note that SSE* can be different for each configuration identified by SCE-UA 

optimization program for each configuration.  

 

5.5.1 SJRW Configurations 
 

A large number of parameter sets are identified as good parameter sets during 

SCE-UA optimization program. Table 5.11 gives number of good parameter sets for 

SJRW configurations. However, in case of A1.0, A3.0 and B0.5 configurations number 

of good parameter sets are very less (< =10), and therefore these configurations are not 

included in further analysis. Uncertainties in different parameters across different model 

configurations are shown in Figure 5.14 in the form of modified box plot. Uncertainty 

ranges for all parameters are normalized from 0 to 100 using the following formula: 

100×⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
LBUB
LBPP G

N    5.5 

 

where PN is normalized relative change (change option (2) and (3)) or value (change 

option (1)) of a parameter, PG is the relative change (change option (2) and (3)) or value 

(change option (1)) of the parameter identified by SCE-UA optimization program, LB 

and UB are lower and upper bound, respectively. LB, UB, and parameter change option 

are given in Table 5.2. For example, if SCE-UA identifies 1.5% relative change in CN2 

after auto calibration then its normalized value with -25% as LB and 25% as UB is 

⎥
⎦

⎤
⎢
⎣

⎡
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−− 100

)25(25
)25(5.1 = 53. In the case of change option (2) and (3), no change condition 

is represented by number 50 on normalized scale, and a number greater than 50 

represents positive change, and a number less than 50 represents a negative change. In the 

case of change option (1), for example, if SCE-UA identifies a value of 200 for Gwqmn, 

then its normalized value with zero as LB and 5000 as UB is represented by 

⎥
⎦

⎤
⎢
⎣

⎡
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
− 100

)0(5000
)0(200 = 4.   
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Table 5.11  Number of good parameter sets for SJRW models 
 

Model Total number of 
runs in SCA-
UA 
optimization 
program* 

Number of 
good parameter 
sets 

Number of 
good 
parameter sets 
as % of total 
runs 

A0.5 9994 2741 27.43 
A1.0 5104 6 0.12 
A2.0 9155 2608 28.49 
A3.0 4763 10 0.21 
A5.0 7905 2911 36.82 
A7.0 7811 2248 28.78 

    
B0.5 7150 3 0.04 
B1.0 8492 2184 25.72 
B2.0 9539 2409 25.25 
B3.0 9180 2181 23.76 
B5.0 9084 2734 30.10 
B7.0 8793 1811 20.60 

* Maximum number of allowed runs for each program was 20000, 
however individual program terminated based on criteria met 
  

 

It is hypothesized that less uncertain parameter will show less variability across 

all model runs, and vice versa. It is quite evident from Figure 5.14 that not all parameters 

are showing equal uncertainty and parameter uncertainty ranges are different for each 

parameter.  
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Figure 5.15  Parameter uncertainty range for SJRW configurations 
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and Alpha_bf varies between 62 and 100 (0.6 to 1.0 in original scale). Similarly Esco and 

ch_n also show narrow range of variability; whereas other parameters such as ch_k2, 

surlag, sol_awc, sol_k, and Smtmp show larger range of variability. For example, 

variability range for ch_k2, smtmp, and  sol_awc are between 2 -100, 0-96, and 48-100, 

respectively. 
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output. For example, surface runoff constitutes around 75-80 % of total streamflow which 

is mostly determined by CN2 value. Similarly Gwqmn determines the fate of baseflow in 

the model, which is an important part (20-25%) of total streamflow. Parameters showing 

large variability in Class 2 and 3 are less sensitive to streamflow output.  

 

5.5.2 Cedar Creek Configurations 
 

Table 5.12 shows number of good parameter sets (defined in Section 5.5) for 

Cedar Creek configurations, while 7 out of 8 watershed configurations with STATSGO 

data resulted into large number of good parameter sets, only 2 out of 8 watershed 

configurations with SSURGO data resulted into large number of good parameter sets. 

