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ABSTRACT 

 

 

 

Han, Eunjin. Ph.D., Purdue University, December 2011. Soil Moisture Data Assimilation 

at Multiple Scales and Estimation of Representative Field Scale Soil Moisture 

Characteristics. Major Professors: Venkatesh Merwade and Gary Heathman. 

 

 

 

Soil moisture is a key variable in understanding the hydrologic processes and energy 

fluxes at the land surface. Therefore, accurate prediction of soil moisture in the vadose 

zone benefits irrigation planning and crop management, flooding and drought prediction, 

water quality management, climate change forecasts, and weather prediction. The three 

objectives of this study are to: (1) investigate the effects of surface soil moisture data 

assimilation on hydrological responses at the field scale using in situ soil moisture 

measurements, (2) explore the effect of surface soil moisture data assimilation on each 

hydrologic process in a simulation model, including the effect of spatially varying inputs 

on the potential capability of surface soil moisture assimilation at the watershed scale, 

and (3) link two different scales of soil moisture estimates by upscaling single point 

measurements to field averages.  

First, a well-proven data assimilation technique, the Ensemble Kalman Filter (EnKF), is 

applied to a field scale water quality model, the Root Zone Water Quality Model, with 
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in situ soil moisture data from two agricultural fields in Indiana. Through daily update, 

the EnKF improves all statistical results compared to the direct insertion method and 

model results without assimilation for the 5 cm and 20 cm depths while less improvement 

is achieved for deeper layers. Optimal update interval and ensemble size are also tested 

for the operational potential of data assimilation. This study demonstrates the potential of 

surface soil moisture assimilation to improve water quality and crop yield simulation, as 

well as, soil moisture estimation at the agricultural field scale.  

Second, the EnKF is coupled with a watershed scale, semi-distributed hydrologic model, 

the Soil and Water Assessment Tool. Results show that daily assimilation of surface soil 

moisture with the EnKF improves model predictions of almost all hydrological processes. 

However, the EnKF does not produce as much of a significant improvement in 

streamflow predictions as compared to soil moisture estimates in the presence of large 

precipitation errors and due to the limitations of the infiltration-runoff model mechanism. 

Distributed errors of the soil water content show effects of spatially varying inputs such 

as soil and landuse types on the assimilation results. Results from this study suggest that 

soil moisture update through data assimilation can be a supplementary way to overcome 

the errors created by limited or inaccurate rainfall data.  

Proper linkage of soil moisture estimates across different scales of observations and 

model predictions is essential for the validation of remotely-sensed soil moisture products, 

as well as the successful application of data assimilation techniques. Thus, this study also 

examines different upscaling methods to transform point measurements to field averages 

in representing small agricultural watersheds (~ 2 ha). The cumulative distribution 
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function (CDF) matching approach is found to provide best estimates of field average soil 

moisture out of several statistical methods. Tests for temporal and spatial (horizontal and 

vertical) transferability of the upscaling equations indicate that they are transferable in 

space, but not in time. Rainfall characteristics and crop types are most likely major 

factors affecting the success of the transferability. In addition, the CDF matching 

approach is found to be an effective method to estimate spatial soil moisture variance 

from single point measurements. 

Overall, the results presented in this work can be utilized to improve applications of soil 

moisture data assimilation at field and watershed scales and better evaluate the scaling 

behavior of soil moisture.  
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

Soil moisture is an important hydrological state variable that controls the evolution of 

various hydrological and energy balance processes at the land surface (Pielke et al., 2010). 

Therefore, there have been considerable efforts to estimate soil moisture in the vadose 

zone in different research areas for: 1) weather forecast, 2) climate change studies, 3) 

flood or drought prediction, 4) water quality management, 5) irrigation operation, and 6) 

soil erosion studies.      

Data assimilation is a technique that optimally integrates observational information with 

model predictions for improved forecast of state variables. Applications of soil moisture 

data assimilation in hydrology have a relatively short history;  these studies were initiated 

in the early 1980s and have made rapid progress in the last decade with the development 

of remote sensing technologies and increasingly available remotely-sensed soil moisture 

data (Ni-Meister, 2008). Shallow soil moisture estimates from remotely-sensed data have 

led researchers to merge measured surface soil moisture data and hydrological models in 

an effort to obtain more accurate soil moisture estimates in the vadose zone through data 

assimilation (Reichle et al., 2002b; Ni-Meister et al., 2006a; Reichle et al., 2007; Sabater 

et al., 2007; Das et al., 2008; Draper et al., 2009).
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Since these soil moisture assimilation studies were motivated by how to best use 

remotely-sensed soil moisture data obtained from satellites to improve climate forecasts 

(McLaughlin, 1995), they have been conducted at regional or global scales using land 

surface models. Thus, there is still a lack of research on utilizing soil moisture data 

assimilation techniques with hydrologic models at field or watershed scales which are the 

fundamental operative unit for water resources management (Troch et al., 2003). Most 

operational hydrologic models for agricultural applications, flood forecast and water 

quality management are applied at field or watershed scales. Therefore, successful 

application of soil moisture data assimilation at the field or watershed scale would be a 

significant contribution for improving the prediction capability of hydrologic models with 

increased operational benefits. 

One of the obstacles in the application of soil moisture data assimilation at the field or 

watershed scale is an intermediate gap in the scale of soil moisture measurements 

(Robinson et al., 2008). Two major soil moisture observational methods have advanced at 

significantly different scales; in situ sensors typically provide point soil moisture 

measurements in an area less than 1 m
2
, while remotely sensing data, especially satellite-

based, may be on the order of a few kilometers. Since successful improvement in soil 

moisture estimation through data assimilation is possible only with good quality and 

unbiased soil moisture observations (Ni-Meister, 2008), it is important to resolve the 

scale issues between different soil moisture observations and areal estimates of field or 

watershed scale hydrologic models.   
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Ideally the scales between measurement, modeling and processing should be 

interchangeable or identical (Verstraeten et al., 2008). However, in reality there can be 

significant differences between scales which pose problems for full utilization of 

available soil moisture measurements and modeling capabilities (Western et al., 2002; 

Robinson et al., 2008). In addition, proper linkage of soil moisture estimates across 

different scales of observations and model predictions is essential for the validation of 

current and upcoming space-borne soil moisture retrievals (Grayson and Western, 1998; 

Crow et al., 2005; Cosh et al., 2006; Miralles et al., 2010).  

1.2 Research Objectives 

This study aims to extend the applicability of soil moisture data assimilation for local or 

watershed scale hydrologic simulations based on the progress made using land surface 

models that have been conducted primarily at the regional or global scale. This study is 

also expected to contribute to other important agricultural, environmental and hydrologic 

research issues at local or watershed scales. It is hypothesized in this study that 

assimilating surface soil moisture observations can improve predictions of total soil water 

content in the root zone and thus, enhance overall model performance of the hydrological 

system at the field or watershed scale. This hypothesis is tested at both field and 

watershed scales with detailed objectives described below.  

Another goal of this study is to tackle a scaling issue in soil moisture estimation by 

upscaling single point soil moisture measurements to field averages that are 

representative of a small agricultural watershed (~ 2 ha). The hypothesis of this approach 
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is that representative soil moisture characteristics such as the field average and spatial 

variance can be predicted using point soil moisture measurements from a single location. 

Each objective is accomplished as a separate study resulting in a journal article. A brief 

description of each paper is given below. 

(1) Application of soil moisture data assimilation with a field scale hydrologic 

model: A well-proven data assimilation technique, the Ensemble Kalman Filter (EnKF), 

is applied to a field scale water quality model, the Root Zone Water Quality Model 

(RZWQM), with in situ soil moisture data from two agricultural fields in Indiana. 

Specific tasks of this objective include: (i) to compare the capability of the EnKF with 

simple direct insertion method, and (ii) to explore the effect of ensemble size and update 

interval for practical application of the EnKF.  

(2) Application of soil moisture data assimilation with a watershed scale 

hydrologic model: The EnKF is coupled with a watershed scale, semi-distributed 

hydrologic model, the Soil and Water Assessment Tool (SWAT), in order to investigate 

the effect of surface soil moisture assimilation on hydrological responses at the watershed 

scale through a synthetic experiment. This objective is achieved with specific tasks of: (i) 

investigating how soil moisture update through assimilation may compensate for errors in 

the hydrologic prediction due to inaccurate rainfall input, and (ii) exploring how spatially 

varying inputs such as land use and soil types affect the potential capability of surface 

soil moisture assimilation.  

(3) Estimation of representative field scale soil moisture characteristics: The 

main objective for this phase in the study is to find the most appropriate means to 
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transform single point measurements to field averages by applying different upscaling 

methods. Additional tasks of this objective involve: (i) exploring whether the best 

upscaling method is transferable in time and space, (ii) finding which factors most 

influence the temporal and spatial transferability of the upscaling method, and (iii) 

estimating spatial variability of soil moisture within the fields using single point 

measurements and the cumulative distribution function matching method.  

1.3 Dissertation outline 

The remainder of this dissertation is organized as follows. Chapters 2 to 4 address the 

three major research objectives mentioned earlier. Each chapter is considered an 

independent study having its own introduction to conclusions, but they are all connected 

under the umbrella of soil moisture data assimilation and scaling study at local scales. 

Final conclusions, future works and remarks synthesizing the all three studies are 

included in Chapter 5.  
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CHAPTER 2 SOIL MOISTURE DATA ASSIMILATION AT FIELD SCALE 

2.1 Introduction 

Estimation of soil moisture has received considerable attention in the areas of hydrology, 

agriculture, meteorology and environmental studies because of its role in the partitioning 

of water and energy at the land surface, specifically, precipitation into runoff and 

infiltration, and energy into latent and sensible heat fluxes. Better understanding and 

prediction of soil moisture in the root zone is beneficial in irrigation planning and crop 

management, flooding and drought prediction, water quality management, climate change 

and weather prediction. However, despite its significance, the expenses associated with 

field measurements and the high spatiotemporal variability of soil properties have placed 

limitations in obtaining in situ measurements of profile soil moisture. Recent 

developments in remote sensing technology have provided possibilities to overcome 

these limitations through soil moisture retrieval from remote sensing images (Schmugge 

and Jackson, 1994; Jackson et al., 1995; Jackson and Vine, 1996; Jackson et al., 2002; 

Njoku et al., 2003; Verstraeten et al., 2006; Baup et al., 2007). However, in most cases, 

the actual sensing depth is limited to a few centimeters allowing soil moisture estimates 

only for the top 0-5 cm and 1 cm surface layer using the L-band (~1-2 GHz)and C-band 

(~4-8 GHz), respectively (Jackson and Schmugge, 1989; Njoku et al., 2003). 
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The limitations of shallow soil moisture estimates from remotely-sensed data have led 

researchers to integrate measured surface data and hydrologic models to obtain more 

accurate estimates of soil moisture content in the root zone through data assimilation 

techniques (Houser et al., 1998; Li and Islam, 1999; Hoeben and Troch, 2000; Walker et 

al., 2001b; Heathman et al., 2003a). Various data assimilation techniques have been used 

in soil moisture studies including the Kalman Filter (Hoeben and Troch, 2000; Walker et 

al., 2001b; Crosson et al., 2002), direct insertion method (Walker et al., 2001b; Heathman 

et al., 2003a), extended Kalman Filter (Reichle et al., 2002b; Seuffert et al., 2004; Draper 

et al., 2009) and Ensemble Kalman Filter (Reichle et al., 2002a, 2002b; Zhang et al., 

2006). Among these techniques, the Ensemble Kalman Filter (EnKF) has been widely 

adopted because of its strength in handling non-linear systems and computational 

efficiency (Crow and Wood, 2003; Huang et al., 2008). As one of surface measurements 

from a remote platform, brightness temperature has been assimilated into hydrologic 

models for better estimation of soil moisture (Margulis et al., 2002; Crow and Wood, 

2003; Huang et al., 2008). Recently, satellite-based surface soil moisture observations (0-

5 cm) from the Scanning Channel Microwave Radiometer (SMMR) and the Advanced 

Microwave Scanning Radiometer – Earth Observing System (AMSR-E) have been 

integrated with land surface models through data assimilation (Reichle and Koster, 2005; 

Ni-Meister et al., 2006b; Reichle et al., 2007; Draper et al., 2009). 

Most previous investigations that explored assimilation of remotely-sensed surface soil 

moisture involved regional or global scales for more accurate climate forecasts by 

improving temporal and spatial soil moisture estimations (Walker and Houser, 2001; 
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Reichle et al., 2002b; Ni-Meister, 2008; Draper et al., 2009). However, Troch et al. (2003) 

stressed the necessity of extending the applicability of data assimilation, which has so far 

been studied in land surface models using synthetic datasets, to many other important 

hydrological issues at catchment scale for a variety of water resources management 

problems. Therefore, there is a strong need for more application-focused research to 

determine the operational potentials of data assimilation within hydrologic modeling 

using actual observations.  

There have been a few studies which have applied soil moisture data assimilation 

techniques for improved hydrologic predictions at field or catchment scales. Walker et al. 

(2002) demonstrated the feasibility of near-surface soil moisture assimilation to retrieve 

profile soil moisture in a 6 ha catchment using a three dimensional distributed soil 

moisture model. In situ soil moisture observations in an agricultural field (21 ha) were 

used for soil moisture assimilation with the EnKF, especially for correcting bias (De 

Lannoy et al., 2007a; De Lannoy et al., 2007c) and for applying an adaptive EnKF (De 

Lannoy et al., 2009), with the Community Land Model. Recently, a catchment scale 

hydrologic model, the Soil and Water Assessment Tool, was used to investigate the 

performance of the EnKF for hydrologic predictions (Xie and Zhang, 2010; Chen et al., 

2011).  

Heathman et al. (2003a) used a physically based and field-scale agricultural model, the 

Root Zone Water Quality Model (RZWQM) to explore the possibility of assimilating 

observed surface soil moisture for better estimates of root zone soil water content. Based 

on substantial field measured data, they showed that the direct insertion data assimilation 
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technique produced dynamics of model simulation results in the top 30 cm layers better 

than the model simulation without assimilation. Since they focused on using field 

measured surface soil moisture to estimate root zone soil water content rather than 

synthetic analyses, their study used the simple direct insertion method. As an extension to 

Heathman et al. (2003a), this paper examines the benefit of assimilating surface soil 

moisture through the EnKF to improve model simulated soil moisture in the root zone 

using the RZWQM. In addition, contrary to many previous studies which assimilated 

remotely-sensed surface soil moisture into land surface models at the regional or global 

scale, this study applies a point scale model (RZWQM) to field measured surface soil 

moisture data for the purpose of data assimilation.  

Field scale application of the EnKF in this study provides the fundamental groundwork 

necessary to advance our knowledge of surface soil moisture data assimilation in 

hydrologic modeling.  First, field scale, deterministic models such as RZWQM can serve 

as the basis for the watershed scale hydrologic or water quality models (Abrahamson et 

al., 2006) and has been directed to extend the modeling methodology from one dimension 

to two or three dimensions (Walker et al., 2001a; Ma et al., 2007a). Second, in situ soil 

moisture observations have fewer uncertainties than the remotely-sensed soil moisture 

data, which is better for testing different data assimilation schemes and validating the 

assimilation results more effectively. This is because observation errors for in situ soil 

moisture data can be estimated in a more reasonable way and thus, the in situ 

observations can be considered to represent the true system state with certain errors.  

Third, a field scale assimilation study can be based on more accurate soil characteristics 
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data which are essential for water flow simulation in the unsaturated zone possibly 

reducing systematic model bias before assimilation. Walker et al. (2001a) discussed that 

incorrect information about soil porosity or residual soil moisture content restrained the 

soil moisture model from correct retrieval of profile soil moisture, even with an 

assimilation scheme. Lastly, it is possible with the field scale studies to investigate the 

impacts of local horizontal or vertical soil heterogeneity on data assimilation results, 

which is generally ignored in large scale studies.  

RZWQM is one of the most representative agricultural system models with components 

for water movement, plant growth, and chemical transport with management effects (Ma 

et al., 2007a). Since its release in 1992 (Ahuja et al., 2000), the RZWQM has been widely 

applied and tested in different areas for various purposes (Ma et al., 2001): to determine 

soil hydraulic properties (Cameira et al., 2000), to simulate tile drainage and leached 

nitrate (Abrahamson et al., 2005; 2006), and crop production and nitrogen balances (Ma 

et al., 2007c). Among major components of the RZWQM, soil hydrological components 

have performed satisfactorily (Cameira et al., 2000; 2005; Kozak et al., 2007) and soil 

water content were reasonably simulated (Farahani et al., 1999; Ma et al., 2003; 2007b; 

2007c). In addition, the RZWQM has been successfully used to induce saturated 

hydraulic conductivities for spatially distributed soils by coupling with microwave 

remotely-sensed soil moisture (Mattikalli et al., 1998). 

Thus, this study has the following three objectives: (i) apply EnKF to the RZWQM using 

point scale soil moisture data; (ii) compare the results from EnKF application with simple 

direct insertion method; and (iii) explore the effect of ensemble size and update interval 
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on model output. The above objectives were accomplished by using point scale profile 

soil moisture data collected for Upper Cedar Creek Watershed (UCCW) in northeast 

Indiana. Details of the study area including data acquisition are provided in the next 

section.  

2.2 Study Area and Data 

The Matson Ditch sub-catchment in the upper Cedar Creek Watershed located in 

northeastern Indiana (Figure 2.1) was selected as the test bed for this study. Since 2004, 

the National Soil Erosion Research Laboratory (NSERL) of the USDA – Agricultural 

Research Service (ARS) has established an extensive soil moisture and weather 

monitoring network in the upper Cedar Creek Watershed as shown in Figure 2.1. The 

weather stations in this network collect the following meteorological data for model 

simulations: ten minute rainfall, air temperature, solar radiation, wind speed, and relative 

humidity. 

Among the ten soil monitoring sites within the upper Cedar Creek network, AS1 and AS2 

field-size watersheds were selected for RZWQM simulations in this study because of the 

availability of measured soil properties data  (e.g., soil texture, bulk density) and crop 

management information. The drainage area of the AS1 and AS2 field sites is 2.23 ha and 

2.71 ha, respectively. Both sites are fairly flat (slope < 5%), and are in agriculture 

production (alternative cropping of corn and soybean) with AS1 being in no-till, and AS2 

under a rotational tillage system. The major soil types found at these sites are Glynwood 
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(GnB2) silt loam (Fine, illitic, mesic Aquic Hapludalfs) for AS1 and Blount (BaB2) silt 

loam (Fine, illitic, mesic, Aeric Epiaqualfs) for AS2. 

 

Figure 2.1 Study area in Upper Cedar Creek Watershed and AS1 and AS2 field sites 

 

The soil sensors in both fields are Stevens SDI-12 Hydra Probes that measure soil 

moisture and temperature every ten minutes by propagating an electromagnetic signal 

into the soil, which is a Frequency Domain Reflectometry (vs Time Domain 

Reflectometry).  Out of four factory calibration equations for soil moisture measurements, 

the linear calibration equation was used in this study. The calibration equation is based on 

the linear relationship between volumetric water content and the real component of the 

complex dielectric permittivity, which has been proven to be reasonably accurate for 

many soils (Topp et al., 1980; Topp and Davis, 1985; Heathman et al., 2003b; Seyfried 

and Murdock, 2004). In addition, Seyfried et al. (2005) concluded that linear expression 
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outperformed the other factory-supplied calibrations. According to texture analysis at the 

NSERL and Seyfried et al (2005), the linear calibration coefficients for loam soil type 

were selected. Since the Loam setting is applicable for Loam, Clay Loam, and Silty Clay 

Loam textures according to the Hydra Probe manual (Stevens Water Monitoring Systems, 

Inc., Portland, Oregon, USA, 2007), the selection of the calibration coefficients for loam 

is suitable for the soil types in this study (Table 2.1).  

 

Table 2.1 Soil Physical and Hydraulic Properties 

Site 
Depth 
(cm) 

 Measured in laboratory  Model estimation 

 Soila) 

Texture 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Bulk density 

(g cm-3) 

FCb) 

(m3m-3) 

WPc) 

(m3m-3) 

 WPc) 

(m3m-3) 

Ksd) 

(cm h-1) 

AS1 

0-5  L 51.3 31.6 17.1 
1.42 0.303 0.207 

 
0.146 1.91 

5-15  L 42.3 37.0 20.7  

15-30  L 37.6 36.3 26.0 1.49 0.318 0.246  0.153 1.32 

30-45  SCL 45.7 23.4 30.9 1.44 0.349 0.282  0.176 0.49 

45-60  CL 36.4 27.1 36.5 1.48 0.351 0.293  0.207 0.30 

             

AS2 

0-5  L 30.8 45.4 23.8 
1.39 0.318 0.218 

 
0.153 1.76 

5-15  L 27.7 46.0 26.4  

15-30  CL 25.4 33.4 41.3 1.53 0.305 0.236  0.185 0.66 

30-45  CL 26.3 38.0 35.7 1.40 0.358 0.293  0.210 0.60 

45-60  CL 25.1 39.4 35.5 1.38 0.346 0.298  0.205 1.00 

a) Acronym for soil texture: SCL=sandy clay loam, CL= clay loam, L= loam, C= clay 
b) FC: field capacity, water content at -33kPa   
c) WP: wilting point, water content at -1500 kPa  
d) Ks: Saturated hydraulic conductivity 

 

Soil moisture measurements were obtained at four depths by individual sensors installed 

at 5 cm, 20 cm, 40 cm and 60 cm. Accuracy of the soil moisture measurement is reported 

by the manufacturer as ±0.03 water fraction by volume in typical soil. Seyfried et al. 

(2005) demonstrated the dielectric loss corrected calibration could reduce soil moisture 

measurement errors. Considering that measured soil moisture in this study was not 
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corrected with the dielectric loss and near saturated soil condition has the largest errors 

(Seyfried et al., 2005), actual observation error of the soil moisture may be slightly higher 

than 0.03 m
3
m

-3
.  

