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ABSTRACT 

Rajib, Adnan. Ph.D., Purdue University, May 2017. Improved soil moisture 

accounting in hydrologic models. Major Professor: Venkatesh M. Merwade 

 

Uncertainty is inherent in any hydrologic prediction; an apparently well-performing 

model can still be a pseudo-accurate model giving right answers for wrong reasons. 

Soil Moisture Accounting (SMA), being the integrated framework to partition water 

balance, regulates the overall physical consistency and predictive skills of a 

hydrologic model. Given the complex cause-and-effect relationships among soil 

moisture, surface runoff and evapotranspiration, there is no single solution to enhance 

the soundness of SMA. It is necessary to explore different “sustainable and replicable” 

avenues that can improve SMA, thus, enabling maximum predictability by the 

hydrologic model.  

Using Soil and Water Assessment Tool (SWAT) on four US watersheds, this 

dissertation aims to accomplish three objectives including (1) evaluation of a multi-

objective calibration approach for hydrologic models using remotely sensed soil 

moisture estimates, (2) re-conceptualization of surface runoff mechanism by 

incorporating a time-dependent, soil moisture-informed Curve Number method, and 

(3) source-attribution of inaccuracies in model’s actual evapotranspiration, 

accordingly, evaluating a remedial measure by the spatially distributed direction 

ingestion of remotely sensed potential evapotranspiration. To meet the level of 

interoperability required between a complex hydrologic model and the remotely 

sensed “big data” (objectives 1 and 3), a key contribution of this study is the 

development of a new, adaptive tool that can perform rapid extraction and processing 

of satellite observations at user-defined spatial resolution.   

The first objective involves evaluating the relative potential of spatially distributed 

surface and root zone soil moisture estimates in the calibration of SWAT model. 

Considering two agricultural watersheds in Indiana, USA, the proposed calibration 
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approach is performed using remotely sensed Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E) surface soil moisture (∼1 cm top 

soil) estimates in sub-basin/HRU level together with observed streamflow data at the 

watershed’s outlet. Although application of remote sensing data in calibration 

improves surface soil moisture simulation, other hydrologic components such as 

streamflow and deeper layer moisture content remain less affected. An extension of 

this approach to apply root zone soil moisture estimates from limited field sensor data 

showed considerable improvement in those cases. Difference in relative sensitivity of 

parameters and reduced extent of uncertainty are also evident from the proposed 

method, especially for parameters related to the sub-surface hydrologic processes.  

The second objective involves incorporating a time-dependent SMA based Curve 

Number method (SMA_CN) in the SWAT model and compare its performance with 

the existing CN method by simulating the hydrology of two agricultural watersheds in 

Indiana, USA. Results show that fusion of the SMA_CN method in SWAT better 

predicts streamflow in all wetness conditions, thereby addressing issues related to 

peak and low flow predictions by SWAT in many past studies. Comparison of the 

calibrated model outputs with field-scale soil moisture observations reveals that the 

SMA overhauling enables SWAT to represent soil moisture condition more 

accurately, with better response to the incident rainfall dynamics. While the results 

from the newly introduced SMA_CN method are promising, functionality of this 

method would likely to be more pronounced if applied for sub-daily hydrologic 

forecasting. 

Source-attribution of evapotranspiration uncertainty in a hydrologic model and 

evaluation of a remote sensing based solution are the two main aspects of the third 

objective. Using SWAT for three US watersheds from Indiana and Arkansas, this 

study first addresses the effects of parameter equifinality, energy related weather 

input-uncertainty and lack of geo-spatial representation on evapotranspiration 

simulation. In every case, remotely sensed 8-day total actual evapotranspiration (AET) 

estimate from Moderate Resolution Imaging Spectroradiometer (MODIS) is used as 

the reference to evaluate model outcome. Results from these assessments indicate the 



10 

 

likelihood of a pseudo-accurate model that invariably shows high streamflow 

prediction skills despite having severely erroneous spatio-temporal dynamics of AET. 

As a remedial measure, a hybrid daily PET estimate, derived from MODIS and the 

North American Land Data Assimilation System phase 2 (NLDAS-2), is directly 

ingested at each Hydrologic Response Units (HRUs) of the SWAT model to create a 

new configuration called SWAT-PET. Noticeably increased accuracy of three water 

balance components (soil moisture, AET and streamflow) in SWAT-PET, being 

evaluated against completely independent sources of observations/reference estimates 

(i.e. field sensor, satellite and gauge stations), proves the efficacy of the proposed 

approach towards improving physical consistency of hydrologic modeling. While the 

proposed approach is evaluated for a past period, the main motivation here is to serve 

the purpose of hydrologic forecasting once near real-time PET estimates become 

available. 

Although three objectives are accomplished through separate studies, the proposed 

approaches are designed to function in an integrated way if applied together in a 

particular hydrologic model. While designing the methodologies, main focus was to 

ensure replicability such that research results from this dissertation can be readily 

translated into practice.  
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CHAPTER 1. INTRDOUCTION 

1.1 Background and Motivation 

Information of soil moisture and its spatio-temporal dynamics are needed for 

initialization of weather/climate models, irrigation scheduling and crop yield 

forecasting, hydroclimatic prediction of flood and droughts, efficient water quality 

management, as well as natural conservation practices (Walker et al., 2001; Western 

et al., 2002; Starks et al., 2006; Zucco et al., 2014). Accordingly, precise prediction of 

soil moisture has been a subject of long-standing research. Soil moisture information 

can be obtained from in-situ sensor-based point measurements, space-borne remote 

sensing, and physically-based distributed hydrologic modeling of watersheds. 