Model configurations having number of good parameter sets less than 10 are not included 

in further analysis. As per average uncertainty score defined in previous section, Class 1 

(UC < 5) contains CN2, Gwqmn, surlag, and Alpha_bf , Class 2 (5<UC<15) contains 

Esco, Ch_n, Sol_awc, Ch_k2, Rchrg_dp, Gw_delay, Revapmn, and Class 3 (15<UC<25) 

contains Gw_revap, epco and canmx. Similar to SJRW configurations, Class 1 

parameters show minimal variability, whereas Class 2 and 3 parameters show higher 

variability (Figure 5.16). Most parameters included in individual classes are same for 

both Cedar Creek and SJRW configurations. 

 

Findings of large number of parameter sets for many configurations follows the 

concept of equifinality (Beven, 1993), but parameter uncertainty range are dependent on 

individual parameter sensitivity. Not all the parameters are equally uncertain, and more 

sensitive parameters (Class 1, even a small change in these parameter values can affect 

model output significantly) show very small range of uncertainty compared to less 

sensitive parameters (Class 2 and 3, even a larger change in these parameter values do not 

affect model output significantly). Parameter ranges provided for sensitive parameters 

appears to be too large, which may cause erroneous result during sensitivity analysis (in 

LH sampling, during sensitivity analysis provided parameter range is divided into 10 

equal intervals with equal probability of every interval). 
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Table 5.12  Number of good parameter sets for Cedar Creek Models 
 

Model Total number 
of runs in SCA-
UA 
optimization 
program* 

Number of 
good parameter 
sets 

Number of 
good parameter 
sets as % of 
total runs 

C1.5 9810 2181 22.23 
C2.0 4203 3 0.07 
C2.5 3902 1 0.03 
C3.0 3601 1 0.03 
C4.0 3601 2 0.06 
C5.0 4203 2 0.05 
C7.0 7552 2107 27.90 

C10.0 4805 1 0.02 
    

D1.5 6912 2 0.03 
D2.0 6727 1584 23.55 
D2.5 6927 1828 26.39 
D3.0 7093 1861 26.24 
D4.0 5805 1185 20.41 
D5.0 6928 1755 25.33 
D7.0 7693 1455 18.91 

D10.0 6866 1559 22.71 
* Maximum number of allowed runs for each program was 20000   

 
 

Similarly large range of sensitive parameters can affect the computational efficiency 

during calibration (computational run time). Results from this research suggest re-

defining uncertainty range (narrowing down) for sensitive parameters. Results also 

suggest categorizing of parameters in different groups based on their uncertainty range. 
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Figure 5.16 Parameter uncertainty range for Cedar Creek configurations 
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CHAPTER 6 SUMMARY AND CONCLUSIONS 

 
A study on the effects of spatial scale (represented by number of sub watersheds 

and scale of soil data) on model calibration is presented in this thesis. Different spatial 

scale watershed configurations are created for St. Joseph River Watershed and Cedar 

Creek using semi distributed, process-based SWAT model. Many of watershed attributes 

such as drainage density, channel slope, number of sub watersheds, and number of HRUs 

differed significantly across different configurations. Watershed attributes such as soil 

hydrologic group, average CN2, and average sol_awc are not affected by watershed 

discretization level (number of sub watersheds) but their values are different for 

STATSGO and SSURGO soil data. 

 

Twelve SJRW configurations and sixteen Cedar Creek configurations are 

independently calibrated for large number of parameters (19 for SJRW and 14 for Cedar 

Creek) using Shuffled Complex Evolution algorithm (SCE-UA) for daily streamflow 

outputs at respective watershed outlets. Model performance is evaluated in terms of R2
NS 

and Mbias. Average R2
NS for calibration period (1993-1999) and validation period (2000-

2003) are 0.56 and 0.66, respectively in case of SJRW configurations. For cedar creek 

configurations, average R2
NS for calibration period (1993-1999) and validation period 

(2000-2003) are 0.73 and 0.57, respectively. The following conclusions are drawn from 

this study: 

 

1. In individual model configuration sets hydrologic response was similar for different 

levels of watershed discretization. Hence it can be concluded that streamflow 

calibration is not affected by watershed discretization level. Because SCS Curve 

Number method is used for surface runoff calculation, and average CN2 has not 
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changed significantly across different level of watershed discretization, this can be a 

reason behind this result.  