In this study, the measured surface soil moisture data (5 cm) were used for data 

assimilation, and the data at 5, 20, 40 and 60 cm were used for validation purposes. In 

order to separate the observations that are assimilated into the model from the 

observations that are used to verify subsequent data assimilation results, especially for the 

5 cm observations, the observations (
k

Y  in Equation 2.4) are compared to the model 

predicted soil moisture before assimilation step ( i

k
X  in Equation  2.6) for results 

analysis. That is, the two sets of observations are considered mutually exclusive.  The 

measured soil moisture and temperature data are also used to set up the initial conditions 

in the RZWQM.  

Measured soil moisture data during the simulation period (April – October 2007) at the 

two study sites are displayed in Figure 2.2. Observed meteorological data was collected 

at AS1, and used as model input for both sites since the fields are less than 500 m apart. 

The top soil layers (0-5 cm), especially for AS1, show very dynamic variations in soil 

water content with rainfall; whereas deeper layers show more stable soil water content 

conditions. 

(a) 

(b) 
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2.3 Methodology  

In this experiment, I first ran the RZWQM with the input date described in the previous 

section without any assimilation. This run is called the open loop simulation.  Then the 

model was run for the same period with two different data assimilation techniques: the 

direct insertion method (DIR) and the Ensemble Kalman Filter (EnKF). The ability of the 

EnKF in improving the simulated soil moisture profile is evaluated by comparing the 

results of the open loop and the DIR. Time series graphs and statistical indices such as 

correlation coefficient, root mean square error and mean bias error are used for the 

evaluation.  

 

 

Figure 2.2 Observed Rainfall and Soil Water Content at 5, 20, 40 and 60cm depth 

 (Observation Periods: 5 May to 31 October, 2007 for AS1  

and 25 April to 31 October, 2007for AS2)  
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In this section, I begin with a brief description of the RZWQM focusing on hydrologic 

processes, which is the model operator in the data assimilation system. A brief review of 

the EnKF is given in section 2.3.2.  Section 2.3.3 describes how the data assimilation 

algorithm is implemented in the RZWQM to integrate observed surface soil moisture 

with the model prediction.    

 

2.3.1. RZWQM 

The RZWQM is a physically-based, one-dimensional deterministic model that uses 

fundamental flow equations to simulate infiltration and redistribution in the subsurface 

region. During a rainfall event, water infiltration is simulated by a modified form of the 

Green-Ampt equation (Equation 2.1) given below after (Ahuja et al., 2000).  

c 0 w f

s

w f

τ H Z
V K

Z      (2.1) 

where V is the infiltration rate at any given time (cm h
-1

), Ks is the effective average 

saturated hydraulic conductivity of the wetting zone (cm h
-1

), c is the capillary drive or 

suction head at the wetting front (cm), H0 is the depth of surface ponding (cm), and Zwf is 

the depth of the wetting front (cm). 

Redistribution between storm events is simulated by a mixed form of the Richards‟ 

equation as given by Equation 2.2 after (Ahuja et al., 2000). 

θ
, , ( , )

t z z

h
K h z K h z S z t

  (2. 2) 
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Where θ is the volumetric soil water content (cm
3
 cm

-3
), t is time (h), z is the soil depth 

(cm), h is the soil-water pressure head (cm), K is the unsaturated hydraulic conductivity 

(cm h
-1

), and S(z,t) is the sink term (h
-1

). 

RZWQM adopts the general mass-conservative numerical solution of Celia et al. (1990) 

to solve the Richards‟ equation. The sink term takes into account plant water uptake and 

tile drainage, if present. All other biological and chemical processes for plant growth and 

movement of nutrients and pesticides in RZWQM are simulated following the physical 

water flow process. More detailed information for biological and chemical processes in 

RZWQM can be found in Ahuja et al. (2000).  

Measured soil physical and hydraulic properties at the two sites (AS1 and AS2) were 

obtained from field samples analyzed at the NSERL lab or determined in situ and used as 

model input (Table 2.1). RZWQM provides various options for the estimation of soil 

hydraulic properties depending on the availability of the data (Ahuja et al., 2000). In this 

study, minimum necessary input (soil texture, -33 kPa water content and bulk density for 

each soil layer) are provided and other properties are estimated by the model (Table 2.1). 

For the constitutive relationship between h-θ-K which is key for the numerical solution of 

the Richards‟ equation, RZWQM uses functional forms of those relationships based on 

the modified Brooks-Corey equation. The parameters for the Brooks-Corey equation 

were compiled by Rawls et al. (1982) for major USDA soil textures. Validation of this 

estimation technique can be found in Starks et al. (2003) who showed that the limited 

input data option, based on  textural class name, predicted soil water content as well as 
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the input from more detailed laboratory measurements. Thus, the parameter values for the 

Brooks-Corey equation from Rawls et al. (1982) are used in this study. 

 

2.3.2 EnKF Assimilation 

The main concept of EnKF, which includes forecasting the error statistics using Monte 

Carlo methods, was first introduced by Evensen (1994), and has been applied to various 

fields,  especially in oceanography and meteorology (Evensen and Leeuwen, 1996; 

Burgers et al., 1998; Keppenne, 2000; Houtekamer and Mitchell, 2001). There are slight 

differences between various ensemble-based filter approaches. For instance, Houtekamer 

and Mitchell (1998) used two ensembles of model states for forecasting, and updated 

each ensemble with error covariance from the other ensemble. Whitaker and Hamill 

(2002)  suggested a variant of the EnKF by avoiding perturbation of observations. This 

study follows the algorithm proposed by Evensen (2003; Evensen, 2004) and notation 

presented by Reichle et al. (2002b). In this approach, a non-linear system model can be 

expressed with the following generic form:   

1
X

k k k k
f X w

      (2.3) 

Where  is the system state of interest (in my case soil water content),  indicates a 

non-linear model operator at time step k, and  is the system error that accounts for all 

uncertainties in the model physics or forcing data. The wk term is treated as a normally 

distributed random variable with zero mean and covariance Qk. 
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Observed soil moisture values (Yk) are related to the true state ( ) through a 

measurement operator (Hk) as shown in Equation 2.4: 

k
Y

k k k
H X v

      (2.4) 

Because measured soil moisture data are available in this study, Hk is an identity matrix. 

The  term represents errors in the measurement instrument and procedures, and 

conforms to a Gaussian distribution with zero mean and covariance R. 

The Kalman filter mainly consists of forecasting and updating steps (Gelb, 1974). Before 

starting the forecasting or updating of EnKF, an initial ensemble of size N is created by 

adding pseudorandom noise  with zero mean and covariance P to get the first “guess” 

state  as shown in Equation 2.5 below. 

i

i
eXX

00           
),0(~ PNe

i      i=1, …..,N.          (2.5) 

As a next step, forecasting is performed to estimate the state at a future time by 

integrating the initially created ensemble through the non-linear model operator, which in 

this study is redistribution or the infiltration process.  

1 1 1
( )       1, ...., .

i i i

k k k k
X f X w i N            (2.6) 

In Equation 2.5 and 2.6, the superscripts „-‟and „+‟ refer to state variables that are 

forecasted and updated, respectively. In the standard Kalman filter algorithm, 

uncertainties in the system are expressed with state error covariance. Contrary to the 

standard Kalman filter or extended Kalman filter, the EnKF does not require the 

propagation of state error covariance 
k

P  explicitly. Propagation of state error covariance 

is computationally expensive for a large system, and its exclusion is one of the 
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advantages offered by the EnKF. Instead of forecasting the state error covariance 
k

P  

from the covariance of the previous time step
1k

P , the EnKF estimates error covariance 

from the forecasted ensemble of the state and their mean as shown in Equation  2.7 below.  

T1
P D

1
k k k

D
N      (2.7) 

where  and  

Whenever measured data are available, forecasted system variables are updated through 

the weighted sum of forecasted variables and observed data. The Kalman gain, Kk works 

as a weight for the updating step as shown below.  

1
T T

K P H H P H R
k k k k k k k      (2.8) 

[ ]      1, ..,
i i i i

k k k k k k k
X X K Y H X v i N   (2.9) 

As Equation 2.9 shows, in the update step, the ensemble of observation size N is created 

by adding random perturbations ( i

k
v ) with the mean equal to zero and observation 

variance Rk. After each member of ensemble variables are updated, a best estimate of the 

system variable at time k is found by averaging the updated ensemble members.   

 

2.3.3 Application of EnKF to RZWQM 

The basic framework of the RZWQM, and how the EnKF is incorporated into RZWQM 

processes is presented in Figure 2.3. Model initial conditions are set up using the 

observation data from the previous day of the first simulation date. Initial ensemble 

members are generated by adding random errors to the initial condition (Equation 2.5). 
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The initial covariance Pi is determined by averaging measurement variances at four 

measurement depths in the soil profile ( 4/
6040205 cmcmcmcm

VVVV ) from the actual ten 

minute data on the same day as the initial condition. 100 ensemble members are used for 

all base simulations, but the effect of different ensemble size is also investigated by 

changing the number of ensemble members from 50 to 500.  

 

 

Figure 2.3 Framework of the RZWQM and EnKF Scheme 

 

Ensemble of initial

SM profile 

Infiltration

(Green Ampt)

Redistribution

(Richard Eqn)

Storm period?

NoYes

Subroutine: Physical Process

Ensemble of forecasted 

SM profile

Yes

No

Average of ensemble 

SM profile

Day=Day+1

Daily routine of RZWQM

Ensemble of 

updated SM profile

SM 

Observation 

available?

Subroutine 

- Chemical process

- Crop growth 

Data assimilation 

algorithm (EnKF)



21 

 

2
1
 

Most of the subroutines in the RZWQM are based on a daily time step except the 

physical processes, which are based on a sub-hourly time step (Figure 2.3). In addition, 

considering that remotely-sensed data from satellites are available on a daily time step or 

longer, the minimum update interval for this study was taken as one day, even though 

application of more frequent update intervals is possible from the in situ ten minute 

observations. In order to find the optimum frequency of surface soil moisture assimilation, 

different update intervals ranging from one day to two weeks were examined in this study 

with 100 ensemble size.  

To evaluate the performance of EnKF compared to other data assimilation techniques, a 

simple data assimilation scheme, direct insertion method, was also applied in this study. 

The direct insertion method involves simply the substitution of available observed data 

for the forecasted system state variable. In this study, it was assumed that the top three 

numerical layers included in the top 5 cm have the same observed soil moisture as the 

one measured at the 5 cm depth by Hydra Probe.  

Among the measured soil profile moisture data from four different depths (5 cm, 20 cm, 

40 cm and 60 cm), data for the top 5 cm depth was used for assimilation. This 

arrangement mimics the process of assimilating remotely-sensed soil moisture 

information which is also available only for the top few centimeters of the soil profile. In 

assimilating data at the daily time step by using measurements collected at ten minute 

time intervals, the data collected at 11:50 PM is used to update and reinitialize the model 

simulation at the end of the each day. 
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In the EnKF application, it is important to have a good knowledge of model and 

observation errors to define the error covariance (  in Equation 2.3 and  in Equation 

2.4). In studies that use synthetic data, these errors are pre-defined, but in experiments 

involving actual measurements, these errors are difficult to estimate. In this study, 

observation errors are mainly from instrument error and error from using point measured 

soil moisture and ignoring the field-variability of soil water characteristics. Model errors 

result from the uncertainties in model physics, soil characteristics, and forcing variables 

(precipitation and other meteorological data). Because these errors were difficult to 

estimate in this study, appropriate standard deviation of observation and model errors 

which minimize errors were determined by trial and error. Standard deviations of model 

errors of 9.58E-3 and 7.20E-3 m
3
m

-3 
were used for AS1 and AS2, respectively, and an 

equal standard deviation of observation errors of 7.07E-3 m
3
m

-3 
was used for both sites.    

Forecasted soil moisture at each of the four measurement depths was compared with the 

measured data for evaluation before the updating step. This evaluation was conducted by 

using time series graphs and standard statistical measures. The correlation coefficient (R) 

was used to indicate the strength of linear association between the measured and 

predicted soil moisture values. In addition, root mean square error (RMSE; Equation 2.10) 

and mean bias error (MBE; Equation 2.11) were used to represent the prediction error 

and bias respectively.  

2

P O
RM SE

n                                (2.10) 

P O
M BE

n
                                     (2.11) 
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Where P and O are predicted and observed soil moisture, respectively, and n is the 

number of measurements.  

2.4 Results and Discussion  

 

2.4.1 Assimilation Results 

All modeling results presented in this study are for non-calibrated conditions using a 

combination of measured, default and model estimated soil parameters or properties. I 

chose to perform non calibrated simulations to better determine the fundamental affects 

of data assimilation on the physically-based model performance of soil moisture 

dynamics in the 0-60 cm root zone. Non calibrated RZWQM simulations were conducted 

at field sites AS1 and AS2 under the following three conditions: (i) simulation without 

data assimilation (open loop); (ii) simulation with direction insertion data assimilation 

method (DIR); and (iii) simulation with EnKF data assimilation (EnKF). As mentioned in 

section 2.3.3, the soil moisture at 5 cm was used for assimilation, with model predictions 

compared to measured data at 5, 20, 40 and 60 cm depths. Simulation of RZWQM was 

conducted from April 1 (Julian day 91) to October 31 (Julian day 304) 2007 to include 

the effect of plant water uptake and to avoid periods of frozen soil water. Results at AS1 

(beginning Julian day 125) and AS2 (beginning Julian day 115) are presented in Figure 

2.4 and Table 2.2. For the EnKF simulation, 100 ensemble members were created and the 

results shown in Figure 2.4 and Table 2.2 are the average of ten simulations. 
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Figure 2.4 Comparison of Observed and Assimilated Soil Moisture 
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Application of the EnKF improved the open loop results more than the DIR, especially 

by increasing correlation coefficients to more than 0.90 in the top soil layer (5cm) for 

both AS1 and AS2, and reducing prediction errors by 38 and 59 % for AS1 and AS2, 

respectively, compared to open loop (Table 2.2). The AS2 simulation had relatively poor 

results from the open loop, and data assimilation using both direct insertion and EnKF 

produced better results (increased correlation coefficients and reduced errors) for all the 

layers. However, results from the AS1 simulation were more complicated and will be 

discussed in greater detail below. The open loop simulation did not capture the dynamic 

variation of soil moisture conditions in the top soil layer especially during the dry-down 

period. In most cases, the open loop simulation overestimated soil moisture in the top 

layer while surface soil moisture data assimilation improved simulated soil moisture 

dynamics and soil moisture estimates.  

 

Table 2.2 Statistical Data Analysis 

Site 
Depth 

(cm) 

Open Loop  Direct Insertion  EnKF 

R RMSE MBE  R RMSE MBE  R RMSE MBE 

A 

S 

1 

5 0.816 0.055 0.038  0.873 0.046 0.030  0.912 0.034 0.018 

20 0.785 0.035 0.003  0.843 0.031 -0.001  0.892 0.031 -0.018 

40 0.836 0.086 -0.084  0.861 0.088 -0.087  0.757 0.103 -0.099 

60 0.834 0.027 -0.018  0.831 0.028 -0.020  0.683 0.043 -0.031 

A 

S 

2 

5 0.690 0.091 0.078  0.891 0.049 0.042  0.904 0.037 0.028 

20 0.320 0.050 0.024  0.573 0.031 0.005  0.612 0.029 -0.005 

40 0.109 0.073 0.056  0.336 0.054 0.041  0.383 0.046 0.034 

60 0.412 0.033 0.022  0.460 0.031 0.019  0.485 0.028 0.015 

     *Simulation period: April – October 2007 
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The consistent discrepancies between model forecasting and observations shown in 

Figure 2.4 have been found in other previous studies (Walker et al., 2001a; Reichle and 

Koster, 2004b; Reichle et al., 2004). Walker et al. (2001a) concluded that removal of the 

systematic bias in the model forecasts or observation is essential for correct retrieval of 

profile soil moisture using the Kalman filter assimilation scheme. In regard to remotely-

sensed soil moisture data, cumulative distribution function (CDF) matching has been 

used to reduce the systematic differences between satellite-based and model-based soil 

moisture estimates effectively (Reichle and Koster, 2004b; Drusch et al., 2005b). The 

need for the correction or rescaling of the discrepancies (bias) before assimilating soil 

moisture observations into the model are confirmed in this study as well. Removal of the 

systematic forecast bias is expected to improve assimilation results especially during the 

dry-down period.  

The observed soil moisture data at the AS1 site (Figure 2.2) shows consistently higher 

values of soil moisture being measured at the 40 cm depth compared to those at 60 cm, 

which is not typical of most profile soil moisture distributions. This is because the AS1 

sensor site has a dense till soil layer derived from unsorted glacial material at 

approximately 40 cm which makes lateral flow more dominant than the vertical flow. As 

a result, the measured soil moisture at the 40 cm depth at AS1 is always higher than the 

soil moisture at 60 cm depth. Based on soil sampling data, this appears to be a local 

phenomenon near the sensors and not representative of the entire field. Thus, the model is 

unable to capture the unique phenomenon at AS1 (predicting higher water content at the 

40 cm depth than at 60 cm) and leads to underestimation in soil moisture at 40 cm depth 



27 

 

2
7
 

(high negative MBE in the Table 2.2). The EnKF reduces the open loop overestimated 

soil moisture at 5 and 20 cm and is closer to the measured values, but this change affects 

the soil moisture profile at 40 and 60 cm. As a result, the initially underestimated soil 

moisture at 40 cm and 60 cm was further reduced to give a lower correlation coefficient 

and higher error (Table 2.2). This local phenomenon, due to the highly heterogeneous soil 

characteristics, is ignored in large-scale data assimilation studies. However, this finding 

for the small field scale study points to issues that should be considered for future soil 

moisture data assimilation studies.  

As expected from the previous studies (Walker et al., 2001b; Zhang et al., 2006), the 

EnKF is shown to be superior to the DIR except for the results of deeper layers at AS1. 

Walker et al. (2001b) illustrated the difference between the DIR and the EnKF 

graphically and provided a concise description of both techniques.  They describe two 

limitations of the DIR. First, with the DIR, surface information from observations can be 

transferred into the deeper layers only through physical infiltration and exfiltration 

processes while the Kalman Filter modifies the entire soil profile using the covariances of 

both the surface measurements and model profile prediction. Second, DIR changes the 

soil moisture profile according to the difference between the measured and simulated soil 

moisture. The DIR results in this study revealed that the updated (reinitialized) simulated 

soil moisture, using the surface observations at the end of day, returns to soil moisture 

values very near those of the open loop after several sub-hourly simulation loops. 

However, the results of the EnKF are closer to measured values than the DIR (Figure 2.4) 

resulting in better statistical results. The above-mentioned characteristics of the DIR 
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approach had less of an effect than the EnKF at the 40 and 60 cm depths at AS1 (Table 

2.2).   

Use of the EnKF proved superior to the DIR data assimilation technique, which is 

consistent with findings from previous studies. Even though the DIR method is easy to 

implement by substituting the observed values into the simulation results directly, it can 

adjust the results only within the observational depth, while the EnKF corrects the entire 

soil profile. This study demonstrates the potential for reliable application of the EnKF for 

surface soil moisture assimilation. However, in spite of satisfactory model performance 

in this study with application of the EnKF, some precautions should be considered. One 

of the main reasons for the uncertainty with the EnKF appear to be the presence of bias in 

the model forecast and violation of the basic assumption of the EnKF (zero mean noise) 

because of nonlinear processes imbedded in the model and the bounded nature of soil 

moisture (porosity and residual water content of soil). To overcome these limitations of 

the EnKF with the real observations, it is desirable to adopt an appropriate bias-correction 

algorithm for the EnKF (De Lannoy et al., 2007a; De Lannoy et al., 2007c; Ryu et al., 

2009).  Second, randomly generated ensemble numbers may interfere with the numerical 

algorithm to solve the Richards‟ equation in the RZWQM and lead to an infinite routine. 

Therefore, cautious assignment of variances for the EnKF and proper restriction of 

random numbers are necessary.  

There appear to be inconsistencies between the field-measured soil moisture and 

laboratory measured soil hydraulic properties as observed in Figure 2.4. For both sites, 

field-measured soil moisture at the 5 cm depth during the dry period (less than 0.1 m
3
m

-3
) 
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were lower than the laboratory-measured or model estimated water content at -1500 kPa, 

considered the wilting point in Table 2.2. The field measured soil moisture content is 

indicative of high evaporative demand during the dry-down period. The RZWQM, 

however, does not allow the simulated soil moisture to fall below the wilting point when 

using laboratory measured values as input. Even though the model-estimated inputs for 

wilting point were used, the simulated soil moisture during the dry period did not go 

below 0.146 for AS1, and 0.153 for AS2 (Table 2.1). This implies that calibration and 

optimization of these values should be conducted for future model runs taking into 

consideration that laboratory measured hydraulic properties are determined based on 

point-scale soil cores that do not always characterize actual field conditions. 

 

2.4.2 Effect of Update Interval 

The effect of update interval was investigated for DIR and EnKF by varying the update 

interval from 1 to 14 days. AS1 simulation in Figure 2.5 showed that for the 5 cm and 20 

cm depths, less frequent update intervals longer than four days did not produce 

significant benefit from the assimilation scheme even though assimilated simulation 

results are slightly better than ones of the open loop (0.816 and 0.785, R values for 5 cm 

and 20 cm, respectively). Interestingly, deep layers (40 and 60 cm depths) have worse 

results with the frequent update (daily and every two day updates). This seems to be 

because of the large forecasting errors as Walker et al.  (2001a) showed and that the 

accuracy of the forecasting model is more important than the temporal resolution of 

observed data.  
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Figure 2.5 Effects of Update Intervals with DIR (a and b) and EnKF (c and d) for AS1 

 

On the effect of update interval with AS2 data, even less frequent update interval 

improved model predictions compared to open loop simulations (Figure 2.6). For 

instance, an update interval of two weeks for the 5cm depth raised the correlation 

coefficient to 0.754 with DIR and 0.784 with EnKF compared to 0.690 with the open 

loop. In addition, the effect of update interval is more obvious with AS2 simulations. As 

the update interval increases, errors increased and correlation coefficient decreased 

apparently. The results of 60 cm depth do not vary much with different update intervals. 