 

2. Model configurations with two types of soil data (SSURGO and STATSGO) for 

SJRW also show similar responses, thus indicating that finer resolution SSURGO soil 

data did not contribute any new information over coarser resolution STATSGO soil 

data. Watershed size considered in this study (SJRW) may be too large for finer 

resolution SSURGO data to have any effect on overall model results. 

 

3. Model performance was found to be sensitive to shift in precipitation trends. For a 

dry year preceded by a dry year or a wet year preceded by a wet year model 

performed well. However, for a wet year preceded by dry year or a dry year preceded 

by wet year, model performance dropped. 

 

4. In terms of Mbias, the overall calibration is poor with many of model configurations 

underestimating the flow in the range of 15 to 20%. Poor performance of Mbias is 

because of bias of sum of square of errors (objective function) towards high flows, 

and therefore low flow conditions are not calibrated well. To improve model 

performances with respect to Mbias, SWAT parameters were manually adjusted. Poor 

performances of Mbias, are due to less contribution from groundwater to the stream. 

Hence, SWAT parameters related to groundwater component were adjusted to 

increase contribution of groundwater to the stream. As a result Mbias has improved 

significantly without any effect on R2
NS (normalized equivalent of SSE).  

 

5. The result of different model configurations exhibiting similar responses is in line 

with concept of equifinality. Parameter uncertainty range for individual model 

configuration is determined in the form of good parameter sets.  All configurations 

that resulted in large number of good parameters sets (2000-3000) were included in 

uncertainty analysis. Good parameters across different configurations were compared 
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in terms of box plot and uncertainty score. Sensitive parameters showed very small 

range of uncertainty compared to less sensitive parameters.  

  

 While the results presented in the thesis can be specific to the watershed 

considered and model used (SWAT) in this study, it provides a general idea about the 

spatial scale issue affecting hydrologic modeling in a large basin such as SJRW. Further, 

parameter uncertainty range seems to be dependent upon sensitivity of individual 

parameters in a given model structure irrespective of model spatial scale, and this result 

can be extended to other studies in assigning uncertainty range to individual parameters.  
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Appendix A Pre-Processing of SSURGO Data  

 
SURRGO data for all the 8 counties under SJRW are downloaded from the soil 

data mart (http://soildatamart.nrcs.usda.gov/). It comes in two parts – spatial and tabular 

data base. Spatial data (shape files), for all the 8 counties have been merged into a single 

shape file, rasterized and clipped to the watershed. In the spatial data, different soil series 

are associated with the unique MUKEY (Map Unit Key) number. Tabular data comes in 

61 ASCII text files, but only four of them, map unit, component, horizon and fragments 

tables are applicable here. In the ASCII format, these files are difficult to handle, hence it 

is imported to the MS Access SSURGO template (Soildb_IN_2002.mdb). These tables 

are connected as explained below. 

 

 Figure A.1 Tabular data interconnection 

 

While merging map unit, component, horizon and fragments tables, goal is to get 

soil properties corresponding to each MUKEY.  A single map unit can have one or more 

than one component/s. Layer properties corresponding to a component soil in a map unit 

are given in the horizon table. Concept of map unit is that it represents an area dominated 

by one major kind of soils, or more than one kind of soils as per the soil taxonomic 

classes. Hence a map unit can also have soil classes other than its designated soil class. 

These included soils are not shown separately because of their too small area to be  

 

 

 

 Map Unit Component    Horizon   Fragments 

MUKEY COKEY CHKEY 

http://soildatamart.nrcs.usda.gov/
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represented on the map scale. However if properties of these included soil differ 

significantly form the main soil, they are represented as a separate components in the 

same map unit area and the area covered by them are given as the percentage of the total 

map unit area. But this variability within a single map unit cannot be incorporated in the 

SWAT, because it looks for single data set corresponding to the every map unit 

(MUKEY). Hence only major or first component (when two components are having 

equal percentage) has been considered.  Properties cannot be made weighted average of 

the component percentage, because it gives the error when all the components are not 

having the same number of layers.  

 

For combining component (comp), horizon (chorizon), and fragments (chfrags) 

tables, SSURGO Extension Tool for AVSWATX (SEA) (Peschel et al., 2003) is used.  

But before SEA can be used, one field (DESGNVERT) of the chorizon tables is required 

to be updated, because this field has not been updated in existing SSURGO database for 

Indiana state (This based on the communication with Mike Wiggintton, Regional 

SSURGO database manager, NRCS during SWAT user meeting at Purdue University in 

April-2007). Since present version SEA (SSURGO SWAT 2.0 Extension) program reads 

the layer number of a soil component from this field, so when either its value is not there 

or incorrect, SEA program will either give the zero value of the layer properties or it will 

be incorrect. Field DESGNVERT can be updated with respect to values in the 

HZDEPT_R field, which gives the depth top of the each layer from the top soil surface. 

So for the first layer of each component it will have zero value and will keep increasing 

till the last layer in that component is reached. When it again encounters first layer of the 

next component its value will be reset to zero. So, the layer number (1, 2, 3…) 

corresponding to a soil component can be entered in the DESGNVERT field. This 

updating has been done in the MS Access with the help of specially written function. 

Once this is done, SEA can generate SSURGO database table (ssurgo.dbf) corresponding 

to each county.  
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One more step is required, before this table can be appended to usersoil database. 

SEA generates SSUGRO table along with all the components in a map unit, it is 

represented as different sequence in the same map unit. But as explained above, SWAT 

can take only one component corresponding to every map unit. So the minor components 

are to be removed. This has been done with the help of macro written by Dr. Venkatesh 

Merwade in the Arc Map. Then this dataset can be appended to usersoil database of 

SWAT2005.mdb for each of the counties. There is still some map units (2 % of total map 

units in the case of SJRW SSURGO data) for which there no tabular data is there i.e. soil 

properties are not defined. “These areas essentially have no soil and support little or no 

vegetation” (Soil Survey Manual – Part 3). Two major areas included in this category are 

urban land (covered by streets, parking lots, roads, building etc) and   water (streams, 

lakes, ponds and estuaries). For these map units soil properties form the adjacent area can 

be assigned (Wang and Melesse, 2006), but there is no specific guideline on attribute 

values for these soil types. Once properties corresponding to each map units have been 

entered in user soil database, it is ready for use in the SWAT program. Figure A.2 gives 

the flow chart for pre-processing of SSURGO data base. 
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Figure A.2  Flow chart for preprocessing of SSURGO data 

Download SSUROGO data for 
the county form soil data mart 

Generate dbf files of comp, 
chorizon, and chfrags with the 
help of SEA tool

Open chorizon table in the MS 
Access and update the 
‘desgnvert’ filed with the help 
of ‘hzdept_r’ field 

Generate ‘ssurgo.dbf’ form SEA 
tool

Add the ssurgo.dbf in the Arc -
map and get rid off minor 
components in each map unit 
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Appendix B  Swat Hydrologic Parameters  

 
B.1 SCS Curve Number (CN2) 

 

SCS Curve Number method calculates surface run-off using following equations:   

)8.0(
)2.0( 2

SR
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Q
day

day
surf +

−
=     B.1 
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⎛ −= 1010004.25
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where Qsurf  is rainfall excess (mm) or accumulated surface runoff in a day having rainfall 

Rday and Rday is > 0.2S (initial abstraction). CN is the Curve number for the day and S is 

the retention parameter defined in Equation B.2. CN value is a function of land use, its 

treatment or practice, soil hydrologic group and antecedent moisture condition for the 

day. Qsurf   increases in a non linear fashion with increase in CN  value. Figure B.1 shows 

a typical graph for effect of percentage change in the CN2 value on surface runoff 

generation for a given rainfall event. Percentage increase in  Qsurf  is higher as compared 

to the percentage increase in  CN2  value. Also, lower CN2 values (70, 80) show higher 

sensitivity compared to the higher CN2 value (90). One evident message form this graph 

is that one should not change CN2 values in a step of 10 % or so, it will have profound 

impact on surface runoff and there by infiltration and initial abstraction also. 