This is due, in part, to relatively small changes in soil water content at this depth. 
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Figure 2.6 Effects of Update Intervals with DIR (a and b) and EnKF (c and d) for AS2 

 

Two previous studies (Walker et al., 2001b; Zhang et al., 2006) investigated the effect of 

update interval on soil moisture profile retrieval in a desktop study using a one 

dimensional soil moisture equation and synthetic data. In the work of Walker et al. 

(2001b), full retrieval of profile soil moisture (1 m) was achieved approximately after 12 

days with the DIR and 12 hours with the EnKF for the observation depth of 4 cm when 

the system was updated once every hour. Their conclusion, in regards to observation 

interval, was that the frequent observations are more important than observation depth 

using the EnKF. Zhang et al. (2006) also showed similar results for the update interval 

impact with a required time for full retrieval being 16 hours with the EnKF and 12 days 

for the DIR when updated once every hour. With a more realistic “daily” update interval, 
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they found that the full profile retrieval took 15 days with the EnKF while the DIR failed 

to retrieve the full profile.  The studies mentioned above were based on synthetic 

experimental data, whereas the current study explores the effect of update interval using 

actual soil moisture measurements and different governing equations in the RZWQM to 

find the optimal and effective update interval.   

Contrary to the previous synthetic studies (Walker et al. 2001b; Zhang et al. 2006), data 

assimilation in this study involves much more complexities due to the more complicated 

physical processes in the RZWQM and limited knowledge on the model and observation 

errors. In general, it is found that more frequent updates contribute to improved model 

predictions and that the EnKF is superior to the DIR method of data assimilation.  

 

2.4.3 Effect of Ensemble Size 

As mentioned in section 2.3.2, the EnKF is based on the concept of Monte Carlo methods 

and calculates error statistics from an ensemble of system states at the time of update. 

Therefore, it requires a sufficient size of ensemble numbers to obtain satisfactory 

estimates. However for practical and realistic applications of the EnKF, it is useful to 

know an appropriate size of the ensemble.  

In this study, different numbers of ensemble sizes from 50 to 500 were applied to 

determine how the assimilation results were affected by ensemble size. With a relatively 

smaller ensemble size of 50, compared to the default value of 100, model performance 

improved with data assimilation compared to the open loop results; the correlation 
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coefficient increased by 12% and 13% and RMSE was reduced by 38% and 13% for 5 

cm and 20 cm depth, respectively for AS1 (Figure 2.7). For the AS2 simulation which 

initially had relatively poor prediction from the open loop simulation, an even smaller 

ensemble sizes (e.g., 50) produced better results. The improvement with the EnKF at AS2 

with 50 ensemble numbers is more apparent than with the DIR and open loop; RMSE 

were reduced by 59% from the open loop results and 24% from the DIR results for the 5 

cm depth (not shown).   

 

 

Figure 2.7 Effects of Ensemble Size on the (a) Correlation Coefficient and                      

(b) RMSE for AS1 

 

The sensitivity of EnKF to ensemble size can be seen in Figure 2.7. For AS1 data, the 

EnKF showed little difference in the efficiency due to ensemble size for upper layers. In 

the case of deeper layers, smaller ensemble size (50) produced poorer results compared to 

larger ensemble sizes. Simulations using AS2 data did not show significant differences in 

predictions between different ensemble sizes (not shown). 

Earlier studies for surface soil moisture assimilation with the EnKF (Reichle et al., 2002a; 
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different numbers of ensembles based on synthetic experimental results using a land 

surface model. Reichle et al. (2002b) presented that an ensemble size greater than ten 

outperforms the extended Kalman Filter. The work of Reichle et al. (2002a) showed that 

larger ensemble size improved results even though only 30 ensembles reduced actual 

errors by 55% compared to the open-loop simulation. In addition, they concluded that for 

robust estimation of the error covariance, at least 500 ensemble numbers were required. 

Recently, Zhang et al. (2006) suggested that 40 ensemble members are enough to 

represent the error covariance for their one dimensional model. 

2.5 Conclusion 

In this study, field measured surface soil moisture was assimilated into a one dimensional 

physically based model, the RZWQM, using two different data assimilation techniques, 

the direct insertion method and the Ensemble Kalman Filter. A key difference of this 

study from previous studies is the use of real observational data instead of synthetic data 

for the EnKF assimilation into a field scale water quality model. In addition, this study 

provides a more practical and operational application of surface soil moisture 

assimilation using the EnKF by investigating the effect of update intervals and ensemble 

size. This is a significant aspect in terms of the eventual use of satellite soil moisture 

products and frequency of observations. 

Overall, the results of this study indicate that daily assimilation of surface soil moisture 

resulted in more accurate soil moisture estimation in the upper, more dynamic, layers (5 

and 20 cm). However, improvement of soil moisture prediction in deeper layers (40 and 
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60 cm) is less certain. Since the observed data are clustered in the top soil layers, there 

are limitations for the corrected information from the observed surface soil moisture to 

propagate to the deep layers. Nevertheless, unsuccessful predictions from the open loop 

for AS1 and AS2 were greatly improved for all layers with both the DIR and the EnKF, 

except for deeper layers in AS1.  

Unique characteristics of soil profile properties and soil moisture distribution at AS1 

caused inconsistent assimilation results for the deep layers. That is, the data assimilation 

techniques, especially the EnKF gave somewhat inadequate results at the 40 cm and 60 

cm depths. Therefore, for more successful application of the EnKF, it is recommended to 

adjust or calibrate the model parameters before data assimilation so that the model 

prediction can simulate the unique field characteristics properly.  

Even though soil hydraulic properties measured in the laboratory and estimated by the 

RZWQM model were used for the simulation, the open loop results of AS2 highly 

overestimated the measured soil moisture, thus failing to capture dynamic variations in 

the soil profile. Considering uncertainties in the laboratory analysis and the high spatial 

variability of field soil characteristics, it is recommended that the model parameters be 

optimized through calibration. In this study, however, the model was not calibrated 

because the purpose of this experiment was to investigate the fundamental effect of 

different data assimilation techniques on model output compared to the open loop 

simulation.  However, it is also found a need for a proper rescaling step to remove 

systematic errors between model forecasts and observed data which exist even after 

calibration. 
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The investigation into the effect of update interval in the range of 1 to 14 days found that 

shorter update intervals improve open loop simulation results better than the long update 

intervals. This linear relationship between the update interval and performance of the data 

assimilation was more apparent in the upper layers with the AS2 simulation. Results of 

AS1 do not show much benefit from more frequent update because of its unique soil 

water distribution in the deep layers.  

Theoretically, the EnKF requires large enough ensemble numbers for satisfactory results. 

In this study, however, the test of the effect of the ensemble size showed that larger 

ensemble sizes did not produce any significant improvement in the results, and an 

ensemble of 100 members produced results that were comparable to results from larger 

ensembles. Especially, the top layer at 5 cm depth did not show any sensitivity to the 

different ensemble numbers. For the deeper layers, a smaller ensemble size of 50 

deteriorated the statistical results slightly but still produced better results than the open 

loop and the DIR for AS2.  

Although data assimilation was shown to contribute to better estimation of profile soil 

moisture, there are some additional points to consider in future studies. First, data 

assimilation breaks up the water balance of the system. Contrary to the above-mentioned 

synthetic experiments, the RZWQM includes very sophisticated physical processes; 

varying boundary conditions due to surface interaction with the atmosphere and 

fluctuating water table depth, and plant water uptake and tile drainage as sink terms. 

Artificial interruption from the surface soil moisture assimilation affects all these 

processes and further work is necessary to determine to what extent data assimilation 
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impacts them. Therefore, future investigations involving data assimilation will include 

the assessment of other hydrologic variables such as ET, runoff, as well as water quality 

parameters and crop yield.  
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CHAPTER 3 SOIL MOISTURE DATA ASSIMILATION AT WATERSHED SCALE 

3.1 Introduction 

One of the key variables in understanding land surface hydrologic processes is soil 

moisture because it controls the infiltration-runoff mechanism and energy exchange at the 

land-atmosphere boundary. Therefore, estimating soil moisture has been a long-standing 

research topic for various purposes in many areas: weather forecast in atmospheric 

science, flood or drought prediction in hydrology, water quality management in 

environmental science, irrigation operations in agricultural engineering and soil erosion 

in soil science (Walker et al., 2001b).  

Since the 1990s, remotely-sensed soil moisture data has become much more available 

while overcoming limitations of traditional in situ point measurements of soil moisture 

(Jackson et al., 1995; Njoku and Entekhabi, 1996; Wagner et al., 1999; Kerr et al., 2001; 

Njoku et al., 2003; Entekhabi et al., 2008). Remotely-sensed data provide soil moisture 

estimates for the top soil layer (~5cm). However, information on the moisture condition 

in the root-zone and subsurface layers is more critical for understanding and simulating 

many hydrologic processes including evapotranspiration, surface runoff and subsurface 

flow. The need for profile soil moisture estimates has motivated researchers to integrate 

measured surface data and hydrologic models to obtain more accurate estimates of soil 
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moisture content in the root zone through data assimilation techniques (Reichle et al., 

2002b; Ni-Meister et al., 2006a; Reichle et al., 2007; Sabater et al., 2007; Das et al., 2008; 

Draper et al., 2009). However, those surface soil moisture assimilation studies have been 

conducted at regional or global scales with land surface models in hydrometeorology for 

better initialization of soil moisture conditions. Even though great progress in surface soil 

moisture assimilation studies has been made in land surface atmospheric interactions, 

there is still a lack of research on utilizing remotely-sensed soil moisture and data 

assimilation techniques for catchment scale water resource management problems (Troch 

et al., 2003).  

The main objective of this study was to investigate the effect of surface soil moisture data 

assimilation on hydrological response at the catchment scale through a synthetic 

experiment. Using intentionally limited rainfall input, I investigate how soil moisture 

update through surface soil moisture assimilation may compensate for errors in the 

hydrologic prediction due to the inaccurate rainfall. Simply focusing on the streamflow 

prediction overlooks the different contributions of each water balance component such as 

evapotranspiration, infiltration, surface runoff and lateral flow to the streamflow. 

Therefore, in this study, a catchment scale, continuous time, semi-distributed hydrologic 

model, the Soil and Water Assessment Tool (SWAT), is used to determine and account 

for the sources of error in streamflow prediction. In addition, this study also aims to 

investigate the effects of spatially varying input such as landuse and soil type on data 

assimilation results.   
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In this study, one of the most popular data assimilation techniques, the Ensemble Kalman 

Filter (EnKF) is used to assimilate surface soil moisture observations into the model and 

a synthetic experiment is conducted assuming that uncertainties in the model and 

observations are known. Previous studies related to this study are summarized in section 

3.1.1. Brief explanations about the EnKF and the SWAT model are described in section 

3.2, followed by the illustration of how I conducted the synthetic assimilation 

experiments in section 3.3. Section 3.4 shows the results of the experiments with 

discussions.   

 

3.1.1 Previous Studies 

This section briefly summarizes previous studies in the context of why surface soil 

moisture data assimilation at catchment scale is important, specifically for runoff 

prediction and agricultural applications. 

Satellite-based surface soil moisture observations have received considerable attention in 

runoff or flood forecasts because antecedent soil moisture condition is a critical factor in 

rainfall-runoff modeling. The recently launched European Space Agency (ESA)'s Soil 

Moisture and Ocean Salinity (SMOS) mission (2009) and the upcoming NASA Soil 

Moisture Active/Passive (SMAP) mission (2014) are designed to better measure soil 

moisture on a global scale (Entekhabi et al., 2010; Kerr et al., 2010). One of the main 

application areas of SMAP is to improve flood forecasts using soil moisture 

measurements at high spatial and temporal resolutions (Entekhabi et al. 2010). Some 

previous studies have demonstrated the potential of using remotely-sensed soil moisture 
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to improve streamflow prediction through updating initial soil moisture conditions and 

finding correlation between soil moisture condition and runoff (Jacobs et al., 2003; Scipal 

et al., 2005; Weissling et al., 2007).  

With regard to assimilating remotely-sensed surface soil moisture into rainfall-runoff 

models, however, there are few studies to date. Pauwels et al. (2001) assimilated 

remotely-sensed surface soil moisture data into the TOPMODEL based Land-

Atmosphere Transfer Scheme (TOPLATS) using the „nudging to individual observations‟ 

and „statistical correction assimilation‟ methods. They applied these methods for both the 

distributed and lumped versions of the model and concluded that improvement in the 

discharge prediction can be sufficiently obtained through assimilating the statistics of the 

remotely-sensed soil moisture data into the lumped model. Crow and Ryu (2009) adopted 

a smoothing framework for runoff prediction and used remotely-sensed soil moisture to 

improve both pre-storm soil moisture conditions and external rainfall input. They showed 

that their smoothing framework improved streamflow prediction, especially for high flow 

events more than simply updating antecedent soil moisture conditions.  

Microwave remote sensing soil moisture observations have high potential for agricultural 

applications. Some obvious examples are for crop yield forecasting, drought monitoring 

and early warning, insect and disease control, optimal fertilizer application, and 

operational decision-making for effective irrigation (Engman, 1991; Lakhankar et al., 

2009). However, very few studies exist on the application of remotely-sensed soil 

moisture for agricultural operations. Jackson et al. (1987) tested the feasibility of using 

airborne microwave sensors to assess the preplanting soil moisture condition by creating 
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a soil moisture map which represents overall soil moisture patterns and variations 

expected over large areas. Recently, soil moisture data from the Advanced Microwave 

Scanning Radiometer - Earth Observing System (AMSR-E) was incorporated into a 

global agricultural model by Bolten et al (2009). Their preliminary results showed that 

surface soil moisture assimilation has potential to improve the crop yield prediction 

capability of a global crop production decision support system.  

Soil moisture information with high spatial and temporal resolution is also required for 

watershed or field scale agricultural applications. Timely and cost effective operational 

decisions for on-farm irrigation and trafficability should be based on field-specific 

information (Jackson et al., 1987). Narasimhan et al. (2005) used the Soil and Water 

Assessment Tool (SWAT) to produce a long-term soil moisture dataset for the purpose of 

drought monitoring and crop yield prediction. They selected the SWAT model because of 

its capability: 1) for simulating crop growth and land management and, 2) for 

incorporating all available spatial information for the watershed. The SWAT model has 

also been successfully used to examine the temporal variability of soil moisture over 

longer time periods (e.g. 30 years) with detailed land surface information (DeLiberty and 

Legates, 2003).  

 Based on the aforementioned previous studies, there is a strong need to estimate soil 

moisture content through assimilating remotely-sensed soil moisture into a long-term, 

physically based distributed catchment scale hydrologic model. Most of the previous 

studies that explored data assimilation for runoff simulation used conceptual rainfall-

runoff models (Aubert et al., 2003a; Weerts and El Serafy, 2006; Crow and Ryu, 2009; 
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van Delft et al., 2009) or lumped models (Jacobs et al. 2003) or for short-term periods 

with real measurements (Pauwels et al. 2001). From an agricultural aspect, soil moisture 

reserve between rainfall events is also critical for scheduling water supply for crops. 

Therefore, it is desirable to apply data assimilation techniques to physically based and 

continuous time hydrological models to address various water resource problems at 

catchment scales.  

Recently, SWAT has been used to assess the capability of the EnKF for catchment scale 

modeling (Xie and Zhang, 2010; Chen et al., 2011). Xie and Zhang (2010) explored 

combined state-parameter estimation using different types of measurements based on a 

synthetic experiment and demonstrated effective update of hydrological states and 

improved parameter estimation using the EnKF. Chen et al. (2011) conducted both 

synthetic and real data EnKF experiments. Their results showed improved update for soil 

moisture in the upper soil layers, but limited success for deeper soil layers and 

streamflow prediction due to the insufficient vertical coupling strength of SWAT.  

3.2 Hydrologic Model and Data Assimilation  

 

3.2.1 Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (SWAT) is categorized as a physically based basin-

scale, continuous time and semi-distributed hydrologic model. Spatially distributed data 

related to soil, landuse, topography and weather are used as input to SWAT. The SWAT 
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model has the capability to simulate plant growth, nutrients, pesticides and land 

management as well as hydrology on a daily time step and has been proven as an 

effective tool for assessing water resource and nonpoint-source pollution problems after 

being applied to watersheds of different scales and characteristics (Gassman et al., 2007). 

In addition, it is considered as one of the promising models for long-term simulations in 

predominantly agricultural watersheds (Borah and Bera, 2003), similar to the study area 

used in the present study, Upper Cedar Creek Watershed in Indiana. Considering the 

above factors, SWAT is used to accomplish the objectives of this study. The 2005 version 

of the SWAT model is used in this study, and detailed information of SWAT 2005 can be 

found in Neitsch et al. (2002). 

In the SWAT model, a watershed is first subdivided into sub-basins based on topography, 

and each sub-watershed is further divided into hydrologic response units (HRU) based on 

soil and landuse characteristics. The soil profile can be subdivided into multiple layers for 

up to 2 meters. Hydrological processes in the SWAT, including soil moisture accounting, 

are based on the water balance equation (Equation 3.1). 

t
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SW  is the soil water content above the wilting point at the end of day t. i
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are the daily amounts 

of surface runoff, evapotranspiration, percolation into deep aquifer, and lateral subsurface 

flow, respectively. All components are estimated as mm of H2O (mmH2O). 
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SWAT simulates surface runoff using either the modified SCS curve number (CN) 

method or Green Ampt Mein-Larson excess rainfall method (GAML) depending on the 

availability of daily or hourly precipitation data, respectively (Neitsch et al. 2002). In this 

study, the modified SCS CN method is used with daily precipitation data. The SCS CN 

method computes accumulated surface runoff (
surf

Q ) using the empirical relationship 

between rainfall (
i

P ), the initial abstraction (
a

I ) and retention parameter (
i

S ) as shown in 

Equation 3.2. SWAT follows the typical assumption of 
ia
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i
S  is a function of the daily curve number(

i
CN ). Both 

i
S  and 

i
CN  vary spatially with 

the soil type, landuse management type, and slope.  
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Since the daily curve number varies with the antecedent soil moisture condition, SCS 

defines three different curve numbers: CN1-dry, CN2-average moisture, and CN3-wet. 

This classification, however, is too coarse to reflect antecedent soil moisture condition 

accurately. Thus SWAT adopted a new equation to compute i
S  as a function of soil 

profile water content ( i
SW ).   
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where 
i

S
max,

is the maximum retention parameter that can be achieved on any given day.  

1
w and 

2
w  are shape coefficients determined from the amount of water in the soil profile 

at field capacity and when fully saturated, and retention parameters for CN1 and CN3 

conditions (Neitsch et al., 2002).  

USDA-SCS (USDA-SCS, 1972) states that the SCS curve number method is designed to 

estimate “direct runoff” which is composed of channel runoff, surface runoff and 

subsurface flow, excluding base flow. However, SWAT 2005 uses the CN method to 

estimate “surface runoff” (Equation 3.2) and uses other equations to compute subsurface 

lateral flow and groundwater flow (Neitsch et al. 2002). Subsequently, the sum of the 

surface runoff, subsurface lateral flow and groundwater flow generates streamflow. Thus, 

according to Neitsch et al. (2002), this study uses the CN method in estimating only 

surface runoff (Equation 3.2). 

The excess water available after initial abstractions and surface runoff infiltrates into the 

soil. The flow through each layer is simulated using a storage routing technique. 

Unsaturated flow between layers is indirectly modeled using the depth distribution of 

plant water uptake and soil water evaporation. Saturated flow is directly simulated and it 

is assumed that water is uniformly distributed within a given layer. When the soil water 

in the layer exceeds field capacity and the layer below is not saturated, downward flow 

occurs and its rate is governed by the saturated hydraulic conductivity. A kinematic 

storage routing technique is used to simulate lateral flow in the soil profile based on slope, 

hillslope length and saturated conductivity. Upward flow from a lower layer to an upper 

layer is simulated by the soil water to field capacity ratios of the two layers.  
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3.2.2 Ensemble Kalman Filter (EnKF) 

In hydrology, data assimilation techniques have been used to improve model predictions 

by combining uncertain observations and imperfect information from hydrological 

processes represented in hydrological models (Walker and Houser, 2005). Among 

various data assimilation methods, the standard Kalman Filter is a sequential data 

assimilation method for linear dynamics minimizing the mean of the squared errors in 

state estimates. For nonlinear applications, the extended Kalman filter has been applied 

(Entekhabi et al., 1994; Walker and Houser, 2001; Draper et al., 2009), but this method 

requires high computational cost for the error covariance integration and is known as 

very unstable if the nonlinearities are severe (Miller et al., 1994; Reichle et al., 2002a). 

Evensen (1994) introduced the Ensemble Kalman Filter (EnKF) and proved that it could 

successfully handle strongly nonlinear systems with low computational cost unlike the 

extended Kalman Filter. The EnKF has gained popularity in hydrologic data assimilation 

and a number of previous studies have demonstrated its performance in improving 

hydrological predictions (Reichle et al., 2002a; Reichle et al., 2002b; Zhang et al., 2006; 

Clark et al., 2008; Komma et al., 2008; Xie and Zhang, 2010). In this study, the well-

proven EnKF method is used to assimilate surface soil moisture observations into the 

SWAT model.  

Hydrological processes such as infiltration, evapotranspiration and drainage to the 

groundwater system influence soil water content in the root zone in a highly nonlinear 

manner. The state variable, soil moisture (θk) is a vector containing soil moisture values 
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for each soil layer in a HRU and is described with a nonlinear model operator, fk (·) at 

time step k.  

kkkk
wf

1      (3.5) 

In the Equation 3.5, wk represents all uncertainties in the forcing data and model 

formulation due to the numerical approximation and imperfect knowledge of the 

hydrologic processes.  