 

Area average CN2 value for the watershed has not changed significantly (1-2 % 

increase) for different sub-watersheds division level. Any higher percentage change in the  
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CN2 value (more than 2%) for independently calibrated models will mask effect sub-

watershed division level on runoff calculation.  
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Figure B.1: Effect of change in CN2 value on surface runoff 

 
B.2 Baseflow recession constant (Alpha_Bf) 

 
Baseflow recession constant determines how fast baseflow contribution to the 

streamflow declines after the recharge has ceases. When shallow aquifer receives no 

recharge, SWAT uses following equation to determine base flow contribution to the 

stream: 

).exp(.0, tQQ gwgwgw α−=     B.3 
 

Where Qgw (mm water) is the groundwater flow into the main channel at any time t (day), 

Qgw,0 (mm water) groundwater flow into the main channel at beginning of the recession (t 

= 0), αgw is baseflow recession constant, and t (days) is the time lapsed since the 

beginning of the recession. αgw value ranges between 0 to 1. Its higher values (~1) 

signifies rapid decline in the baseflow following cessation of recharge in the aquifer and 

also indicates high drainage and little storage capacity of the shallow aquifer. This 

parameter can be seen more as shape parameter (affecting shape of hydrograph) than 

parameter like CN2 which affects volume/magnitude of hydrograph.  
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B.3 Surface runoff lag (surlag) 
 

Time of concentration (tconc) increases sub-basin size increases for higher CSA. 

When time of concentration becomes greater than 1 day, only a portion of the surface 

runoff generated in single day is able to reach main stream and remaining portion is 

stored in the sub-basin to be released in next day. SWAT uses following formula to 

calculate surface runoff reaching to the stream in a given day.  

 

  ⎟
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surlagQQQ exp1).( 1,
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Where Qsurf (mm water) is the amount of surface runoff discharged to the main channel 

on a given day, Q’
surf (mm water) is the amount of surface runoff generated in the sub-

basin on the given day, Qstor,i-1 (mm water) is the surface runoff stored or lagged from the 

previous day, surlag is runoff lag coefficient, and tconc (hrs) is time of concentration for 

the sub-basin.  

 

To maintain the same Qsurf   reaching to the stream surlag should increase with 

increase in sub-watershed size, whereas for a given time of concentration higher value of 

the surface lag will make higher portion of the surface runoff reaching to the stream i.e. 

hydrograph will show the accentuated peak, and vice versa. This can again be termed as 

shape parameter for the same reason as explained above. 

 

B.4 Soil evaporation compensation factor (Esco) 
 

When evaporation demand from soil layer exists2, SWAT divides it to each layer in 

the soil profile using following formulae:  

escoEEE zusoilzlsoillysoil ⋅−= ,,,      B.5  

                                                 
2 Evapotraspiration (Eo) demand first met by canopy water, then remaining demand (Eo’) is met by plant 
transpiration and sublimation/soil evaporation. If evaporative demand form sublimation (in case of snow 
cover on the soil) is not sufficient then evaporative demand from soil layer exist. 
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Where Esoil,ly (mm water) is evaporative demand for the layer ly, Esoil,zl (mm water) is 

evaporative demand at lower boundary and Esoil,zu (mm water) is evaporative demand at 

upper boundary, Esoil,z (mm water) is the evaporative demand at depth z, Es” (mm water) 

is the maximum soil water evaporation on a given day and esco is soil evaporation 

compensation factor.  

 

In above formula upper layer contributes heavily to evaporative demand (top 10 

mm contributes to 50 % of the maximum evaporative demand).  If any layer of soil does 

not have sufficient water available to meet its evaporative demand, then left over demand 

is not met by another layer and consequently evaporation met from soil layer is less. User 

can distribute demand more evenly to lower layer by adjusting Esco value. In the typical 

example shown in Figure B.2, evaporative demand (200 mm in this case) from soil layer 

between 10 and 15 mm (shown by value at 15 mm) is only 22 mm for esco = 1, where as 

it increases to 52 mm for esco = 0.7. Die off behavior shown in the graph (Figure B.2) is 

due to the fact that once demand is met, there is no further demand from the layer below 

that. So if user has prior knowledge of that top soil layer may not have sufficient water 

for evaporation (for example sandy soil layer), he/she can accordingly adjust esco to be 

this demand by lower soil layer. 

 

B.5 Soil Available Water capacity (Sol_Awc) 
 

Soil available water capacity is the difference between water content at the field 

capacity and the water content at wilting point. Although their values are given in the soil 

data base as layer properties for each soil type, still this is a calibration parameter; 

because, SWAT calculates filed capacity of the soil layer based on the available water 

capacity of the layer and water is allowed to percolate only when water content in that 

soil layer exceeds its field capacity. SWAT first calculates wilting point water content for 

the layer and adds it to available water capacity of the layer to get field capacity water 

content of the soil layer as per following formulae: 
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Figure B.2  Effect of Esco on evaporation demand form different soil layers 
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Where WPly is the water content at wilting point, mc percent clay content of the layer, ρb 

is the bulk density for the soil layer (mg m-3), FCly is the water content at field capacity 

and Awcly is the available water capacity of the soil layer.  

 

Higher values of Awcly will lead to higher FCly, i.e. less water is allowed to 

percolate to next layer and finally to shallow aquifer, hence less groundwater recharge to 

the stream and more water is available for evapotranspiration. If model is predicting very 

high evaporation and less groundwater recharge than the expected, reducing Sol_Awc can 

help in reducing evaporation and increasing groundwater percolation to aquifers. 

 

B.6 Saturated hydraulic conductivity (Sol_k) 
 

Saturated hydraulic conductivity determines travel time of percolation in each soil 

layer. Travel time for percolation in a soil layer is calculated using following formula.  
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=      B.9 

 
Where TTperc is the travel time for percolation (hrs), SATly (mm water) is the amount 

water content in the soil layer when completely saturated, FCly (mm water) is the water 

content of the soil layer at field capacity, and Ksat (mm/hr) is the saturated hydraulic 

conductivity for the layer. Higher values of Ksat make more water to percolate to the next 

layer by decreasing the travel time in the soil layer.  

 

B7.0 Groundwater delay (Gw_delay) 

 
Water leaving the lowest layer in the soil profile does not enter shallow aquifer on 

the same day it leaves soil profile. Water movement in the vadose zone has been modeled 

using equation proposed by Venetis (1969) as given below: 

  1,, )./1exp())/1exp(1( −−+⋅−−= irchrgegwseepgwirchrg www δδ  B.10 

 
Where wrchrg,i (mm water) is amount of recharge entering aquifer on day i, δw (days) is the 

delay time or drainage time in overlaying geologic formation, wseep (mm water) is total 

amount of water exiting the bottom of soil profile on day i, and wrchrg,i-1 (mm water) is 

amount of recharge entering  the aquifer on day i-1. Higher value of GW_delay (δw) will 

make less water to reach shallow aquifer on day i.  

 

B.8 Deep Aquifer Percolation coefficient (Rchrg_dp) 
 

Total water entering shallow aquifer (wrchrg ) is portioned into two parts, one goes 

into deep aquifer and other remains in shallow aquifer. Rchrg_dp determines fraction of 

total daily recharge (wrchrg ) will go into deep aquifer. Amount of water entering into deep 

aquifer is given by following formula: 

  rchrgdeep wdpRchrgw *)_(=       B.11 
 

Where wdeep is the amount of water moving into deep aquifer on day i (mm water), 

Rchrg_dp is aquifer percolation coefficient, and wrchrg is total recharge occurring to both 
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aquifers on day i. Water entered into deep aquifer become water lost for the system, it 

drains outside the watershed in the model. Hence higher value of Rchrg_dp will make 

high water loss from the system. Therefore, Rchrg_dp value should be accordingly 

adjusted to keep sufficient water in the system. 

 

B.9 Revap Coefficient (Gw_revap) and Revap threshold (Revapmn) 
 

SWAT allows water to move from the shallow aquifer to overlaying unsaturated 

zone if the overlying layer becomes dry to meet the evapotranspiration demand. This 

process is termed as ‘Revap’.  Water can revaporate from shallow aquifer if the aquifer 

has more water than the threshold value required (Revapmn). Maximum amount of the 

water that can be removed form the aquifer is determined by the revap coefficient as 

given in the following formula. 

orevmxrevap EW ⋅= β,       B.12 
 
Where mxrevapW , is the maximum amount of water that can move into the soil zone in 

response to water deficiency (mm water), revβ is the revap coefficient, and Eo is the 

potential evapotranspiration for the day. 