The surface soil moisture measurement (dk) has error (vk) due to the errors in the 

observational instruments or procedures. It is explained using the observation operator 

(Hk) and true state (θk) as follows:  

kkkk
vHd                                                           (3.6) 

The EnKF is based on the concept of the statistical Monte Carlo method, where the 

ensemble of system states marches in state space and the mean of the ensemble is 

considered as the best estimate of the state. The initial ensemble of state vectors is 

generated with initial error vector (ei) with N ensemble members (i=1, …..,N). 

i

i
e

00                                                               (3.7) 

The EnKF approach assumes that the error terms, w, v and e, are white noise 

(uncorrelated in time) and have the Gaussian distribution with zero mean and covariance 

Q, R, and P, respectively.  

Once the initial ensemble is created, the ensemble of state vectors integrates forward in 

time through the nonlinear model operator (Equation 3.8) and is updated using the 

Kalman Gain (Kk) whenever the observations are available (Equation 3.9). 
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i

k

i

kk

i

k
wf

111
                                     (3.8) 

i

k

i

kkkk

i

k

i

k
vHdK                                (3.9) 

where superscripts „-‟ and „+‟ refer to the forecasted and updated state variables 

respectively. In the update step, the observation is perturbed with random errors ( i

k
v ), 

following Burgers et al. (1998). The Kalman gain (Kk) works as a weighting factor 

between uncertainties in model prediction and observations, and is determined by the 

state error covariance (
k

P ) and covariance matrix of the model predicted observation 

( T

kkk
HPH ).  

1

k

T

kkk

T

kkk
RHPHHPK                                  (3.10)

 

Unlike the traditional Kalman Filter, the EnKF does not propagate the state error 

covariance (
k

P ) explicitly. Instead, the EnKF simply estimates the error covariance 

using the forecasted ensemble of state and its mean (Equation 3.11), thus improving 

computational efficiency.   

N

i

T

k

i

kk

i

kk
N

P

1

1
1

1

1
                   (3.11) 

where 

N

i

i

kk
N 1

1

 

The average of the updated ensemble members is determined as a best estimate of the 

state variable.  
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3.3 Methodology  

 

3.3.1 Study Area and Data for SWAT Simulation  

The study area for this work is the Upper Cedar Creek Watershed (UCCW) which is 

located in the St. Joseph Watershed in northeastern Indiana (Figure 3.1). The 

predominant landuse in the UCCW is agricultural, with major crops of corn and soybeans, 

and minor crops of winter wheat, oats, alfalfa, and pasture. The area receives 

approximately 94 cm of annual precipitation and has average daily temperatures ranging 

from -1 °C to 28 °C.  

The United States Department of Agriculture, Agricultural Research Service 

(USDA‐ARS) National Soil Erosion Research Laboratory (NSERL) has established an 

environmental monitoring network in UCCW as a part of the Source Water Protection 

Project and the Conservation Effect Assessment Project. The environmental monitoring 

network in UCCW has been operational since 2002. More details about the network can 

be found in Flanagan et al. (2008). The UCCW environmental monitoring network 

provides considerable meteorological data (ten minute rainfall, air temperature, solar 

radiation, wind speed and relative humidity) and ten minute soil moisture observations at 

four different depths (5, 20, 40 and 60 cm). Recently, UCCW has been selected as one of 

several USA core sites to be used for calibration and validation of future SMAP data. 

Substantial in situ data, and its importance for future remote sensing validation work 

makes UCCW an ideal test bed for this study.   
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In addition to the data from the monitoring network, daily precipitation and temperature 

data are available from nearby three National Climatic Data Center (NCDC) weather 

stations for the model simulation period, from 2003 to 2010 (Figure 3.1). 

For the SWAT simulation, the sub-basins and stream network were delineated from the 

30 meter Digital Elevation Model (DEM) from the National Elevation Dataset. 

ArcSWAT, an ArcGIS interface for SWAT, was used for delineating the sub-basins and 

creating other input files for the model. By using a critical threshold area of 500 ha, the 

UCCW is divided into 25 sub-basins. Further division of sub-basins into HRU units 

requires soil and land use information. Soil information is retrieved from the Soil Survey 

Geographic Database (SSURGO) available from the USDA Natural Resources 

Conservation Service. Major soil types in the UCCW and their areas are summarized in 

Table 3.1. Landuse information was obtained from the 2001 National Land Cover Data 

(NLCD 2001) produced by the Multi-resolution Land Characteristics Consortium. The 

NLCD 2001 data for the UCCW is reclassified to 15 different landcover classes for this 

study (Table 3.2). By using a 10% threshold for both landuse and soil, and 0% threshold 

for slope, a total of 209 HRUs were generated for the UCCW using ArcSWAT.  
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Figure 3.1 Study Area: Upper Cedar Creek Watershed in Indiana, USA. 

 

Table 3.1 Soil Types in UCCW 

Soil type 
Area  Hydrologic soil 

group [km2] Proportion (%) 

GnB2  Glynwood loam 52.69 26.67 C 

BaB2 Blount silt loam 43.89 22.21 D 

Pe Pewamo silty clay 35.59 18.01 C 

SrB2 Strawn loam 30.71 15.55 B 
RaB Rawson sandy loam 7.43 3.76 C 

MrC3 Morley silty clay loam 5.38 2.72 D 

StC3 Strawn clay loam 4.83 2.44 B 

Hw Houghton muck 4.59 2.32 A 

Re Rensselaer loam 4.14 2.09 B 

BoB Boyer sandy loam 3.84 1.94 A 

Se Sebewa sandy loam 1.47 0.75 B 

All others  3.01 1.54 
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Table 3.2 Landuse in UCCW 

Landuse classification 
Area 

 [km2] Proportion (%) 

AGRR Agricultural 113.67 57.54 

HAY Hay 30.75 15.56 

FRSD Forest, deciduous 23.59 11.94 

URLD Residential, low intensity 8.38 4.24 

WETF Wetlands-forested 7.99 4.04 

URMD Residential, medium intensity 4.03 2.04 

RNGB Range, brush 3.82 1.94 

RNGE Range, grasses 2.89 1.46 

WATR Water 0.91 0.46 

URHD Residential, high intensity 0.76 0.38 

WETN Wetlands, non-forested 0.41 0.21 

FRSE Forest, evergreen 0.16 0.08 

UIDU Industrial 0.10 0.05 

FRST Forest, mixed 0.08 0.04 

SWRN Barren land 0.02 0.01 

 Sum 197.57 99.99 

 

3.3.2 Experimental Setup 

Synthetic experiment 

Data assimilation study requires reliable observed data and decent knowledge on the 

uncertainties in the model and observations. In the present study, a synthetic experiment 

is performed to better understand how soil moisture data assimilation affects various 

hydrologic processes in the watershed scale SWAT model. The synthetic experiment 

assumes that errors in the model and observations are known, which allows us to focus 

only on the effect of data assimilation. Thus, this synthetic experiment at watershed scale 

should contribute to the practical application of the forthcoming remotely-sensed soil 

moisture data.  
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In this study, it is assumed that surface soil moisture observations for each HRU are 

available and the synthetic observed data was created by adding random observation 

errors with zero mean. Considering that the typical microwave remote sensing data have 

a penetrating depth up to 5cm, I also assume that the synthetically observed soil moisture 

is available for the top 5cm and the input SSURGO soil database is modified so that each 

HRU has the first two layers in the 5cm depth interval.  

 

Experimental design 

Design of this study includes three separate scenarios all run for the same time period: a 

true run, open loop and the EnKF. First the experiment starts with the implementation of 

the “true” state by running the model with all available rainfall data from the three NCDC 

stations and the seven NSERL rain gauges (Figure 3.1). To represent our imperfect 

knowledge of the true hydrologic processes, the model is subsequently run with an 

intentionally poor set of initial conditions and with “limited” forcing data from only the 

NCDC rain gauges. Hereafter, this is called the “open loop” scenario. The third scenario, 

referred to as “EnKF” includes model integration with all the same input including 

rainfall and model parameters as the open loop, but updating soil moisture by 

assimilating daily (synthetic) observed surface soil moisture through the EnKF. By 

limiting precipitation input, which is the driving force of soil moisture and streamflow, 

while keeping other model parameters unchanged, the EnKF scenario enables the 

determination of the influence of the surface soil moisture assimilation on model 

predictions of profile soil water content and other hydrological responses.  
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Conventionally, precipitation data measured at point rain gauges have been used for 

hydrological modeling, despite its limitations in representing the spatial distribution and 

variability of actual precipitation. In reality, many watersheds rely on the precipitation 

data from the sparsely located rain gauges inside or around the watershed as the open 

loop scenario of this study represents. Therefore, in this study, I investigate how the 

surface soil moisture assimilation may compensate for the errors from the inaccurate 

precipitation input by comparing the aforementioned three scenarios (true, open loop and 

EnKF).  

SWAT assigns precipitation values at the subbasin level based on precipitation data 

measured at rain gauges. Each subbasin takes the precipitation value from the gage 

station that is closest to the centroid of the subbasin. Unfortunately, there is no NCDC 

rain gauge inside the UCCW. Therefore, when the precipitation data from the only three 

NCDC rain gauges are used (open loop and EnKF), SWAT assigns overestimated 

precipitation into the watershed (Figure 3.2). The average precipitation of the true 

scenario and the open loop scenario (and EnKF) are 2.66 mm day
-1

 and 3.21 mm day
-1

, 

respectively during the analysis period (from June 2008 to May 2009).  

 

SWAT calibration 

In order to create the true scenario, the SWAT model was calibrated using the daily 

streamflow measured at the outlet of the UCCW. The model ran for three years (April 

2003 to April 2006) for warm-up and two years (May 2006 to May 2008) for calibration. 

Based on the sensitivity analysis results, 18 parameters were chosen for calibration 
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including CN2, ESCO, SURLAG, TIMP, Ch_K2, SOL_AWC, BLAI, ALPHA_BF, 

SOL_Z, RCHRG_DP, SMTMP, EPCO, CH_N2, REVAPMN, SLOPE, SOL_ALB, 

CANMX, SOL_K. They were calibrated using the autocalibration tool, Parasol 

(Parameter Solutions) method, implemented in the ArcSWAT. After the calibration, the 

model was validated for one year (June 2008 to May 2009). The coefficient of 

determination (R
2
) and the Nash and Sutcliffe model efficiency coefficient (ENS) are 0.46 

and 0.44 for the calibration period and 0.42 and 0.37 for validation period, respectively 

with the daily streamflow predictions. Although these statistical metrics seem to indicate 

marginal model performance, they are within an acceptable range at the daily time step 

(Moriasi et al. 2007). This validation period will be used for data assimilation experiment 

of this study. For the true scenario, the model was run from 2003 to 2009 with the 

calibrated parameters, and the simulation results only from the last one year (June 2008 

to May 2009) were used for analysis. For the open loop and EnKF scenarios, the model 

was run from January 2008 to May 2009 with an intentionally short warm-up period to 

simulate poor initial conditions and the same calibrated parameters as the true scenario. 

Again the last one year simulation results (June 2008 to May 2009) were used for 

analysis.  
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Figure 3.2 Comparison of two different precipitation inputs  

(a) difference in precipitation rate (true precipitation from all available rain gauges less 

precipitation from the NCDC rain gauges)   (b) cumulative total precipitation 

 

Evaluation metrics 

Evaluation of the surface soil assimilation through the EnKF is first conducted by 

comparing time series of soil water storage and other representative hydrological 

responses obtained from the true, open loop and EnKF scenarios. Root mean square error 

(RMSE), mean bias error (MBE) and correlation coefficient (R) are used to compare the 

results quantitatively.  
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n

ST
MBE                                       (3.13) 

22

SSTT

SSTT
R                    (3.14) 

where T and S are true and simulated values respectively, and n is the number of values 

(days). T and S are averages of true and simulated values respectively. 

In addition, distributed soil moisture maps are shown to better visualize and illustrate the 

spatial differences in the results and to determine the effect of spatially varying input. 

 

3.3.3 Implementation of the EnKF into SWAT 

Ensemble simulation with SWAT 

The SWAT model runs on a daily time step. This study assumes that daily soil moisture 

observations are available, and therefore soil moisture condition is reinitialized for each 

day through the analysis (update) step of the EnKF. The framework of hydrologic 

processes in the SWAT and additional routines due to the EnKF are illustrated in Figure 

3.3. The default SWAT routines in Figure 3.3 are excerpted from Neitsch et al. (2002). 

Each HRU runs independently and the one dimensional EnKF scheme is applied to each 

HRU separately. 

Ensemble simulation starts on day 153 (June 1) of 2008 and 100 initial ensemble 

members are created by adding random noise to the initial condition (soil moisture 

simulation results from day 152). SWAT represents soil water content as a concept of soil 

water storage in mmH2O (vs m
3
 m

-3
) and therefore the range of soil moisture values for 
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each layer varies with the thickness of the soil layer. The initial perturbation noise is 

assigned to the normalized soil moisture values (mmH2O per 1cm). The initial 

perturbation noise has a Gaussian distribution with zero mean and 0.001 mmH2O of 

standard deviation, and the magnitude of the standard deviations are scaled by the 

thickness of each layer according to Ryu et al. (2009). Note that forcing variables (e.g. 

precipitation) and model parameters are not perturbed explicitly to generate ensemble 

members in this study. Adding model error (wk in Equation 3.5) takes into account all 

uncertainties raised from forcing variables and parameter estimation, as well as model 

physics. 

Each of the ensemble members of soil moisture goes through separate hydrological 

processes and generates different subsequent variables such as Leaf Area Index and 

evapotranspiration. All subsequent variables from different ensemble members are also 

averaged after the ensemble forecasting step and the average values are considered as the 

best estimations of the day.  
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Figure 3.3 Schematic of Surface Soil Moisture Data Assimilation with the SWAT 

Additional routines due to the EnKF are shown in gray color. H, N and M refer the 

number of HRUs in a subbasin, total ensemble size (100) and total subbasin number (25) 

in the UCCW, respectively. 
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Specification of model and observation errors 

At the end of each day, the predicted ensemble soil moisture values are updated through 

the EnKF analysis step. In the analysis step, model errors (wk in Equation 3.5) with zero 

mean Gaussian distribution are added. The standard deviations of the model errors are 

determined by the current soil moisture content from the true scenario using a scaling 

factor of 0.01. Observations are also perturbed with the observation errors (vk in Equation 

3.9) which have zero mean Gaussian distribution and standard deviation of 0.01.  

Procedures for soil moisture perturbation by adding system variance (model error) are 

described as follows:  

1) Compute a weight (wlj) for each layer (j) in order to take account for the different 

thicknesses of each layer (Ryu et al., 2009). 

2) Compute model noise (wk in Equation 3.5) by applying a scaling factor (0.01) and a 

weight (wlj) for each layer.  

      jjtruejj
rwlw

,
01.0

 
 

where θtrue,j is soil moisture estimation from the true scenario and rj is a random 

number from a Gaussian distribution with zero mean and variance one for j=1,….,n 

where n is the number of soil layers.  

For soil moisture perturbation, a constant scaling factor is applied to all layers every daily 

time step. Vertical correlation between perturbations is also an important factor in 

determining how surface soil moisture assimilation affects deeper layers and other 

dependent variables. Chen et al. (2011) showed the impact of error coupling with the 
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SWAT model by comparing the results from zero vertical error correlation and perfect 

vertical error correlation. In the present study, perfect vertical error correlation was 

applied.  

Several past studies have attempted to specify observation and model error statistics. 

Clark et al. (2008) and Xie and Zhang (2010) used the scaling factor approach for 

straightforward estimation of model and observation error. Reichle et al. (2002b) 

assigned temporally constant standard deviations of errors. The scaling factor approach 

used in this study allows standard deviation of the model errors to vary with time, which 

is a better representation of the real uncertainties than the time invariant standard 

deviation of errors. Since the synthetic experiment of this study uses the same model 

parameters as the true scenario, the source of model error is mainly from errors in the 

precipitation. Therefore, in this study, a simple but more operational approach of using 

the scaling factor is adopted for model error estimation. This approach overestimates the 

real errors when the soil moisture content is high, but is advantageous to test the 

robustness of the EnKF (Xie and Zhang, 2010). The disadvantage of this approach, 

however, is that it may enhance the nonlinear impact of the saturation (or wilting point) 

threshold by inflating (or decreasing) the standard deviation of soil moisture predictions. 

In spite of convenient application of the scaling factor approach, more sophisticated 

approaches such as an adaptive filtering seem to be desirable for future real data 

assimilation studies.  

Time invariant standard deviation of observation errors is adopted in this study because 

errors in remotely-sensed soil moisture come from vegetation cover, surface roughness, 
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soil properties, radio frequency interference (RFI), and retrieval algorithms, all of which 

are not proportional to the surface soil moisture condition (Schmugge et al., 2002; 

Entekhabi et al., 2010). In addition, if the same scaling factor approach is applied to the 

observation error, it will assign unreasonably high weight on the observation accuracy 

when the soil is very dry because SWAT defines soil water content excluding the amount 

of water held at wilting point, with the minimum soil water content in the SWAT being 

zero.  

  

3.3.3 Additional steps in analysis procedure 

The bounded nature of soil moisture between wilting point and saturated soil water 

content makes the application of the EnKF more complicated. Reichle et al. (2002a) 

mentioned that in an operational perspective, the violation of its inherent assumption, 

Gaussian distribution, would have the greatest impact when the soil is very dry and there 

is high skewed forecast error. Crow and Wood (2003) showed that the skewed model 

ensembles and a non-Gaussian error structure negatively impacted the EnKF‟s 

performances. Because of this unique characteristic of soil moisture, some additional 

steps are added after the analysis step. When the soil is very dry or wet (close to the 

wilting point or saturated condition), the best estimates of the soil moisture (average of 

ensemble) after the analysis step may exceed the actual physical limits of the soil 

moisture. If the average of the ensemble of the soil moisture becomes negative, the best 

estimate of the ensemble is adjusted to 10 
-6 

mmH2O. In the case of an ensemble average 
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higher than the maximum soil moisture limit, saturated soil moisture content minus 10 
-6 

mmH2O replaces the best estimate.  

The concept of a simple bias correction method adopted by Ryu et al. (2009) is 

implemented in this study to take account of the effect of the bounded range of soil 

moisture. Mean bias is computed using the unperturbed soil moisture prediction and the 

ensemble is corrected by subtracting the mean bias from the perturbed soil moisture 

ensemble. After this adjustment, all ensemble members exceeding minimum or maximum 

soil water content are replaced by 10 
-6 

mmH2O (almost wilting point) or saturated water 

content. This boundary truncation might shift the average of ensemble again. Therefore, 

these bias corrections and boundary truncations are repeated 10 times to reduce the 

remaining bias. Boundary truncation and the simple bias correction approach are applied 

at each update time step for all state variables (soil moisture vector). A simple boundary 

truncation might cause the mean of the state variable to be shifted. For example, for a wet 

soil moisture condition, the simple boundary truncation may shift the mean of soil 

moisture higher than the actual mean from the analysis step. Therefore, this repetition of 

boundary truncation and bias correction may be advantageous in generating less mass 

balance error by decreasing the biases (Ryu et al. 2009). 
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3.4 Results and Discussion 

 

3.4.1 Effect of Surface Soil Moisture Assimilation on Hydrologic Processes 

This section describes how surface soil moisture data assimilation affects subsequent 

hydrological processes. First, in this study, inaccurate precipitation is the main source of 

error in soil moisture predictions as well as other hydrological processes. Figure 3.4 

shows the daily simulation results of surface (a) and profile (b) soil moisture in the 

watershed which is the sum of area-weighted soil water content from all HRUs. Soil 

moisture prediction errors are significant especially during the winter time (from day 353 

of the first year to day 67 of the second year) due to the cumulatively overestimated 

precipitation shown in Figure 3.2b. There exist distinct discrepancies in soil moisture 

predictions between the true and the open loop scenario.  

Soil moisture update through the EnKF pulls the inaccurate soil moisture prediction in 

the open loop scenario closer to the true state. The correlation coefficient increases from 

0.585 to 0.747 and from 0.906 to 0.942 for surface and profile soil moisture respectively 

(Table 3.3). The RMSE and MBE also decrease in both surface and profile soil moisture 

predictions with the EnKF. The improved results with the EnKF support the previous 

studies (Das et al. 2008; Draper et al. 2009; Reichle et al. 2002b; Sabater et al. 2007) 

further demonstrating the potential of current and forthcoming remotely-sensed surface 

soil moisture data to improve the profile soil moisture estimations for land surface 

hydrology through data assimilation. The results of this study also show that the errors in 
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soil moisture estimation due to inaccurate precipitation can be partially compensated by 

assimilating surface soil moisture observations.   

 

 

Figure 3.4 Watershed Average Soil Moisture Prediction 

(a) Surface (~5cm) and (b) Soil Profile  

(Precipitation difference = true precipitation – open loop precipitation) 

 

Temporal variations in the RMSE of the subsequent variables are shown in Figure 3.5 

where daily RMSE is based on the errors of all HRUs. It is apparent that reduced errors in 

surface soil moisture prediction (Figure 3.5a) are clearly identified for almost every time 

step. In spite of the prompt decrease of errors in surface soil moisture prediction, the 

magnitude of improvements in the profile soil water content varies with time as shown in 

Figure 3.5b with reduction in errors with the EnKF being distinct in winter (from day 353 
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to 67). Limited success in updating profile soil water content for some periods may be 

caused by the weak model vertical coupling of soil moisture in SWAT subsurface physics 

(Chen et al., 2011). Another reason is that non-linearities in model physics and the 

bounded nature of soil moisture result in suboptimal update with the EnKF by violating 

the Gaussian assumption. When optimality of ensemble perturbation is checked as in 

Reichle et al. (2002a), non-symmetric ensemble distribution is found with the soil 

moisture condition close to saturation or wilting points (not shown). In addition, 

consistently lower forecast and analysis error variances compared with actual error were 

found, resulting in estimates less than optimal.  

 

Table 3.3 Statistical Results of the Simulated Watershed Average Soil Water Content 

  R RMSE MBE 

Open loop EnKF Open loop EnKF Open loop EnKF 

SOL_SW (5cm) 0.585 0.747 3.214 1.931 -1.275 -0.879 

SOL_SW 0.906 0.942 11.176 6.832 -1.533 -0.317 

SHALLST 0.929 0.923 0.127 0.097 -0.054 -0.041 

DEEPST 0.986 0.995 2.444 2.438 2.444 2.438 

INFLPCP 0.339 0.339 3.572 3.572 -0.152 -0.171 

QDAY 0.458 0.455 3.059 3.025 -0.452 -0.442 

LATQ 0.844 0.860 0.035 0.034 -0.013 -0.014 

RCHRG 0.927 0.921 0.219 0.168 -0.092 -0.071 

GW_Q 0.929 0.923 0.217 0.165 -0.092 -0.071 

GWSEEP 0.930 0.924 0.001 0.001 0.000 0.000 

CNDAY 0.976 0.977 2.125 1.617 0.641 0.358 

ET 0.696 0.736 0.852 0.849 -0.111 -0.200 

 

The improved soil moisture prediction affects other subsequent hydrological responses. 

Table 3.3 shows that the EnKF scenario reduces errors in other hydrological variables 

compared to the open loop scenario even though the correlation coefficient for some 
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variables may be slightly lower (e.g., SHALLST, QDAY, RCHRG, GW_Q and 

GWSEEP).  

Similar to the profile soil moisture in Figure 3.5b, the depth of water in shallow aquifer 

(SHALLST) in Figure 3.5c and GW_Q (groundwater contribution to streamflow) in 

Figure 3.5f are not noticeably affected except during winter conditions. Little differences 

in RMSE are observed in the prediction of QDAY (surface runoff) in Figure 3.5d and 

LATQ (lateral flow) in Figure 3.5e. Since accurate prediction of surface runoff (QDAY) 

and groundwater contribution (GW_Q) are critical to streamflow prediction, it is 

expected from these results that surface soil moisture assimilation may not improve 

streamflow prediction significantly. Further discussion of these finding is provided in 

section 3.4.2. Application of EnKF reduced the RMSE in evapotranspiration prediction 

throughout the experiment period (Figure 3.5g). This is because evaporation occurs 

mainly on the soil surface and the improved surface soil moisture condition contributes to 

greater accuracy in simulating evaporation. Finally, the curve number for a day (CNDAY) 

is computed based on the profile soil water content. Therefore, the trend of error 

reduction in the curve number prediction (Figure 3.5h) is very similar to the trend of the 

profile soil moisture (Figure 3.5b). 
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Figure 3.5 RMSE of Subsequent Variables 

(a) surface (~5cm) soil water content, (b) profile soil water content, (c) depth of water in 

shallow aquifer (SHALLST), (d) surface runoff loading to main channel for day in HRU 

(QDAY), (e) amount of water in lateral flow in HRU for the day (LATQ), (f) 

groundwater contribution to streamflow from HRU for the day (GW_Q), (g) 

Evapotranspiration (ET), (h) curve number for current day (CNDAY). 
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Figure 3.5 Cont. RMSE of Subsequent Variables 

(a) surface (~5cm) soil water content, (b) profile soil water content, (c) depth of water in 

shallow aquifer (SHALLST), (d) surface runoff loading to main channel for day in HRU 

(QDAY), (e) amount of water in lateral flow in HRU for the day (LATQ), (f) 

groundwater contribution to streamflow from HRU for the day (GW_Q), (g) 

Evapotranspiration (ET), (h) curve number for current day (CNDAY). 
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3.4.2 Streamflow Prediction 

The answer to the question “Can surface soil moisture data assimilation improve 

streamflow prediction?” depends on the accuracy of precipitation input and antecedent 

soil moisture condition. In order to answer to this question, four simple and different 

cases can be considered accounting for only antecedent soil moisture conditions and the 

accuracy of precipitation data, and assuming that the EnKF always moves soil moisture 

predictions closer to the true values. 

1) Model predicted antecedent soil moisture is less than the true soil moisture (θpredicted  < 

θtrue
 
≈ θEnKF)

 
and current precipitation is overestimated.  

2) Model predicted antecedent soil moisture is greater than the true soil moisture 

(θpredicted  > θtrue
 
≈ θEnKF)

 
and current precipitation is overestimated. 

3) Model predicted antecedent soil moisture is less than the true soil moisture (θpredicted  < 

θtrue
 
≈ θEnKF) and current precipitation is underestimated. 

4) Model predicted antecedent soil moisture is greater than the true soil moisture 

(θpredicted  > θtrue
 
≈ θEnKF) and current precipitation is underestimated. 

Cases 2 and 3 would provide improvement in streamflow prediction by updating soil 

moisture through the EnKF. In Case 2, the overestimated antecedent soil moisture 

condition will aggregate the error from the overestimated precipitation and therefore, 

updated (corrected to lower) soil moisture with the EnKF will generate less error than the 

open loop. The same principle can be applied to Case 3 where improved runoff prediction 
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with the EnKF is expected compared to the open loop. However, Cases 1 and 4 will 

generate more errors with the EnKF than with the open loop. In Case 1, the 

underestimated antecedent soil moisture condition counterbalances the error in the 

overestimated precipitation. Therefore, improved runoff prediction occurs with the open 

loop rather than with the EnKF in this case. The same principle is applied to Case 4. 

Therefore, a hypothesis, “Assimilating surface soil moisture observation into a 

hydrologic model will improve streamflow (or surface runoff) prediction” is valid only if 

I have accurate precipitation information. Crow and Ryu (2009) pointed out this 

limitation of updating solely the antecedent soil moisture condition and designed an 

assimilation system that simultaneously updates soil moisture and corrects rainfall input 

by taking into account soil moisture observations. 

Case 1 occurs in the results of this study during the summer, especially around day 259. 

The EnKF improves soil moisture prediction (Figure 3.4b and Figure 3.5b). However, 

because of inaccurately overestimated precipitation, improved soil moisture with the 

EnKF (higher soil moisture prediction than the open loop results) results in overestimated 

runoff and streamflow (Figure 3.5d and Figure 3.6). The lower model performance using 

the EnKF is primarily due to inaccurate precipitation. Therefore, in this case, surface soil 

moisture assimilation does not appear to improve streamflow prediction.  

Results during winter time represent Case 2 where both soil moisture and precipitation 

are overestimated. Application of the EnKF improves streamflow prediction during 

winter time (Figure 3. 6, day 42 to 87). This is because the open loop continues 

overestimating soil moisture during winter, but the EnKF improves the soil moisture 
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prediction (lowers the overestimated soil moisture in Figure 3.4). Even though the 

improvement in runoff prediction (QDAY) due to the improved soil moisture with the 

EnKF is not significant (Figure 3.5d), the improved groundwater contribution (GW_Q) 

also contributes to the improved (reduced) streamflow in Figure 3.5f.  

 

Figure 3.6 Streamflow Prediction 

 

In this study, streamflow prediction does not show significant improvement even after 

applying surface soil moisture assimilation. The primary reason for this is that most of 

the errors in streamflow prediction are due to inaccurate precipitation input (Figure 3.6, 

Figure 3.7 and Table 3.4). Second, SWAT model physics does not have sufficient vertical 

coupling strength to constrain soil water content in deeper layers or in the root zone using 

the surface soil moisture observations (Chen et al., 2011). Since surface runoff generation 

depends on profile soil water content, failure to significantly improve estimates of profile 

soil water content impede successful surface runoff (or streamflow) prediction. Therefore, 

improvement in streamflow prediction is not expected when the improvement of profile 

soil water content with the EnKF is of little or marginal consequence as shown in Figure 
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3.5b. Lastly, the unsuccessful improvement in streamflow prediction may be attributed to 

the limited sensitivity of surface runoff (or streamflow) prediction to the change in soil 

moisture with the CN method implemented in SWAT. Surface runoff is the main 

contributor to streamflow especially with high rainfall intensity. Therefore, if the updated 

soil water content with the EnKF is not reflected properly in the surface runoff estimation, 

improved streamflow prediction cannot be expected.  

 

 

Figure 3.7 Area Weighted Sum of Daily Precipitation 

 

Table 3.4 Errors in Precipitation and Outflow of the Watershed during Simulation Period 

 True Open loop EnKF 

Input precipitation (mm year
-1

) 937.02 1175.37 1175.37 

Outflow (mm year
-1

) 438.47 

(47%) 

641.94 

(55%) 

630.85 

(54%) 

Error in precipitation (mm year
-1

) - -238.36 -238.36 

Error in streamflow (mm year
-1

) - -203.46 -192.37 

 

In order to test model sensitivity in these regards, the relationship between surface runoff 

generation and different soil moisture conditions for various curve numbers is illustrated 

in Figure 3.8 based on Equations 3.2, 3.3 and 3.4. The soil type, GnB2, of which water 

storage at field capacity and saturation are 101 mm and 201 mm respectively for a soil 
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depth of 1246 mm, is used to create Figure 3.8. In the case of high curve numbers 

(CN2=93), a 20 mm reduction in soil moisture from 200 to 180 mm results in only 2 mm 

reduction in surface runoff. This decrease in runoff prediction will result in a 4.57 m
3
sec

-1
 

streamflow decrease, which is not sufficient to overcome the significant streamflow 

overestimation during the winter in Figure 3.6.  

 

 

Figure 3.8 Relationship between Surface Runoff and Soil Water Condition with Various 

CN2 Numbers in Curve Number Method When Rainfall is 23 mm/day. 

 

As Figure 3.8 shows, the sensitivity of surface runoff to soil water content varies with the 

curve number, which is a function of soil type and landuse. This study also shows that the 

degree of improvement in surface runoff prediction with the EnKF is highly related to 

soil type and landuse. The areas which have low runoff error with the EnKF consist of 

soil types BoB, Hw, SrB2, StC3 and Se (Table 3.1). Hydrologic soil groups of those soil 

types are A or B (Table 3.1). Furthermore, the combinations of those soil types and 

landuse (HAY and FRSD) provide the smallest errors because of their hydrologic soil 

group (A or B) and low CN2 (35 ~ 60). On the contrary, the main three soil types (BaB2, 
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GnB2 and Pe) which cover 67% of the area in the UCCW produce high errors in surface 

runoff prediction regardless of landuse type. Their CN2 is relatively high (77 ~ 89). For 

most of the areas in UCCW the EnKF, therefore, cannot decrease the error in the runoff 

prediction because surface runoff is not very sensitive to the soil moisture change with 

high CN2 values. That is, the slope of the graph is small for high CN2 values in Figure 3.8. 

Especially when soil moisture is high (close to saturation, 200mm in the case of GnB2), 

the slope is very small. During the winter time, highest soil moisture estimation errors 

exist and the EnKF improves profile soil moisture up to 20 mm in Figure 3.4b, but in this 

period, the soil moisture condition is very wet, so its improvement is difficult to reflect in 

surface runoff.  

In this study, surface soil moisture assimilation was minimally successful in improving 

streamflow predictions. However, if I consider only streamflow results, traditional 

calibration methods can improve streamflow simulation considerably, even in the 

presence of inaccurate precipitation. In SWAT, streamflow prediction has a higher 

sensitivity to changes in certain parameters rather than changing soil moisture conditions. 

Parameter adjustments through the calibration can change streamflow prediction 

effectively by increasing the ENS. However, conventional calibration methods do not 

directly take into account the uncertainties in precipitation or model structure, or the 

possibility of model parameters that change temporally. Data assimilation techniques 

usually focus on updating state variables (soil moisture in this study) on the premise that 

model parameters are pre-specified. Therefore, new frameworks which can address both 

the limitations of conventional parameter calibrations and data assimilation are required 



77 

 

7
7
 

for future advances in hydrologic modeling. Moradkhani et al. (2005), for example, 

showed the possibility of estimating both model states and parameters simultaneously 

using a dual state-parameter estimation method based on the EnKF.  

 

3.4.3 CN Method vs. Green Ampt Method 

Even though the CN method has been widely used in various hydrologic models, it has 

limitations. Garen and Moore (2005) stresses some issues with the broad use of the CN 

method. Since the CN method was developed as an event model for the prediction of 

flood streamflow conditions, they argue that it is questionable to apply the CN method 

for a continuous model and daily flow of ordinary magnitude. In addition, they also 

mention that daily time step might not be appropriate to simulate the infiltration excess 

mechanism which is designed for hourly (or subhourly) time steps.  

SWAT 2005 provides another option to estimate surface runoff, the Green Ampt Mein-

Larson excess rainfall method (GAML). This method is based on the Green & Ampt 

infiltration method and requires subdaily precipitation input. The CN method has been 

more widely used than the GAML method because of the difficulties in obtaining 

subdaily precipitation data and the uncertain benefit of using the GAML compared to the 

CN method. While Kannan et al. (2007) and King et al. (1999) found no significant 

advantages of using the GAML instead of the CN method with SWAT, Jeong et al. (2010) 

showed that the GAML outperforms the CN method and suggested that the quality of 

subdaily precipitation data and the size of study area influence the results. In addition, 
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Jeong et al. (2010) also showed that even the subhourly simulation performs poorly under 

low or medium flows.  

In this study, a simple experiment is conducted to test if the GAML method has a greater 

potential than the CN method for improving runoff (and eventually streamflow) 

prediction with surface soil moisture data assimilation. As mentioned in section 3.4.2, 

sensitivity of surface runoff generation to the soil moisture change determines how 

successfully the soil moisture update through the EnKF will contribute to the 

improvement of the surface runoff prediction. For the two main soil types, GnB2 and 

SrB2, surface runoff was computed by using the CN method and the GAML method for 

one day (June 21, 2008) when precipitation was 23mm day
-1

. For the GAML method, 10 

minute precipitation data were used. The amount of water held in soil profile at field 

capacity is 101.5 and 240 mmH2O for GnB2 and SrB2, respectively. Water content at 

saturation is 210 and 400 mmH2O for GnB2 and SrB2, respectively.  

Figure 3.9 shows the different runoff-soil moisture relationships from the CN and GAML 

methods. The CN method maintains a smooth relationship between runoff and soil 

moisture, however, the GAML method produces drastic changes when soil moisture is 

near field capacity (101.5 and 240 mmH2O for GnB2 and SrB2 respectively). This is 

because the GAML code implemented in SWAT2005 replaces any soil moisture value 

that is greater than field capacity soil moisture with the field capacity value in computing 

infiltration rate. Therefore, under higher soil moisture conditions, the GAML method 

produces much less surface runoff than the CN method, which is appropriate in reducing 

the overestimated streamflow. However, the slope of the graph for GAML is much 
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smaller than the slope of the CN method above field capacity. Therefore, the impact of 

the improved soil moisture with the EnKF might be difficult to see with the GAML 

method when the soil moisture is above field capacity. However, soil moisture less than 

the field capacity has a high sensitivity to changes in soil moisture. The two different soil 

types show different shapes of the relationship because of their different field capacity 

and saturated water content values. Therefore, the effectiveness of the soil moisture 

assimilation with the GAML depends on the soil type and soil moisture condition. In 

using either the CN method or GAML method, it is very difficult and somewhat 

complicated to determine precisely how changes in soil moisture affect streamflow 

prediction. 

Successful improvements of streamflow prediction through soil moisture data 

assimilation can be expected only if the model is based on correct linkage between soil 

moisture conditions and surface runoff generation. Even though SWAT 2005 adopts a 

modified CN method which accounts for antecedent soil moisture condition continuously, 

its effectiveness is not thoroughly proven. In addition, application of the CN method has 

been questioned by many studies and its modification for runoff simulation has been 

introduced (Michel et al., 2005; Mishra and Singh, 2006; Chung et al., 2010; Sahu et al., 

2010), specifically with SWAT (Kannan et al., 2008; Kim and Lee, 2008; Wang et al., 

2008; White et al., 2010). In addition, various factors such as quality of rainfall data, 

rainfall intensity, soil type, landuse and identification of critical source area make 

streamflow prediction more complicated. Therefore, more careful selection and 

development of runoff simulation procedures effectively taking account of soil moisture 
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variations should be required to enhance streamflow prediction with future soil moisture 

assimilation studies. 

 

 

Figure 3.9 Comparison of CN Method and Green Ampt Method for the Relationship 

between Surface Runoff and Soil Water Condition: (a) soil type: GnB (b) soil type: SrB. 
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3.4.4 Spatial Variation in Soil Moisture Prediction  

In this section, the impact of spatially varying input, specifically landuse and soil type, on 

surface soil moisture assimilation is illustrated. To visualize the spatial distribution of 

output, an HRU map is created by overlaying landuse and the SSURGO soil map 

generated from ArcSWAT. Since a single slope is defined in the initial SWAT setup, the 

slope is not taken into account in creating the HRU map. HRU level outputs are assigned 

to each HRU to show spatially distributed results.  

Precipitation as a forcing variable is the most important factor for successful soil 

moisture estimation. Figure 3.10 shows time-averaged RMSE of precipitation. Time-

averaged RMSE results of surface and profile soil moisture prediction are shown in 

Figure 3.11 and 3.12 respectively. The RMSE distribution of the open loop and the EnKF, 

especially for profile soil moisture distribution, coincides with the distribution of 

precipitation in general. That is to say, higher precipitation errors within an area result in 

greater errors in soil moisture estimation. 

The EnKF reduces errors in surface and profile soil moisture compared to the results of 

the open loop. The average RMSE errors in surface soil moisture estimates in Figure 3.11 

are 5.05 and 3.43 mmH2O for the open loop and the EnKF, respectively. For profile soil 

moisture estimation, the open loop and the EnKF have 22.77 and 19.77 mmH2O of 

average RMSE, respectively in Figure 3.12.  

Within a subbasin where constant precipitation is assigned, types of landuse and soil 

determine the magnitude of errors in the soil moisture estimation. One distinct example is 



82 

 

8
2
 

shown in subbasin 2 in Figure 3.11a. Even though the subbasin has the same amount of 

precipitation throughout the area, some of the areas (light blue in the Figure 3.11a) have 

highly underestimated surface soil moisture (much higher RMSE) than others. The areas 

consist of HRU 11(FRSD, Hw), 18(AGRR, Hw) and 21(WETF, GnB2). The soil type 

Hw is classified as hydrologic soil group A (Table 3.1) which has a high infiltration rate.  

 

 

Figure 3.10 Time Averaged RMSE of Precipitation 

(The numbers indicate subbasin number and unit is mm) 

 

Figure 3.13 compares the results of different combinations of landuse and soil types. 

Figure 3.13b is the reference because it consists of the major landuse (AGRR) and soil 

type (GnB2). Comparing Figure 3.13b and 3.13c explains the effect of different soil types 

on soil moisture estimation. Although landuse type and precipitation are same, Figure 

3.13c which has more infiltration because of the soil type Hw, exaggerates both the 

underestimated and overestimated errors compared to the soil type GnB2 in Figure 3.13b. 
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Figure 3.11 Time Averaged RMSE of Surface (~5cm) Soil Moisture 

from (a) Open loop and (b) EnKF 

(The numbers on the map indicate subbasin number and unit is mmH2O) 

 

Types of landuse also affect the soil moisture variations. Figure 3.13a and 3.13d show 

that landuse types, forest (FRSD) and wetland (WETF), produce greater errors than 

agricultural area. The proportion of precipitation intercepted by canopy is large in the 

forest area. Therefore, the actual precipitation that reaches the ground (after canopy 

interception) in this area may be much smaller than other landuse areas, which will 

(a) 

(b) 
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exaggerate errors in soil moisture estimation. Further explanation regarding the errors due 

to different landuse types follows in section 3.4.5. 

 

 

 

Figure 3.12 Time Averaged RMSE of Profile Soil Moisture  

from (a) Open loop and (b) EnKF. 

(The numbers on the map indicate subbasin number and unit is mmH2O) 

 

 

 

(a) 

(b) 
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Figure 3.13 Surface Soil Moisture Estimation Error of Open Loop Scenario  

(error = true – open loop): (a) HRU 11 (FRSD, Hw), (b) HRU 17 (AGRR, GnB2),          

(c) HRU 18 (AGRR, Hw), (d) HRU 21 (WETF, GnB2). 

 

3.4.5 Spatiotemporal Variation in Soil Moisture Prediction  

Aforementioned results show significant effects of errors in precipitation on hydrologic 

responses. In this section, the effect of precipitation is excluded by selecting a drydown 

period when no precipitation is received throughout the watershed. Therefore, the 

effectiveness of the EnKF can be further evaluated. 

Figure 3.14c and 3.14d show the antecedent surface soil moisture condition in terms of 

deviations (errors) from the true condition on day 258 before the precipitation events on 

day 259 shown in Figure 3.14a and 3.14b. The western areas of the UCCW have 

overestimated soil moisture (negative error) and eastern areas have underestimated states 

(positive error) on day 258. On day 259 in Figure 3.14e and 3.14f, highly overestimated 

precipitation in subbasins 1, 3, 4, 5, 6 and 7 do not make much differences in soil 

moisture status because soil moisture is already overestimated (close to saturated 
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condition) and the overestimated precipitation becomes surface runoff  instead of 

infiltrating into the soil and increasing soil moisture. However, slightly overestimated 

precipitation in subbasins 2, 8, 14, 15, 18, 19, 20, 21 and 24 infiltrates into soil and 

decreases the errors in the previously underestimated soil moisture.  