 

B.10 Threshold water level in shallow aquifer for baseflow (Gwqmn) 
 

This is the minimum water required to be present in the shallow aquifer for 

groundwater to go into the stream. Gwqmn value needs to be adjusted to correct baseflow 

part of the hydrograph, however its uncertainty range in the model is quite high form 0 to 

5000 mm. A high value of Gwqmn may not allow any water present in shallow aquifer to 

become part of streamflow and stream will become dry during no surface flow 

conditions. 

 

B.11 Manning’s “n” for main channel (Ch_n2) 
 

Surface flow generated during precipitation events and baseflow contributed by 

shallow aquifer is routed through network of streams/channels in the model, SWAT uses 
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manning’s equation for uniform flow to calculate flow rate and velocity in a reach 

segment as given below: 

  
n

slpRAq chchch
ch

2/13/2 ⋅⋅
=       B.13  

  
n
slpRv chch

ch

3/23/2 ⋅
=       B.14 

Where qch (m3/s) is rate of flow in the channel, Ach (m2) is cross section area of the 

channel, Rch (m) wetted perimeter of the channel and slpch (m/m) is channel slope, n is 

Manning’s “n” for the channel (roughness coefficient) and vc is the flow velocity (m/s). 

For each time step (daily basis) Ach is calculated as function of volume of available water 

to be routed in the channel as given below: 

  
ch

ch
ch L
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1000

      B.15 

 
Where Ach (m2) is cross section area of the channel, Vch is volume of water stored in the 

channel (m3), and Lch (km) is the channel length. Once Ach is known, water depth is the 

channel can be determined from user provided channel bed width and SWAT assumed 

trapezoidal channel cross section with side slope of 1:2, hence wetted perimeter Rch.  

 

For natural stream with few trees, stone or brush Manning’s “n” value varies 

from 0.025 to 0.065. In Chow’s book (1959) its value for the “natural stream with some 

what irregular side slope, fairly even, clean and regular bottom; in light gray silty clay to 

light tan silt loam, very little variation in cross section” is given as 0.035. 

 
B.12 Effective hydraulic conductivity for the main channel (Ch_K2) 

 
When channel receives no groundwater contribution during that period it may 

loose water to the aquifer. Transmission loss from the main channel is calculated using 

following equation. 

chchchloss LRTTKt ⋅⋅⋅=      B.16         

 

Where tloss (m3 water) is channel transmission loss, kch (mm/hr) is effective hydraulic 

conductivity of the channel alluvium, TT (hr) is flow travel time, Rch (m) is the wetted 
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perimeter of the channel and Lch (km) is the channel length. Depending upon the channel 

bed material its hydraulic conductivity value ranges from > 127 mm/hr (very clean gravel 

and large sand) to 0.025-2.5 mm/hr (consolidated bed material: high silt-clay content). 

For perennial streams, which receive continuous groundwater contribution, effective 

conductivity value will be zero. This parameter is of particular importance for loosing 

streams due to significant impact of spatial scale on channel length. 

 

B.13 Maximum potential leaf area index (Blai) 

 

Leaf area index is ratio of green leaf area to the land area for the given crop type, 

its value changes during the growing season of the crop and calculated as the fraction of 

the maximum leaf area index of the crop type (given in the SWAT database). It affects 

initial abstraction and evapotranspiration in HRUs.  In SCS curve number method canopy 

interception is included in the initial abstraction term along with surface storage; hence 

this parameter may not be very important for surface runoff calculation using the SCS 

curve number method. 

 

B.14 Maximum canopy storage (Canmx) 
 

This is the maximum amount of water that can be intercepted by the plant canopy 

when it is fully developed. In SCS curve number method canopy interception is included 

in initial abstraction. Similar to Blai, Canmx is also not an important parameter while 

using the SCS curve number method for surface runoff calculation.  

 

B.15 Plant uptake compensation factor (Epco) 
 

Since root density is highest near the soil surface and decreases with depth, water 

uptake by the plant roots from the upper layer is much greater than in lower layers and so 

is the potential uptake from different layers in the soil profile. In SWAT 50% of the total 

water uptake occurs in the upper 6% of the root zone. But if upper layer of the soil profile 

does not contain enough water to meet the potential water uptake demand, SWAT allows 
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deficient water demand to be compensated by the lower layers. Following equation is 

used to adjust the potential water uptake form the lower layers. 