After the precipitation on day 259, there is no precipitation at all throughout the 

watershed until day 263. While errors in surface soil moisture estimation in the open loop 

do not change significantly day by day, the EnKF results show noticeably decreasing 

errors in one or two days. In other words, errors in the EnKF results become close to zero 

sooner than the open loop results. In regard to the profile soil moisture variations, the 

EnKF produces better results (smaller errors in general) than the open loop results even 

though the magnitudes of improvements are not as much as the ones with the surface soil 

moisture (not shown).  

Interestingly, some areas in the open loop give soil moisture results that remain highly 

underestimated (high positive errors with blue color) even after the precipitation on day 

259 (Figure 3.14g, i and k). Those areas correspond to certain distributions of landuse 

type, such as forest (FRSD) and hay (HAY). A large portion of initial precipitation is 

intercepted by canopy in this area and thus, actual precipitation generating surface runoff 

and infiltration on the ground becomes very small. Table 3.5 shows the amount of initial 

precipitation that is intercepted by the leaves of plants; less than 20% of initial 

precipitation reaches the ground surface in the forest area in the case of the open loop and 

the EnKF. The amount of canopy interception is computed based on the values of leaf 

area index, amount of water held in canopy storage and potential leaf area index. The 
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difference in the results between the open loop and the EnKF arise from the differences 

in the simulation results of those variables. In SWAT, those variables related to crop 

growth are, therefore, very important in simulating surface runoff and subsurface flow as 

well as soil moisture because actual precipitation being a forcing variable is affected 

greatly by the canopy interception.  

Contrary to the open loop, surface soil moisture assimilation through the EnKF prevents 

this long-lasting underestimation for certain landuse types (Figure 3.14h, j and l). The 

results of profile soil moisture estimation in the open loop scenario also show the same 

problem, high underestimation with a specific landuse type (not shown). These long-

lasting underestimated (dry) soil moisture conditions will affect simulation of crop 

growth and other hydrologic processes such as plant water uptake and subsurface flow in 

the long term. The errors due to specific landuse types can be minimized to a certain 

degree by optimizing parameters through calibration. However, considering that most 

calibrations for a distributed model are achieved by focusing on the streamflow and 

overall water balance, it is difficult to overcome this issue for specific soil types. 

However, the soil moisture update through the EnKF enables us to overcome this 

problem and to prevent further accumulation of errors in hydrologic predictions by 

improving soil moisture estimates.   
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(a) True precipitation on day 259 (b) Open loop precipitation on day 259   

  

(c) DAY=258, Open loop (d)D AY=258, EnKF 

  

(e) DAY=259, Open loop (after precipitation) (f) DAY=259, EnKF (after precipitation) 

  

(g) DAY=260, Open loop (h) DAY=260, EnKF 

  

 

Figure 3.14 Surface Soil Moisture Error Variation during Drydown Period  

Precipitation ((a) and (b)) in mm and surface soil moisture error variation ((c) ~ (l))  

(error = true – open loop or EnKF).in mmH2O 
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(i) DAY=261, Open loop (j) DAY=261, EnKF 

  

(k) DAY=262, Open loop (l) DAY=262, EnKF 

  

 

Figure 3.14 Cont. Surface Soil Moisture Error Variation during Drydown Period 

Precipitation ((a) and (b)) in mm and surface soil moisture error variation ((c) ~ (l))  

(error = true – open loop or EnKF).in mmH2O 

 

Table 3.5 Effect of Canopy Interception (DAY29) 

HRU (Landuse) 
Initial precipitation 

Precipitation  
after canopy interception 

True Open loop/EnKF True Open loop EnKF 
118,119 (FRSD) 

2.4 10.2 
0 1.83 1.83 

115,116,117 (AGRR) 1.989 10.151 10.08 
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3.5 Conclusion 

In this study, a synthetic experiment was conducted to investigate how surface soil 

moisture assimilation affects hydrological processes in the Upper Cedar Creek Watershed 

using the SWAT hydrologic model and the Ensemble Kalman Filter. This study 

compared three scenarios: 1) a true scenario with no errors in model, precipitation and 

soil moisture observations; 2) an open loop scenario with limited precipitation 

information; and 3) the EnKF scenario with the same imperfect information as the open 

loop but assimilating observed surface (~5cm) soil moisture every day using the EnKF 

data assimilation technique.  

Soil moisture update through the EnKF improved surface and profile soil moisture 

estimations compared to the open loop. In addition, the EnkF improved predictions of 

other subsequent hydrological variables with reduced errors even though the magnitude 

of the improvements varied according to different variables and rainfall accuracy. The 

most significant improvements in the prediction of those variables were found during the 

winter months due to large errors in cumulatively overestimated precipitation. 

The capability of surface soil moisture assimilation for improving streamflow prediction 

was constrained by the accuracy of precipitation and characteristics of the rainfall-runoff 

mechanism in SWAT. Highly overestimated or underestimated streamflow peaks 

corresponded to the inaccurate rainfall events. Updated soil moisture conditions after 

applying the EnKF do not always lead to improvements in surface runoff (or streamflow) 

predictions. This is because in using the curve number method, sensitivity of surface 
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runoff generation to changes in soil moisture is affected by various factors such as soil 

type, landuse type, rainfall intensity, CN2 and antecedent soil moisture conditions. A 

simple experiment in this study showed that both the CN method and the Green-Ampt 

method in the SWAT have some limitations in reflecting soil moisture updates into the 

surface runoff routine. Therefore, it is essential to have accurate precipitation input to 

achieve improved streamflow predictions through surface soil moisture assimilation 

using SWAT. This fact was the motivation behind several previous studies for exploring 

methods to improve precipitation input using soil moisture retrievals (Crow and Bolten, 

2007; Crow et al., 2009; Crow et al., 2011). Second, greater effort is needed in 

developing better excess rainfall simulation algorithms to overcome the limitations of the 

current CN method so that continuous model processes under various rainfall intensities 

are taken into account.  

Distributed RMSE maps from the surface and profile soil moisture predictions illustrated 

the effects of different landuse and soil types on soil moisture estimation. The EnKF 

results in much less error in soil moisture estimation than the open loop scenario 

throughout the watershed. However, depending on the soil and landuse type, the 

magnitude of reduced errors with the EnKF varied. When I removed the effect of 

inaccurate precipitation and examined a certain drydown period, the EnKF scenario 

performed much better than the open loop scenario. The EnKF returned the soil moisture 

condition close to the true state more quickly than the open loop scenario reducing the 

prediction errors that resulted from inaccurate or limited precipitation data. In addition, 

the EnKF was shown to overcome the problem of consistently underestimated soil 
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moisture in some areas compared with the open loop due to a certain soil type and 

landuse.  

The synthetic data modeling experiment conducted in this study assumed that surface soil 

moisture observations for each HRU in the SWAT model were available and that 

model/observational errors were known. However, for real world applications, further 

studies are required to answer the following questions. 1) How can we best use remotely-

sensed soil moisture observations in coarse resolution in time and space for a watershed 

scale hydrologic model? This question will lead to more studies on developing temporal 

and spatial downscaling methods (Kaheil et al., 2008; Merlin et al., 2010). 2) How can 

we determine the uncertainties in precipitation, models and observations? Various 

approaches have been presented in previous studies with the development of data 

assimilation techniques, some of which being mentioned in this paper. Although this 

study demonstrates the potential of remotely-sensed surface soil moisture measurements 

and data assimilation for applications of watershed scale water resources management, 

future studies using actual observed data are necessary to effectively transfer the science 

to practical applications. 
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CHAPTER 4 ESTIMATION OF REPRESENTATIVE SOIL MOISTURE 

CHARACTERISTICS AT FIELD SCALE 

4.1 Introduction 

Soil moisture is a key variable in understanding the hydrologic processes and energy 

fluxes at the land surface. In spite of new technologies for in situ soil moisture 

measurements, and increased availability of remotely-sensed soil moisture data, scaling 

issues between soil moisture observations and model grid sizes pose a problem for full 

utilization of the available data (Western et al., 2002; Robinson et al., 2008; Verstraeten 

et al., 2008). For example, the scale of point measurements (support area less than 1 m
2
) 

typically does not match the size of model grids (support area greater than 100 m
2
). In 

addition, proper linkage of soil moisture estimates across different scales of observations 

and model predictions is essential for the validation of current and upcoming space-borne 

surface soil moisture retrievals, as well as the successful application of data assimilation 

techniques (Grayson and Western, 1998; Crow et al., 2005; Cosh et al., 2006; Crow and 

van den Berg, 2010; Jackson et al., 2010b; Miralles et al., 2010; Loew and Schlenz, 

2011).   

Efforts to obtain the spatially representative soil moisture mean and variance from a few 

sampling points were initiated by Vachaud et al. (1985) using the concept of temporal 
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stability. Temporal stability studies have gained considerable attention in the context of 

validation of remotely-sensed soil moisture products and have been applied to a range of 

spatial scales, different measurement depths and various time scales (Mohanty and 

Skaggs, 2001; Cosh et al., 2004; Cosh et al., 2006; Starks et al., 2006; Choi and Jacobs, 

2008; Heathman et al., 2009; Joshi et al., 2011). Temporal stability of soil moisture 

conditions is affected by many factors including topography, soil texture, vegetation and 

precipitation (Grayson and Western, 1998; Mohanty and Skaggs, 2001; Joshi et al., 2011). 

Therefore, it is uncertain as to whether a temporally stable location maintains its rank 

across time and space or if the rank of surface soil moisture measurements is consistent 

with time-stable observations at deeper depths in the profile.   

Grayson and Western (1998) introduced an offset method to estimate spatial soil moisture 

average from the most temporally stable site having a non-zero relative mean difference. 

Even though the most temporally stable site can be determined, in reality, there are cases 

where it might not be feasible to install a permanent soil moisture sensor at that location 

for long-term monitoring. For example, in agricultural fields such as the study area in this 

paper, the permanent soil moisture sensors are installed on the boundary of a field in 

order not to impede landowner agricultural practices such as crop spraying and tillage. 

Therefore, it is necessary to investigate how well soil moisture observations from the 

permanent sensors represent field average conditions and how to transform the data to 

obtain representative information of the field soil moisture variability.   

De Lannoy et al. (2007b) explored several statistical methods to upscale point 

measurements to field average soil moisture. They concluded that cumulative distribution 
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function (CDF) matching and a simple linear relationship were the most successful 

upscaling methods to obtain the field average. They also identified converting equations 

or parameters from those methods to scale up observations from a specific point to the 

field average. The converting equations or parameters were termed observation operators 

according to Drusch et al. (2005a). However, the work of De Lannoy et al. (2007) has 

some limitations for practical applications because they did not test if the observation 

operators can be transferrable in time or to other similar or adjacent sites.  

Variance of soil moisture within an area, as well as the spatial average, are important 

statistical metrics for soil moisture data assimilation in providing observation error 

parameters, land surface modeling and validation of remotely-sensed soil moisture 

products (Charpentier and Groffman, 1992). The relationship between variance and mean 

has been investigated in several studies showing that the trend of the relationship may 

differ depending on the particular study (Famiglietti et al., 1999; Brocca et al., 2007). As 

Vachaud et al. (1985) suggested, it would be very attractive if we could determine 

variances of soil moisture within an area by measuring soil moisture only at certain 

locations without dense sampling.  

This study aims to link two different scales of soil moisture estimates by upscaling single 

point soil moisture measurements to field average for representing field-scale agricultural 

watersheds (~ 2 ha) located within the Upper Cedar Creek Watershed (UCCW) in 

northeastern Indiana. Estimation of field average soil moisture from point measurements 

can be utilized for calibration and validation of field-scale hydrologic models such as the 

Root Zone Water Quality Model. Since field-scale deterministic models can incorporate 
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complicated soil-water-plant interaction processes from laboratory and field studies, they 

have provided a fundamental basis for watershed-scale hydrologic, water quality and 

agricultural system models (Abrahamson et al., 2006). In addition, several previous 

studies have shown great potential in using surface soil moisture data assimilation with 

one-dimensional hydrologic models at the field scale to provide better predictions of 

profile soil moisture (Walker et al., 2001b; Walker et al., 2001a; Heathman et al., 2003a; 

Han et al., 2011). Therefore, this upscaling approach is a prerequisite for successful data 

assimilation applications at the field scale by providing more accurate, less biased field 

representative soil moisture observations.  

A couple of methods are investigated, in this study, to induce the soil moisture field 

average and variance from single point measurements, especially focusing on the CDF 

matching method which has been shown to be an effective observation operator (Reichle 

and Koster, 2004a; Drusch et al., 2005a). The main objectives of this study are: 1) to find 

appropriate way(s) for upscaling point soil moisture measurements to field averages by 

comparing different observation operators, 2) to explore whether the observation operator 

from CDF matching is transferable in time and space (between different fields and 

between different soil layers), 3) to find the most influential factors affecting the temporal 

or spatial transferability of the observation operators, and 4) to estimate spatial variability 

(standard deviation) of soil moisture within the study areas using the same point 

measurements and CDF matching method. 

This study provides an alternate means for overcoming the scale differences between in 

situ point scale soil moisture measurements and coarse resolution remote sensing 
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observations. The two field study sites in this research work, AS1 and AS2, have 

permanent soil moisture sensors installed at the outlet of the field scale watershed. The 

permanent sensors are part of the soil moisture monitoring network in the UCCW which 

will be included in the validation program for soil moisture products from the upcoming 

(2014) NASA Soil Moisture Active/Passive Mission (SMAP). Therefore, it is expected 

that this study can be a first step to resolve the scaling issue between in situ point 

measurements and the remote sensing grid size and for successful calibration and 

validation of SMAP and similar space-borne operational products. 

In the next section, limitations in applying temporal stability analysis as a method to 

obtain spatially representative values are discussed based on previous studies by 

Heathman et al. (in press) and Heathman et al. (in review) which used the same dataset 

from the same field sites as the present study. By addressing the limitations of temporal 

stability analysis, which has been widely applied in literature, this study aims to advance 

our ability to more adequately obtain spatially representative soil moisture estimates. 

4.2 Related Work – Temporal Stability Analysis 

The work in this investigation is an extension of two previous studies that involved a 

comprehensive analysis of temporal stability conducted in two agricultural fields (AS1 

and AS2) to determine whether measurements of soil moisture data from permanent 

sensor locations (edge-of-field) could be used to adequately represent actual field 

averages that were obtained from a number of temporary “in-field” sensors (Heathman et 

al., in press; Heathman et al., in review). Detailed descriptions of the study areas and 
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datasets are provided in section 4.3. The previous studies found that sensor locations do 

not necessarily maintain their rank in mean relative difference (MRD) for different time 

periods and depths. Nonetheless, most sensors consistently overestimated (positive MRD) 

or underestimated (negative MRD) the field averages for two different years with some 

exceptions. In regards to consistency of rank in MRD between two different depths (5cm 

vs. 20cm), the majority of  sensor locations in field AS2 maintained their consistency in 

having positive or negative MRD. However, five out of eleven sensors at AS1 had 

opposite signs of MRD, which means that they overestimated the field average at surface 

and underestimated it at the 20 cm depth, or vice versa.  

According to the results in the two previous studies there were no single measurement 

locations found to represent field average soil moisture conditions from one year to the 

next or for two different soil layers at both AS1 and AS2. In addition, the most time-

stable sites do not remain the same for different years (e.g. #17 in 2009 and #8 in 2010 

for 5cm data at AS1) and different depths (e.g. #8 for 5cm and #19 for 20cm at AS1 in 

2010) as shown in Table 4.1. Several other studies investigated temporal stability at 

multiple soil depths found it difficult to determine one representative location for all soil 

layers (Starks et al., 2006; De Lannoy et al., 2007b; Heathman et al., 2009). Starks et al. 

(2006) compared the results of temporal stability analysis of soil moisture observations 

from two different remote sensing campaigns in the Little Washita river watershed, the 

Southern Great Plains 1997 (SGP97) and the Soil Moisture Experiment 2003 (SMEX03). 

They found that no single site represented the watershed average soil moisture 

consistently for any depth interval during the combined experiment periods.   
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However, for the two agricultural fields in the present study, if we consider that one 

single location could be selected for practical purposes, then the second most temporally 

stable site may serve as a substitute for the primary site provided there is little statistical 

difference between the two sites. Then, #19 and #21 can be determined as the most 

temporally stable sites for AS1 and AS2 respectively, considering all data from two 

separate years and two different depths. 

Even though sites #19 and #21 were determined to be the most temporally stable sites for 

AS1 and AS2 respectively, there are problems in estimating field averages from these 

sites using, for example, the constant offset approach by Grayson and Western (1998). 

This is due to the signs of their respective constant offsets being opposite for the data in 

2009 and 2010. For example, #19 at AS1 had a constant offset of -0.1003 in 2009 and 

0.0586 in 2010, and #21 at AS2 had values of -0.0368 in 2009 and 0.2061 in 2010. This 

indicates that they underestimated the field averages in 2009 and overestimated them in 

2010. Therefore, even though they are considered to be the most temporally stable sites, 

they need different offset values for each year in order to adequately estimate field 

averages. This finding contradicts the argument of Grayson and Western (1998) that a 

constant offset can be used irrespective of the time of year to estimate the field average 

using point measurements which have a non-zero mean relative difference. This fact 

places limitations on the practical applications of temporal stability analysis for upscaling 

point soil moisture measurements to field averages since additional spatial samplings are 

still required to estimate the offset values which need to be updated for different time 

periods. Thus we must reconsider whether the temporal stability approach can achieve its 
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original purpose: minimizing the numbers of point observations to characterize the 

spatiotemporal variability of soil moisture.  

Most of the previous studies conducting temporal stability analysis across different scales 

and depths did not attempt to validate the most temporally stable sites for different time 

periods, considering differences in vegetation type and rainfall amounts that could occur 

over time. For instance, in the Corn Belt region in the Midwestern United States crops are 

typically rotated between corn and soybean every year or every two years. Therefore, the 

effect of different crop types (or other factors which temporally vary and affect the 

stability of soil moisture conditions) should be accounted for in determining temporally 

stable sites for the purpose of validating long-term remote sensing soil moisture retrievals 

or in evaluating long-term hydrologic model predictions.  

As I have noted, the application of temporal stability analysis has received considerable 

attention for investigating soil moisture variability and in validating remotely-sensed soil 

moisture data (Mohanty and Skaggs, 2001; Cosh et al., 2004; Cosh et al., 2006; Starks et 

al., 2006; Choi and Jacobs, 2008; Heathman et al., 2009; Choi and Jacobs, 2011; Joshi et 

al., 2011). However, the aforementioned limitations of the temporal stability analysis 

(low possibilities of finding a single representative location for different periods and 

different soil layers, and uncertainty in the transferability of offset constants in time and 

space) still remain. Due to limitations involving temporal stability studies, De Lannoy et 

al. (2007b) suggested that certain transformation functions or upscaling of point 

measurements may offer a viable way to obtain spatial averages within a satellite pixel or 

a model grid cell in order to limit the representativeness error of point measurements. 
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Thus, the CDF matching method, an alternative upscaling method, is tested in the present 

study as a possible means for obtaining temporally and spatially transferrable observation 

operators 

4.3 Study Area and Data Collection 

Soil moisture observations for this study were collected at two small agricultural 

watersheds, AS1 (2.23ha) and AS2 (2.71ha) that are located in the Upper Cedar Creek 

Watershed (UCCW) in northeastern Indiana (Figure 4.1). The two watersheds have 

permanent soil moisture sensors and weather stations installed as part of an 

environmental monitoring network in the UCCW established by the United States 

Department of Agriculture, Agricultural Research Service (USDA-ARS) National Soil 

Erosion Research Laboratory (NSERL). The monitoring network was initiated in 2002 by 

the Source Water Protection Project and the Conservation Effect Assessment Project, and 

are planned to be used for the validation of upcoming NASA SMAP soil moisture 

products as one of the validation sites. For more detailed information regarding the 

UCCW environmental network please see Flanagan et al. (2008). 

Both AS1 and AS2 were planted in soybeans in 2009 and corn in 2010. The two fields 

have different management practices; AS1 is in no-till, with AS2 having rotational tillage 

in years when corn is planted. The slope of the fields ranges from 5 to 10%. Major soil 

types in each field are a Glynwood (GnB2) silt loam (Fine, illitic, mesic Aquic 

Hapludalfs) and a Blount (BaB2) silt loam (Fine, illitic, mesic, Aeric Epiaqualfs) for AS1 

and AS2, respectively (Figure 4.1).  
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Figure 4.1 Study Area 

 

Temporary spatial soil moisture measurements were obtained during the summers of 

2009 and 2010 between the last crop spraying and harvest so as not to interfere with 

landowner agricultural operations. Twenty temporary soil moisture sensors, with 35m 

grid spacing, were installed across the watersheds at the surface 5cm depth in 2009, and 

two sensors at two depths (5cm and 20cm) were installed, with a 70m grid spacing, at ten 

locations in each field in 2010 (Figure 4.1). The 2010 sensor locations were coincident 

with the 2009 locations based on 70m spacing. Some of the temporary sensors in 2009 

did not function properly because of data transmission errors. Therefore, 18 and 15 point 

measurements out of 20 sensors were obtained in 2009 for AS1 and AS2, respectively. 
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Also due to data transmission errors, AS2 did not report data at several sites in August 

and September of 2009. Therefore, AS2 had a shorter measurement period from July 16 

to August 8 in 2009. However, measurements were obtained in AS1 from July 15 to 

September 21, 2009. In 2010, after modifications in data transmission technology, soil 

moisture was spatially measured from June 30 to September 21 from all ten temporary 

sensor locations in AS1 and AS2.  

The permanent soil moisture sensors are located near the outlet of the two watersheds. 

They provide soil moisture measurements at four different depths (5cm, 20cm, 40cm and 

60cm) every 10 minutes. The temporary sensors measured soil moisture every 30 minutes 

and transmitted to a field data logger. The original 10 minute measurements from the 

permanent sensors were resampled so that they would match the temporary sensor 30-

minute measurements. Out of four different measurement depths from the permanent 

sensors, only 5cm and 20cm measurements were used in combination with the temporary 

sensor measurements for data analysis in this study.  

Soil moisture sensors used for this study were Stevens SDI-12 Hydra Probes, a type of 

frequency domain reflectometry that measures soil water content based on changes in soil 

dielectric permittivity. More details regarding the accuracy of the soil moisture 

measurements, sensor calibrations and soil properties information can be found in Han et 

al. (2011) and Heathman et al. (in press).  
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4.4 Methodology 

As Figures 4.2 and 4.3 show, soil moisture observations from the permanent sensors do 

not represent the field average appropriately in either field. Even though the permanent 

sensor measurements and the field averages are generally in agreement with the rainfall 

dynamics, their relationships are complicated. For example, the AS1 permanent sensor 

overestimated the field averages for the first half of the experiment period and 

underestimated them during September, 2009 (Figure 4.2). Given these problems with the 

permanent sensor measurements, it would be desirable to transform the soil moisture 

observations from the permanent sensors so that they match the field averages. This 

transformation can be achieved using observation operators (Drusch et al., 2005a). This 

section explains the different observation operators used in this study to estimate field 

average conditions and standard deviations.  

 

4.4.1 Estimation of Field Averages 

CDF matching method 

In this study, the cumulative distribution function (CDF) matching method is the primary 

approach used for estimating field averages based on point soil moisture measurements 

from the permanent sensors. The CDF matching method has been used in many 

geophysical studies for the purpose of bias correction or rescaling of different sets of 

observations. For example, the concept of CDF matching was applied for rainfall 

estimation, specifically to adjust the relationships between reflectivity and rain rate (Atlas 

et al., 1990) and to quantify uncertainties in satellite rainfall retrievals (Anagnostou et al., 
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1999). Wood et al. (2002) also used a similar approach to correct biases in model 

forecasted rainfall and temperature for long-range hydrologic forecasting. With regard to 

soil moisture variables, Liu et al. (2009) and Liu et al. (2011) merged soil moisture 

retrievals from different satellites after rescaling them by the CDF approach. Reichle and 

Koster (2004a) and Drusch et al. (2005a) adopted the CDF method to define observation 

operators for rescaling satellite-based soil moisture observations into model climatology. 

In a field scale soil moisture study, De Lannoy et al. (2007) used the CDF matching 

method as one of the upscaling methods to estimate field averages from point soil 

moisture measurements. While Liu et al. (2009) and Liu et al. (2011) defined different 

scaling linear equations for separate percentile segments of CDF curves, Drusch et al. 

(2005) and De Lannoy et al. (2007b) derived a polynomial equation for their entire 

dataset. In the present study, the same approach as Drusch et al. (2005) is adopted to find 

appropriate observation operators.  

The CDF matching method is used to adjust the CDF curve of one variable to the curve 

of another reference variable. In this study, the CDF curves of the point measurements 

are scaled to those of the field averages. Higher order moments of point measurement 

distribution functions, including mean, standard deviation and skewness, can be corrected 

through the CDF matching method. Procedures for the CDF matching method are 

summarized below. 

1) Rank the two datasets of permanent sensor measurements ( ) and the field average 

( ).  
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2) Compute differences between each corresponding element from the ranked datasets  

                                                 (4. 1) 

where  and  are the ranked field averages and point measurements, respectively, 

for i=1…n, where n is the number of the measurements. 

3) Find a optimum polynomial fit to the ranked point measurements and corresponding 

differences using the least square optimization. In this study, the third order polynomial 

fit was chosen for all datasets according to De Lannoy et al. (2007) and the principle of 

parsimony. 

              (4.2) 

 where  is the estimated difference for  

4) Compute the estimated field average from the estimated difference. 

                                              (4.3) 

The polynomial equation (Equation 4.2) is the observation operator for each dataset and 

is used to remove the systematic differences between the point soil moisture 

measurements and the field averages.  

Other upscaling methods 

Besides the CDF matching method, other linear transformation methods are applied to 

find the best observation operators. First, a simple linear relationship between point 

measurements and field averages is used.  

                                (4.4) 
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where  is the estimated field average corresponding to point measurements ( ) 

The second alternative method is to use the point measurements from the most 

temporally stable site and a constant offset (  obtained from the temporal stability 

analysis as Grayson and Western (1998) introduced in order to estimate field averages 

from single point measurements.  

                                           (4.5) 

where θst,i is soil moisture measurements from the temporally stable site at time i. The 

constant offset ( is a temporal mean relative difference from the temporally stable site, 

defined by Vachaud et al. (1985). 

                                 (4.6) 

where  is an average of spatially distributed m point measurements at time step i 

( ). 

The mean relative difference approach has been applied in several previous studies to 

find representative field average values once the temporally stable site, having a non-zero 

mean relative difference, is found (Grayson and Western, 1998; Starks et al., 2006; 

Heathman et al., in press). However, even though one of the temporary sensors in this 

study is found to be the most temporally stable site, the information from the site cannot 

be used for long-term monitoring because the sensor equipment must be removed from 

the field after the experiment period to allow landowner farming operations to continue. 

Therefore, the mean relative difference method using the permanent sensor 

measurements, instead of the “in-field” temporally stable site, is also tested as a third 
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alternative observation operator.  

                                                      (4.7) 

where the constant offset ( is a temporal mean relative difference from the permanent 

sensor measurements defined as Equation 4.6. 

Even though the mean relative difference approach can predict field averages with high 

correlation coefficients, as shown in Starks et al. (2006), it does not guarantee unbiased 

estimation. In addition, the amplitude of the estimated field average will be smaller than 

that of the actual soil moisture measurement if the mean relative difference is positive, 

and the amplitude will be larger if the difference is negative, due to the multiplicative 

relationship (De Lannoy et al., 2007b). In order to avoid these problems of the mean 

relative difference approach, absolute difference relationship is also used based on the 

additive relationship. 

                                            (4.8) 

where  is a temporal mean of absolute differences between the permanent sensor 

measurements (  and spatial averages ( ,  
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Figure 4.2 Soil Moisture Observations from the Permanent Sensor, Field Averages        

and Standard Deviations in 2009 at (a) AS1 and (b) AS2 
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4.4.2 Estimation of Soil Moisture Variability 

The same principle of the aforementioned CDF matching method is applied to estimate 

spatial standard deviations of soil moisture within the study areas using point 

measurements from the permanent sensors. Vachaud et al. (1985) used the concept of 

temporal stability to identify the value of one or two standard deviations, as well as the 

mean, based on the assumption that particular locations maintain their rank in the 

cumulative probability function for different observation times. In the present study, a 

hypothetical location is assumed to be a temporally stable site and to provide soil 

moisture differing from the mean by one standard deviation (  

consistently. The means ( ) and standard deviations ( ) of soil moisture observations 

from the spatially distributed sensors are assumed to represent the true variability of the 

soil moisture in the watersheds. Using the mean and standard deviations obtained from all 

the sensors, the soil moisture time-series data for the hypothetical location (  that 

represent consistently wet conditions (mean plus one standard deviation) are computed 

( . Then, the same CDF matching procedures described in the previous 

section are repeated to compute  by rescaling the permanent sensor measurements 

(  to . The third order polynomial equations are selected for observation operators 

again for consistency. Once  is determined, the predicted standard deviation at time 

step i ( ) is obtained by subtracting the field average ( ) estimated by the CDF 

matching and the permanent sensor data.  

                                    (4.9) 
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4.5 Results and Discussions 

 

4.5.1 Upscaling Point Measurements to Field Averages 

Results of CDF matching method 

Figure 4.3 shows how the original CDF of permanent sensor measurements is adjusted to 

the CDF of field averages for each dataset of AS1 and AS2 (5cm in 2009, and 5cm and 

20cm in 2010). In 2009, the permanent sensor at AS1 overestimated the field averages for 

some periods and underestimated them for other periods, whereas the permanent sensor 

at AS2 consistently overestimated the field averages (Figure 4.3 (a) and (b)). In 2010, 

permanent sensors at both AS1 and AS2 highly underestimated the field averages for 

both 5cm and 20cm depth measurements.  

The observation operators were determined through least square fits of a third order 

polynomial with the coefficients listed in Table 4.1. It is found that the observation 

operators could be used to rescale the CDFs of point measurements to field averages 

successfully. Even though the relationships between ranked differences and ranked point 

observations from the six data sets were very different from each other, the third order 

polynomial was consistently selected for observation operators in order to test their 

transferability between data sets (Figure 4.4). In addition, it was found that other higher 

order polynomial equations did not provide significantly improved fitting results. 
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Figure 4.3 CDFs of Soil Moisture 

(a) AS1, 5cm in 2009, (b)AS2, 5cm in 2009, (c) AS1, 5cm in 2010, (d) AS2, 5cm in 2010, 

(e)AS1, 20cm in 2010, (f)AS2, 20cm in 2010 
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Table 4.1 Coefficients of Transforming Equations for Upscaling from the Permanent Sensor Measurements to Field Averages 

Method
*
 coefficients 

5 cm (2009)             5 cm (2010)        20 cm (2010) 

AS1 AS2  AS1 AS2  AS1 AS2 

LR 

(Equation 4.4) 

b0 0.064 0.040  0.117 0.125  0.244 0.164 

b1 0.718 0.706  0.787 0.613  0.351 0.483 

AMD 

(Equation 4.8) 
 0.002 0.020  -0.074 -0.035  -0.068 -0.018 

MRD-ST 

(Equation 4.5) 
 

0.061 

(#17)
**

 

-0.037 

(#21)
 **

 
 

0.102 

(#8)
 **

 

0.134 

(#30)
 **

 
 

0.128 

(#19)
 **

 

0.183 

(#21)
 **

 

MRD-P 

(Equation 4.7) 
 0.0367 0.1164  -0.274 -0.137  -0.2041 -0.065 

CDF 

(Equation 4.2) 

a0 0.494 -0.481  -0.342 -0.127  -0.774 0.449 

a1 -31.595 47.843  32.537 13.772  57.008 -7.235 

a2 25.165 -31.842  -24.271 -10.665  -45.440 7.727 

a3 -6.310 6.773  5.654 2.437  11.222 -3.138 

* LR: linear relationship 

   AMD: absolute mean difference 

   MRD-ST: relative mean difference from the most temporally stable site 

   MRD-P: relative mean difference from the permanent sensor 

   CDF: CDF matching method 

** Numbers in parenthesis indicate locations of the most temporally stable sensors 
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Figure 4.4 Observation Operators for the CDF Matching (a) AS1, (b)AS2 

(O and P indicate observed and predicted data respectively) 

Figure 4.4 shows that the observation operators were non-linear with the permanent point 

measurements for all data sets in the same manner that remotely-sensed soil moisture 

observations were non-linear with the model predictions in Drusch et al (2005). Shapes of 

the observation operators for AS1 and AS2 are similar for the 2010 data, whereas they 

are very different for the 2009 data. Due to more stable soil moisture conditions at deeper 

depths, the data sets from the 20cm sensors in 2010 show less non-linearity compared to 

the data for the 5cm sensors for both AS1 and AS2. Even though the operators for the 

deeper depths appear linear for most of the soil moisture ranges, a high degree of non-

linearity is associated with higher soil moisture values, which is consistent with highly 

variable and unstable soil moisture conditions in response to rainfall as discussed in a 

later section. 

The significant difference in the shapes of CDFs and observation operators between 

different data sets implies that there is a low probability that the observational operators 

are temporally and spatially transferable. In spite of having the same rainfall and crop 
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types (the two field sites are only 500 meters apart), their soil moisture variabilities are 

very different. This fact suggests high local heterogeneity in these two fields. More 

details about possible factors affecting the transferabilities of the observation operators 

are discussed in later sections.   

Comparison of different observation operators 

Table 4.2 summarizes the results of the different upscaling methods explained in the 

methodology section. Pearson‟s linear correlation coefficient (R), root mean square error 

(RMSE) and mean bias error (MBE) are used to evaluate the performances of the five 

different observation operators. They are defined as follows: 

                                          (4.9) 

                                              (4.10) 

                        (4.11) 

 where  and  are the means of estimated field averages and permanent sensor 

measurements, respectively.  

The CDF matching method shows the best results for all data sets: correlation 

coefficients are close to 0.99, RMSE is improved more than an order of magnitude from 

the original data set (P) and bias is successfully reduced to zero. Successful application of 

the CDF matching method was also presented by De Lannoy et al. (2007b). 
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Table 4.2 Performance Comparison of Different Upscaling Methods 

 Method
*
 

5 cm (2009)  5 cm (2010)  20 cm (2010) 

R RMSE MBE  R RMSE MBE  R RMSE MBE 

AS1 

P 0.649 4.62E-02 0.002  0.910 7.57E-02 -0.074  0.882 7.43E-02 -0.068 

LR 0.649 4.37E-02 0.000  0.910 1.30E-02 0.000  0.882 8.30E-03 0.000 

AMD 0.649 4.61E-02 0.000  0.910 1.51E-02 0.000  0.882 2.99E-02 0.000 

MRD-ST 0.991 9.80E-03 0.001  0.935 1.14E-02 -0.001  0.908 7.90E-03 0.000 

MRD-P 0.649 4.60E-02 -0.006  0.910 2.51E-02 0.001  0.882 4.10E-02 0.002 

CDF 0.997 4.80E-03 0.000  0.991 4.10E-03 0.000  0.989 2.70E-03 0.000 

AS2 

P 0.789 3.20E-02 0.020  0.801 4.49E-02 -0.035  0.944 2.76E-02 -0.018 

LR 0.789 2.19E-02 0.000  0.801 2.12E-02 0.000  0.944 6.40E-03 0.000 

AMD 0.789 2.49E-02 0.000  0.801 2.78E-02 0.000  0.944 2.06E-02 0.000 

MRD-ST 0.978 7.50E-03 0.000  0.985 6.20E-03 0.000  0.887 1.00E-02 0.000 

MRD-P 0.789 2.32E-02 -0.001  0.801 3.30E-02 0.001  0.944 2.31E-02 0.001 

CDF 0.997 2.60E-03 0.000  0.997 2.80E-03 0.000  0.995 2.00E-03 0.000 

* P: Original data from permanent sensor, LR: linear relationship, AMD: absolute mean difference,   MRD-ST: relative mean 

difference from the most temporally stable site, MRD-P: relative mean difference from the permanent sensor, CDF: CDF 

matching method 
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The mean relative difference (MRD) method using the most temporally stable points 

(MRD-ST) provides the second best results (Table 4.2). Heathman et al. (in press) 

determined that locations #17 and #21 are the most temporally stable sites (having 

smallest standard deviations of MRD) for AS1 and AS2, respectively for the same 2009 

dataset. They also showed that the observations from those temporally stable sites can be 

successfully converted to field averages using a constant offset (Equation 4.5) resulting in 

a coefficient of determination (R
2
) greater than 0.95. For the 2010 data sets, locations #8 

and #19 were found to be the most temporally stable for 5cm and 20cm depth, 

respectively at AS1, and locations #30 and #21 for 5cm and 20cm depth, respectively at 

AS2 (Heathman et al., in review). This method improved overall error statistics, 

especially R for 5cm depth measurements. However, R for 20cm data at AS2 for 2010 

decreased (= 0.887) even when compared to the original permanent sensor measurements 

(= 0.944). This coincides with the low R
2
 (= 0.786) of linear regressions between the 

actual field averages and the estimated field averages using the constant offset value, 

compared to R
2
 of other data sets close to 0.9 (Heathman et al., in review)  

The disadvantage of the MRD-ST method is that it does not remove bias completely. 

Although this method improves R and RMSE values, with values comparable to the CDF 

matching method, some data sets (5cm in 2009 and 5cm in 2010 for AS1) still have non-

zero MBE. In addition, Figure 4.5 shows that this method is not successful in predicting 

several peak soil moisture conditions (e.g. August 7, September 7 and 8 for AS1 and July 

23 for AS2).  
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Figure 4.5 Time Series of Soil Moisture for Permanent Sensor Data, Field Average and 

the Transformed Permanent Sensor Data for (a) AS1 (b) AS2 

(P-Sensor: Permanent sensor measurements, LR: linear relationship,  

MRD-ST: relative mean difference using the most temporally stable site,  

MRD-P: relative mean difference using the P-Sensor, CDF: CDF matching) 
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The mean relative difference method using the data from the permanent sensors (MRD-P 

in Table 4.2) resulted in little improvement compared to the original data (P); Low R of 

the original data remains the same, RMSE is improved slightly, and MBE is decreased 

but still remains non-zero for all data sets. These results might be expected based on the 

previous temporal stability studies because permanent sensor measurements had high 

standard deviations of MRD for both AS1 and AS2 (Heathman et al., in press; Heathman 

et al., in review). Equation 4.7 which adjusts the point measurements to field averages 

using the constant offset is not suitable for temporally unstable point measurements, such 

as the data from the permanent sensors in the present study.   

The absolute mean difference method (AMD) is not very successful in upscaling the 

point measurements to the field averages, except in removing bias as intended (Table 4.2). 

The method using simple linear relationships (LR) produces better results than either 

AMD or MRD-P, but much less successful results than either the CDF matching or the 

MRD-ST. Due to relatively stable soil moisture conditions at the 20cm depth, upscaling 

results are quite good, even for the LR method where for the AS2 data in 2010, the LR 

method produces less RMSE than MRD-ST.  

Figure 4.5 compares the results of different observation operators graphically for the 

2009 data sets. Results for the CDF matching and the MRD-ST methods show that 

upscaling permanent sensor measurements to the field averages was successful, whereas 

the other three methods fail to do so. 

Table 4.1 illustrates coefficients of the different observation operators for each data set. 

Some of the coefficients from different data sets have similar magnitudes but others have 
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very different magnitudes indicating little possibility of their transferability between data 

sets. 

4.5.2 Spatial and Temporal Transferability of Observation Operators from CDF Matching 

Six data sets obtained from different years (2009 and 2010), sites (AS1 and AS2) and 

depths (5cm and 20cm) allow us to test whether the observation operators from CDF 

matching are transferable in time and space. Data0 in Table 4.3 represents the original 

data from the permanent sensor and Data1 represents upscaled data using the observation 

operator from the CDF matching with corresponding field averages (which are the same 

as the CDF results in Table 4.2). The results of these two data sets are used as reference 

to evaluate the results of other observation operators (Data2, Data3 and Data4) for spatial 

and temporal transferability tests.  

Temporal transferability at two different years (2009 vs. 2010) 

Data2 in Table 4.3 are results of applying the observation operators from another time 

period in order to test temporal transferability of the observation operator. For example, 

the observation operator obtained from 2009 data was used to upscale the permanent 

sensor measurements of the year 2010. As expected from the very different shapes of 

CDF curves in Figure 4.3 and the observation operators in Figure 4.4 for the data from 

2009 and 2010, the error statistics with Data2 are not satisfactory, indicating unsuccessful 

temporal transferability of observation operators for both AS1 and AS2. Although 

correlations are improved, error terms are increased using observation operators from 

another time period.   
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Table 4.3 Spatiotemporal Transferabilities of Observation Operators from the CDF Matching Method 

 Data
*
 

5 cm (2009)  5 cm (2010)  20 cm (2010) 

R RMSE MBE  R RMSE MBE  R RMSE MBE 

AS1 

 

Data0 0.649 4.62E-02 0.002  0.910 7.57E-02 -0.074  0.882 7.43E-02 -0.068 

Data1 0.997 4.80E-03 0.000  0.991 4.10E-03 0.000  0.989 2.70E-03 0.000 

Data2 0.948 7.14E-02 0.068  0.942 8.27E-02 -0.082  - - - 

Data3 0.956 2.57E-02 -0.019  0.990 3.26E-02 -0.032  0.961 4.33E-02 -0.043 

Data4 - - -  0.950 2.53E-02 0.023  0.974 2.10E-02 -0.007 

AS2 

 

Data0 0.789 3.20E-02 0.020  0.801 4.49E-02 -0.035  0.944 2.76E-02 -0.018 

Data1 0.997 2.60E-03 0.000  0.997 2.80E-03 0.000  0.995 2.00E-03 0.000 

Data2 0.989 6.12E-02 0.061  0.974 5.84E-02 -0.057  - - - 

Data3 0.979 1.76E-02 0.014  0.995 3.31E-02 0.033  0.933 4.48E-02 0.044 

Data4 - - -  0.900 2.90E-02 0.017  0.993 1.21E-02 0.005 

   *Data0: Original data from permanent sensor 

     Data1: Upscaled results using the observation operator from the same data 

     Data2: Upscaled results using the observation operator from another year to test temporal transferability (2009 vs. 2010) 

     Data3: Upscaled results using the observation operator from another site to test spatial transferability (AS1 vs. AS2) 

     Data4: Upscaled results using the observation operator from another depth to test vertical transferability (5cm vs. 20cm) 
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There seems to be two major possible reasons for this unsuccessful temporal 

transferability: different rainfall distribution or characteristics, and different crop type in 

2009 and 2010. Although the total amount of rainfall at AS1 was greater in 2009 (225 

mm) than in 2010 (130mm) for the same period (July 15 to September 20), the year of 

2010 had more evenly-distributed rainfall events, whereas the year of 2009 had a long 

dry period before heavy rainfall occurred in the middle of August (Figure 4.6). In 

addition, initial soil moisture conditions in 2010 were very wet due to the heavy rains a 

few days before installing temporary sensors. Thus, the field averages of surface soil 

moisture (5cm) in 2010 were wetter than those in 2009 (Figure 4.3). Since surface soil 

moisture variations depend more on evapotranspiration than lateral flow, different crop 

type (soybean in 2009 and corn in 2010 at both AS1 and AS2) is also an important factor 

in considering the failure of temporal transferability. However, in this study, it is difficult 

to isolate the effect of crop type on transferability due to the difference in the major 

forcing variable, rainfall in those two years.  