  EpcoWWW demandlyuplyup ⋅+= ,,'     B.17 

 
Where W’up ly is the adjusted potential water uptake form layer ly (mm water), Wup,ly is the 

potential uptake for the layer ly (mm water), Wdemand is the water uptake demand not met 

overlaying soil layers. Epco value varies from 0 to 1, as Epco value approaches 1.0, 

model allows more water uptake demand to be met by lower layers in the soil. 

 

B.16 Biological mixing efficiency (Biomix) 
 

This is the efficiency of redistribution of the soil constituent in the soil caused by 

biota (e.g. earthworms) activity. Biological mixing efficiency increases as the tillage 

practice shifts form conventional tillage to conservative tillage and to no-till practice. Its 

default value is 0.20. 

 

B.17 Snow fall threshold temperature (Sftmp) 
 

This threshold temperature determines whether precipitation is snow fall or rain 

fall. If daily mean temperature is less that sftmp then precipitation is considered as snow 

fall and vice versa.  

 

B.18 Snow pack temperature lag factor (Timp) 
 

When snow on the ground persists for a long time, it is called snow pack. Snow 

pack temperature lag factor determines influence of the previous day snow pack 

temperature on the current day snow pack temperature. Timp value varies between zero 

and one. When its value approaches to 1, current day air temperature has increasingly 

greater influence on the snow pack temperature, whereas if its value approaches to zero, 

previous day snow pack temperature has greater influence on the current day snow pack 

temperature. Snow pack temperature for present day is given by the following formula: 

  TimpTTimpTT avdsnowdsnow nn
⋅+−⋅= − )1()1()(   B.18 
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Where )( ndsnowT (degree C) is the snow pack temperature on a given day, )1( −ndsnowT  (degree 

C) is the snow pack temperature on the previous day, and avT  (degree C) is the mean air 

temperature on the given day.  

 

B.19 Snow melt base temperature (Smtmp) 

 
This is base temperature above which snow melt occurs. Snow melt is calculated 

using following formula: 

  ⎥⎦
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⋅⋅= Smtmp
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snobSNO mxsnow

mltmlt 2cov    B.19 

 
Where SNOmlt is the amount of snow melt on a given day (mm water), bmlt is melt factor 

for the day (mm water/day- degree C), snocov is the fraction of HRU covered by the snow, 

Tsnow is the snow pack temperature on a given day (degree C), and Tmx is the maximum air 

temperature on a given day. For SJRW this parameter is calibrated, for Cedar creek it has 

taken as constant 0.56 degree C. 

 

B.20 Snow melt factor on June 21 (Smfmx) and on December 21(Smfmn) 
 

Seasonal variation in the melt factor is incorporated using different values of melt 

factor on June 1 (maximum) and December 21 (minimum) as per following equation: 
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Where bmlt is the melt factor for the day (mm water/day – degree C), bmlt6 is the melt 

factor for June 21 (Smfmx), bmlt12 is the melt factor for December 21 (Smfmn) and dn is 

the day number of the year.  
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Appendix C  Auto Calibration Control Parameters 

 
C.1 parasolin.dat 

 
Maximum number of trials allowed before optimization is terminated:   20000 
 
Maximum number of shuffling loops in which the criterion value:    5 
  
Percentage by which the criterion value must change:    0.01 
 
Number of complexes in the initial population:     10 
 
Initial random seed:         1645 
 
Number of points in each complex:       5 
 
Number of points in a sub-complex:       8 
 
Number of evolution steps allowed for each complex before complex shuffling: 5 
 
Istat            1 
 
Iprob, when iprob=1 90% probability ; iprob=2 95% probability; iprob=3 97.5% 

probability         3 
 
Number of objective functions to be included in global optimization criterion (0=all 

objective functions)        0 
 
Interval in hypercube         10 
 

C.2 objmet.dat 
 
1  1  1  1   1.000 
 

C.3 responsmet.dat 
 
1  1  1  1   0.000 
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C.4 chnagepar.dat 
 

Corresponding to SJRW and Cedar Creek are given in Table 5.2 and 5.3 
 
Note: Details regarding these input files can be found in SWAT documentation 
“Sensitivity, auto calibration, uncertainty and model evaluation in SWAT 2005”.  
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