Besides these two main factors, rotational tillage practices (only for AS2) and local 

heterogeneity at the location where the permanent sensors are installed may affect the soil 

moisture variation between 2009 and 2010. The permanent sensor measurements did not 

show consistent relationships with the field averages in 2009 and 2010. In 2010, both 

permanent sensors at AS1 and AS2 underestimated the field average soil moisture 

conditions consistently, whereas the permanent sensor at AS2 consistently overestimated 

the field averages in 2009 (Figure 4.3). Since the permanent sensors are located near the 

outlet and boundary of the watersheds, they seem to be more sensitive to dry or wet 
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conditions. Whereas AS1 had no-tillage every year, the AS2 field was tilled only in 2010 

before planting corn. Less residue cover due to the tillage in 2010 at AS2 may result in 

drier surface soil moisture condition, but the effect of tillage seems to be blurred by the 

rainfall difference because AS2 had wetter soil conditions in 2010 than in 2009.  

 

 
Figure 4.6 30minute Rainfall comparison in 2009 and 2010 

 

Spatial transferability at two different locations (AS1 vs. AS2) 

Successful spatial transferability of the observation operators with the 2009 data would 

not be expected due to significant differences in the shape of CDF curves (Figure 4.3 (a) 

and (b)) and the observation operators (Figure 4.4) of AS1 and AS2. However, with the 

2010 data, the curves are more similar, which is more conducive for spatial transferability. 

Error statistics of Data3 in Table 4.3 are results of the application of observation 

operators from another site in order to examine spatial transferability of observation 

operators between AS1 and AS2. The results of Data3 show that the observation 

operators are spatially transferable in general; both R and RMSE are improved compared 

to the original permanent sensor measurements (Data0) except for the 20cm data for AS2 

in 2010. However, the results are not as good as the results of Data1 which are from their 
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own observation operators. Therefore, when an observation operator for a site is not 

available, it may be possible to use an alternative observation operator from a nearby site 

under similar climate, soil and crop conditions, like AS1 and AS2. In spite of possible 

spatial transferability with improved R and RMSE in Table 4.3, however, careful 

application of the observation operators from another site should be required because 

they may highly overestimate wet conditions or underestimate dry conditions.  

Compared to 2009 data, the 2010 data have more consistent trends of CDFs between AS1 

and AS2. Therefore, the results of spatial transferability in 2010 show greater 

improvement, especially for AS1; more than 50% of RMSE decrease and R of Data3 is as 

high as R of Data1 with 5cm data at AS1 in 2010.  

Even though temporal transferability was not shown to be successful as mentioned above, 

spatial transferability may have greater potential. Thus, rainfall characteristics seem to be 

the most important factor in determining the success of transferability of observation 

operators, considering AS1 and AS2 are close enough to assume they are under the same 

climate conditions. Different tillage practices and slightly different soil properties 

between AS1 and AS2 seem to be less critical than the differences in rainfall; AS2 has 

slightly more clay content than AS1 (Heathman et al., in press), with AS2 being tilled in 

the spring and AS1 remaining in no-till in 2010. Again, the effect of different crop types 

is difficult to determine because AS1 and AS2 have the same crop every year. 
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Spatial transferability at two different depths (5 cm vs. 20 cm) 

Data4 in Table 4.3 shows the results of applying the observation operators from different 

soil depths at the same sites. Since the permanent sensors at both AS1 and AS2 

consistently underestimated the field averages at both 5cm and 20cm depths in 2010 

(Figure 4.3), the observation operators are expected to be transferable vertically. Table 

4.3 shows that Data4 produce better error statistics for all cases than the original 

permanent sensor measurements (Data0). Since the permanent sensor at AS1 highly 

underestimated the field averages, the observation operator from another depth can 

improve the upscaling results. However, data at AS2 did not have significant differences 

between the permanent sensor measurements and field averages. Therefore, AS2 data 

show less improvement than AS1.  

Compared to the temporal and spatial transferability tests mentioned above, the vertical 

transferability test has fewer factors that may affect the results. Soil properties at 5cm and 

20cm depth are very similar for both AS1 and AS2 (Heathman et al., in press). In general, 

when only one observation operator from soil moisture measurements is available, either 

for the 5cm or 20cm depth, it can be used to upscale the point measurements from the 

other depth to field averages as an alternative.   
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4.5.3 Estimation of Standard Deviations 

Relationship between field averages and spatial variability of soil moisture 

Identifying the relationship between field average and spatial variability of soil moisture 

has been an important issue because of the need to: 1) determine optimal numbers of 

sampling points in order to estimate field averages within certain specified error limits, 2) 

infer soil moisture variability within a footprint, given remotely-sensed soil moisture for 

an area, and 3) assess the varying accuracy of the remotely-sensed soil moisture 

(Famiglietti et al., 1999; Brocca et al., 2007). As Brocca et al. (2007) summarized, 

previous studies showed contrasting results on the relationship between mean and 

variance of soil moisture conditions. Some of these studies showed increasing variances 

with increasing means of soil moisture while others showed inversely proportional 

relationships between them. However, a number of previous studies showed strong 

negative relationships between mean soil moisture and the coefficient of variation 

(  (Charpentier and Groffman, 1992; Famiglietti et al., 1999; Jacobs et al., 

2004; Brocca et al., 2007; Choi and Jacobs, 2011). This is because the relationship 

between field average and the variability of soil moisture becomes more evident when the 

standard deviation is scaled by the mean soil moisture.  

In the present study, the field averages and the standard deviations (STDEV) of surface 

(5cm) soil moisture measurements do not show any distinct relationship at either AS1 or 

AS2 (Figure 4.7, (a) and (c)). This seems to be because surface soil moisture variation is 

very dynamic due to the effect of evaporation. Another difference in the data from this 
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study compared to previous studies is that more frequent measurements (every 30 

minutes) were used in the present study compared to daily measurements. When the soil 

is fully saturated after a significant rainfall event, the STDEV decreases considerably and 

then increases as the soil dries. The minimum STDEV was found on August 17 when the 

heaviest rainfall occurred (Figure 4.2). Therefore, variations of the STDEV of soil 

moisture highly depend on rainfall intensity (characteristics) and antecedent soil moisture 

conditions. A moderate amount of rainfall (e.g. July 25) or rainfall with dry antecedent 

soil moisture conditions (e.g. August 11), increases the STDEV, whereas heavy rainfall 

(e.g. August 17) or rainfall with wet antecedent soil moisture conditions (e.g. September 

7) results in decreased STDEV. Unlike the relationship for the surface soil moisture, the 

relationships between mean soil moisture and STDEV are more evident for the 20cm 

depth measurements due to relatively homogeneous and more stable conditions in the 

deeper soil layers (Figure 4.7 (e)).   

When relative variability, measured by CV, is applied, more distinguishable relationships 

between the mean and variability of soil moisture are revealed as shown in Figure 4.7. 

The negative relationships between the mean and CV of soil moisture were successfully 

described using an exponential fit,  in previous studies (Jacobs et al., 

2004; Brocca et al., 2007; Choi and Jacobs, 2011). The results of exponential fit with data 

from the present study are shown in Table 4.4. Once these relationships (coefficients a 

and b) and field averages are known, the STDEV of the soil moisture can be estimated 

( . The last three columns of Table 4.4 show error statistics of the estimated 

STDEV from the exponential equations. Since surface (5cm) soil moisture measurements 
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have relatively low R
2
 with the exponential curve fitting, the resulting error statistics are 

not satisfactory, especially having very low correlation coefficients (R). Although several 

previous studies adopted the exponential relationship between the mean and CV to 

determine optimal numbers of sampling points with a certain specified error (Jacobs et al., 

2004; Brocca et al., 2007; Brocca et al., 2010), present study did not achieve successful 

prediction of STDEV due to the weak relationship between the mean and the CV. In the 

following section, results of an alternative method to estimate STDEV using the CDF 

matching method are introduced. 

 

Table 4.4 Performance of Standard Deviation Estimation Using Regression Relationship 

between CV and Field Average 

 

Coefficients of regression equation 
 R RMSE MBE 

a b R
2* 

5 cm 
(2009) 

AS1 0.428 -3.641 0.8623 0.432 3.60E-03 0.000 

AS2 0.4498 -4.054 0.6159 0.375 4.50E-03 0.000 

5 cm 
(2010) 

AS1 0.3931 -3.149 0.4948 0.305 5.10E-03 0.000 

AS2 1.146 -5.774 0.7209 0.443 8.90E-03 0.000 

20 cm 
(2010) 

AS1 21.08 -14.93 0.928 0.931 3.50E-03 0.000 

AS2 2.241 -6.796 0.9413 0.886 3.00E-03 0.000 

   *R
2
 is the coefficient of determination resulted from the exponential regression between CV 

and field averages.  
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Figure 4.7 Relationship between Mean Soil Moisture and Standard Deviation (a, c, and e) 

and between Mean Soil Moisture and CV (b, d, and f) at AS1 

 

 

 

 

(a) 5cm, 2009 (b) 5cm, 2009 

(c) 5cm, 2010 (d) 5cm, 2010 

(e) 20cm, 2010 (f) 20cm, 2010 
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Estimation of STDEV using CDF matching 

Figure 4.8 shows observed (red line) STDEV and estimated (gray line) STDEV by the 

CDF matching method for six different data sets. The STDEVs of the soil moisture 

varied dynamically with time due to rainfall and evapotranspiration. In 2009, AS1 and 

AS2 had STDEVs in similar ranges, whereas in 2010 the variations of STDEVs at the 

two sites were very different from each other. In 2010, AS2 had higher STDEVs and 

more dynamic variation of STDEVs than those of AS1 for surface (5cm) soil moisture. 

Even though AS2 has slightly more clay content than AS1, surface soil moisture at AS2 

varied more dynamically than AS1. This is most likely due to the tillage management and 

thus, having less residue cover in field AS2 (tilled surface) in 2010 may cause more of a 

response at the soil surface due to rainfall and evaporation. The lowest STDEVs with 

5cm data at AS2 in Figure 4.8(d) correspond to major rainfall events. Deeper soil layers 

in AS1 and AS2 responded in the opposite way compared to the surface soil layer in 2010. 

STDEVs of the 20cm measurements at AS1 changed more dynamically. For example, 

STDEVs were reduced abruptly with major rainfall events on August 11 and September 2. 

However, STDEVs of the 20cm measurements at AS2 rarely changed with time. This 

may be explained by the fact that AS2 contains more clay than AS1.  

The CDF matching method successfully estimated the dynamic variations of STDEVs for 

all data sets as Figure 4.8 and Table 4.5 show. Correlation coefficients between the 

observed and predicted STDEVs are higher than 0.9, except for the 5cm measurements at 

AS1 in 2009 (Table 4.5). Comparisons of error statistics in Table 4.4 and Table 4.5 

demonstrate that STDEV prediction by CDF matching is much more successful 
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Figure 4.8 Observed and Predicted Standard Deviations of Soil Moisture  

 (a) AS1, 5cm in 2009, (b)AS2, 5cm in 2009, (c) AS1, 5cm in 2010, (d) AS2, 5cm in 

2010, (e)AS1, 20cm in 2010, (f)AS2, 20cm in 2010 
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compared to applying the exponential relationship between the mean and STDEV of soil 

moisture. The advantage of this STDEV prediction method using CDF matching is that it 

can be applied to any soil moisture fields whether or not soil moisture variability has any 

specific trend or relationship with the field averages. This also shows that the CDF 

matching method can be used to estimate STDEVs of the field soil moisture as well as 

field averages using point measurements. Since the third order polynomial fit was 

adopted consistently in this study, there were high errors with some data, especially with 

minimum or maximum values. For example, the STDEVs are highly overestimated or 

underestimated on July 1 in Figure 4.8(d), (e) and (f). In this study, actual 30-minute 

measurements were used for analysis. Therefore, changes of STDEVs with rainfall events 

are clearly noticeable. If daily average measurements are used, the dynamic variations 

would be much less apparent. 

 

Table 4.5 Performance of Standard Deviation Estimation Using the CDF Matching 

Method 

  

Coefficients of operation operator  

( ) R RMSE MBE 

a0 a1 a2 a3 

5 cm 
(2009) 

AS1 0.50  -30.22  23.94  -5.94  0.835  2.30E-03 0.000  

AS2 -0.24  25.23  -17.21  3.75  0.924  2.00E-03 0.000  

5 cm 

(2010) 

AS1 -0.30  26.29  -21.51  5.38  0.943  1.80E-03 0.000  

AS2 -0.09 19.07  -14.15  3.10  0.946  3.20E-03 0.000  

20 cm 

(2010) 

AS1 0.07  16.76  -12.94  2.45  0.970  2.30E-03 0.000  

AS2 0.06  12.67  -10.21  2.03  0.965  1.70E-03 0.000  
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4.6 Conclusions 

The primary purpose of this study was to estimate field representative characteristics of 

soil moisture (field averages and standard deviation) using single point measurements. 

First, for upscaling the point soil moisture measurements to field averages, some 

limitations of the temporal stability analysis that has been used widely for this purpose 

are discussed. Next, alternative upscaling methods, mainly focusing on the CDF 

matching method, were investigated to test whether they offer means to overcome the 

limitations of the temporal stability analysis. The difference between the present study 

and that of De Lannoy et al. (2007b) is that temporal and spatial transferability of the 

CDF matching method were evaluated for practical applications of the upscaling method. 

Second, spatial variabilities of soil moisture are estimated from point soil moisture 

measurements using the CDF matching method. 

The results show that the CDF matching method is the best observation operator to 

estimate the field average soil moisture. The mean relative difference method using the 

most temporally stable point measurements can also produce satisfactory results, after the 

CDF matching method. However, the MRD method is not applicable in reality because 

the permanent sensors cannot be installed “in-field” due to agricultural operations and 

because the locations of the most temporally stable points are not consistent in time or for 

different depths. Evaluation of the additional three observation operators, based on 

simple linear relationships, absolute mean differences, and mean relative differences 

using the permanent sensor measurements, proved to be unsuccessful in this study.  
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By comparing data sets from different time periods, areas and soil layers, temporal and 

spatial transferabilities of the observation operators from the CDF matching were 

examined. Overall the observation operators are found to be spatially and vertically 

transferable, but not temporally transferable. Rainfall characteristics and crop type are 

most likely to be the most significant factors influencing the transferabilities in this study. 

Other factors such as differences in soil properties, tillage practices and topography may 

be important as well, but in this study, they appear to be less influential in the 

transferability of the observation operators than differences due to the rainfall and crop 

type. Further detailed studies are required to better understand the effect of these factors.   

Besides field averages, standard deviations of soil moisture within the fields are also 

estimated using single point measurements from the edge-of-field permanent sensors. 

Dynamic variations of standard deviations were successfully predicted through the 

similar CDF matching method. This approach, which estimates time-series soil moisture 

variance using point measurements, has potential for various practical applications such 

as soil moisture data assimilation, land surface modeling, assessing the accuracy of 

remote sensed soil moisture and establishing optimal in situ soil moisture networks.  

The CDF matching approach of this study allows estimations of both field averages and 

variance from point measurements at the permanent soil moisture sensor locations. This 

approach is expected to contribute to better utilization of in situ soil moisture networks 

which are established for the calibration and validation of remotely-sensed soil moisture 

products but often times consist of a limited number of permanent soil moisture sensors. 

The study areas of present study are part of the current monitoring network in UCCW 
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that are planned to be used for the validation of SMAP soil moisture products at various 

resolutions (3, 9, 36 km) in the near future. Therefore, findings of this study provide 

significant insight as to designing better validation schemes for SMAP soil moisture 

products.  

The SMAP Cal/Val Plan contains various aspects of validation approaches from using the 

in situ networks to model-based validations (Jackson et al., 2010a). The temporal stability 

analysis is one of the tentative methods for validation of SMAP products using in situ soil 

moisture networks. However, the temporal stability analysis has several limitations in 

determining spatially representative soil moisture values as was discussed in section 4.2. 

The CDF matching method has been shown to be a successful transforming (upscaling) 

method in this study and should be considered for the validation of remotely-sensed soil 

moisture, supplementing other validation methods such as the triple collocation method 

(Miralles et al., 2010). 

Overall, this study examines the capability of different upscaling methods at the 

agricultural field scale for soil moisture measured in limited time periods (summer 

periods for two different years). Despite the significant findings of this study, several 

science questions remain unanswered and are the subject for future research: 1) How can 

we expand the upscaling approach to watershed scale for the validation of SMAP 

products at various resolutions? What other factors should be considered for watershed 

level upscaling?, 2) Are the observation operators spatially transferable to areas beyond 

the field scale?, 3) How does the length of the temporal sampling affect the observation 

operators? How long of an observation period is required to obtain temporally 
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transferable observation operators if they exist?, and 4) Can we separate the effect of crop 

types on the soil moisture variability from the effect of rainfall characteristics?. These are 

only some of the questions that may be answered with increased availability of 

observational data in the near future.  
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CHAPTER 5 SYNTHESIS 

5.1 Soil Moisture Data Assimilation at Field and Watershed Scale 

Surface soil moisture observations are assimilated in this dissertation through the 

Ensemble Kalman Filter with two different hydrologic models at two different scales: the 

one dimensional physically based model (the Root Zone Water Quality Model) at field 

scale, and semi-distributed hydrologic model (the Soil and Water Assessment Tool) at 

watershed scale. The assimilation of surface soil moisture observation with the 

hydrologic models results in significant improvement of soil moisture estimation in 

surface or upper soil layers and less improvement for predictions in deeper layers. 

Overall, the results presented in this work can be utilized to improve applications of soil 

moisture data assimilation at field and watershed scales and demonstrate the potential of 

soil moisture data assimilation to advance water quality or crop yield simulations by 

improving estimates of other hydrological variables such as ET and surface runoff, as 

well as, profile soil moisture content.   

5.2 Estimation of System and Observation Error Statistics for Data Assimilation  

Although many previous studies have demonstrated the ability of the EnKF to improve 

hydrologic predictions, especially profile soil moisture estimation, characterizing a prior 
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model and observation error statistics still remains as a challenge with real observations 

in using the EnKF (Ni-Meister, 2008). In case of the field scale data assimilation with in 

situ point measurements, the observation errors can be reasonably estimated due to 

relatively high accuracy of in situ measurements. However, it is more complicated to 

estimate a prior observation and model error statistics when the dimension of state 

variables increases with distributed models. A couple of land data assimilation studies 

showed that poor estimates of uncertainties in observations and model predictions may 

degrade the assimilation results compared to the model estimates or the observation alone 

(Reichle and Koster, 2002; Crow and Van Loon, 2006). In this dissertation, the watershed 

scale data assimilation study in Chapter 3 avoids this issue by conducting a synthetic 

experiment with the assumption of known error statistics. However, future study with real 

observations needs to consider how to determine spatially and temporally dynamic error 

statistics of observations and model predictions. 

5.3 Issues with Soil Moisture Data Assimilation 

One of the critical issues in assimilating real observed soil moisture data is bias treatment 

because the success of data assimilation cannot be achieved without an appropriate bias 

correction (Reichle, 2008). Systematic bias due to the persistent differences between 

observations and model predictions should be removed before assimilation, by rescaling 

the observations into the model climatology (Drusch et al., 2005b). The field scale data 

assimilation study in this dissertation also showed the systematic bias between model 

predictions and observations, especially during very dry periods. If a rescaling or bias 
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correction method had been applied in this study, the results would have been more 

successful.  

The bounded nature of soil moisture between wilting point and saturated soil content also 

causes skewed model ensembles and unintended bias mostly when the soil is very dry or 

wet, which impacts negatively on the EnKF‟s performance (Crow and Wood, 2003; Ryu 

et al., 2009). Further investigations are required to overcome the non-Gaussian error 

structure and bias issues for successful soil moisture data assimilation studies. 

5.4 Importance of Accurate Forcing Information   

The fact that antecedent soil moisture condition is critical for accurate runoff prediction 

has led many previous studies to focus on improving antecedent soil moisture condition 

through soil moisture data assimilation (Aubert et al., 2003b; Komma et al., 2008; Brocca 

et al., 2009). However, the SWAT data assimilation study in this dissertation emphasizes 

the importance of having more accurate precipitation information rather than improving 

the initial soil moisture condition because large precipitation error can overwhelm the 

improvement in the soil moisture estimates through data assimilation. This problem was 

also mentioned in Crow and Ryu (2009). Securing as accurate precipitation as possible or 

overcoming the precipitation errors through soil moisture retrievals (Crow and Bolten, 

2007; Crow et al., 2009; Crow et al., 2011) will lead to more successful runoff or 

streamflow predictions from the soil moisture data assimilation.  
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5.5 Improvement of Rainfall Runoff Mechanism  

Successful updates of soil moisture condition may not always results in significant 

improvement in streamflow predictions. As the SWAT data assimilation study in this 

dissertation showed, neither the SCS Curve Number method nor the Green Ampt method 

implemented in SWAT could successfully reflect the soil moisture update through data 

assimilation and thus enhance streamflow predictions. This finding suggests that more 

efforts should be made for developing better numerical implementation of the rainfall-

runoff mechanism in parallel with advancing the data assimilation scheme itself.  

5.6 Linking In situ Observations with Remotely-sensed Soil Moisture 

In this dissertation, upscaling of point soil moisture measurements is constrained at the 

field scale. However, to overcome the fundamental scale issues between in situ 

measurement and remotely-sensed products, it is necessary to expand the upscaling effort 

at least to watershed scale. Currently there are twelve soil moisture monitoring sites 

installed within the Upper Cedar Creek Watershed. The question on how to use those 

limited point measurements to obtain watershed representative soil moisture values 

would involve relating more complicated factors such as the spatial difference in 

topography and precipitation in future analysis.  

Even though the upscaling study in Chapter 4 demonstrates that the CDF matching 

method can successfully transform the point measurement to field averages, the method 

is not found to be as temporally transferable. This indicates that a temporally varying 
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transforming method is still required. Currently soil moisture observation from summer 

periods of two years are used for this study, but it would also be desirable to investigate 

in the future how the length of the temporal sampling affects the upscaling results when 

soil moisture observations are available for longer time periods. 
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