Typically, at large scales, spatio-temporal variability of soil moisture cannot be 

represented through point measurements from in-situ sensor networks. In comparison, 

characterizations of surface soil moisture fields captured by the remote sensing 

techniques have been found sufficient enough to supplement the in-situ point 

measurements (Njoku and Entekhabi, 1996). However, the shallow sensing depth of 

remote sensors (~ top 5 cm of soil; Adams et al., 2013; Vereecken et al., 2013) does 

not fully comply the need in flood forecasting or agricultural water management. 

Against this background, physics-based hydrologic models retain their value because 

of their ability to provide root zone soil moisture information over a continuous 

period of time in large scales (e.g. Chen et al., 2011; Han et al., 2012a; Rajib and 

Merwade, 2016).  

In reality, even the most well-formulated model cannot have the perfect realization of 

nature mainly because of the semi-empirical process-approximations of hydrologic 

cycle (Beven, 2012). Hence, uncertainty in model’s Soil Moisture Accounting (SMA) 

is obvious. Unless the uncertainties in SMA can be minimized, an apparently well-

performing model can still be a pseudo-accurate, equifinal model giving right answers 

for wrong reasons (Favis-Mortlock, 2004). 
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SMA in a hydrologic model is not limited only to the estimation of soil moisture; it 

essentially represents an integrated framework also constituting surface runoff and 

evapotranspiration. Given the complex cause-and-effect relationships among these 

hydrologic processes, lack of precision in SMA would impart unknown degree of 

persistent inaccuracy in the overall water balance. In such context, there is no single 

solution to enhance the physical consistency of SMA. It is necessary to explore 

multiple “sustainable and replicable” avenues that can improve SMA individually and 

collectively, ensuring the highest predictability by the hydrologic model for “right 

reasons”. 

1.2 Research Objectives 

Using Soil and Water Assessment Tool (SWAT) on four US watersheds, this 

dissertation aims to consider three avenues in order to establish improved SMA and 

hence, enable more realistic realization of water balance in a hydrologic model. The 

objectives are outlined below. 

1. Multi-objective calibration/parameter uncertainty: This involves evaluating 

the performance of a hydrologic model while using both soil moisture information 

and streamflow for calibration. Specific tasks in this objective include: (i) use of 

remotely sensed sub-basin scale surface soil moisture estimates along with 

streamflow observations in a spatially distributed calibration scheme; and (ii) use 

of root zone soil moisture in similar spatially distributed approach to evaluate the 

relative improvements in model’s SMA, streamflow simulation and parameter 

uncertainty. 

2. Process re-conceptualization/model uncertainty: In this objective, a time-

dependent soil moisture-based Curve Number hypothesis is incorporated within 

the existing structure of a hydrologic model, and then the modified model is tested 

for improved simulation of streamflow regimes and soil moisture in different 

layers of the soil profile. The hypothesis is originally proposed by Michel et al. 
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(2005) stating that the fraction of rainfall to be converted into runoff is directly 

proportional to the current moisture store level. Also, Curve Number equations 

should be applicable in a continuous model not only at the end of a storm but also 

at any instant during the storm. 

3. Model’s input uncertainty: The third objective involves source-attribution of 

inaccuracies in SWAT’s AET simulation, and accordingly, proposing an effective 

solution. The specific tasks include separately analyzing the effects of parameter 

uncertainty, energy related weather input-uncertainty and lack of geo-spatial/bio-

geochemical representation on the prediction accuracy of AET. Ultimately, 

spatially-distributed direct ingestion of remotely sensed daily PET is introduced 

as a corrective measure towards enhancing the overall hydrologic response of the 

model including streamflow, root zone soil moisture and AET. A key contribution 

here is the development of a modified SWAT source code that is fully integrated 

with an automatic remote sensing data processor. 

SWAT (Arnold et al., 2012; Neitsch et al., 2011) is chosen for this study because it is 

a semi-distributed, physics-based, integrated hydrology-water quality model that has 

been extensively tested in different geographic/hydro-climatic settings (e.g. 

Abbaspour et al., 2015; Daggupati et al., 2016; Schuol et al., 2008; Zang et al., 2012). 

Considering the wide-ranging applications of SWAT on water availability, flood 

prediction, sediment/nutrient transport and crop yield, positive outcomes of this 

research would be beneficial to a large scientific community worldwide. Replicable 

ways to integrate remote sensing data resources or re-conceptualize model physics, as 

shown in this dissertation, are valuable contributions augmenting the ongoing 

developments of the SWAT model. 

The first two objectives are accomplished on three agricultural watersheds in Indiana, 

USA. The third objective requires a comprehensive characterization of model bias in 

AET simulation before applying remotely sensed PET as an “energy” forcing. Hence, 

a fourth watershed in Arkansas, USA is considered for this particular objective that 

has completely different land use and climatic condition compared to the other two 

watersheds in Indiana.  
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1.3 Organization of this Dissertation 

This dissertation consists of five chapters. Chapters 2-4 are based on the three 

research objectives. These chapters have evolved from separate studies as such they 

are presented in self-contained manner, i.e., each chapter has its own abstract, 

introduction, description of study area, methodology, results, and conclusions. Since 

these chapters are connected under the auspices of the main theme, i.e., to incorporate 

advanced SMA in hydrologic models, the overall findings, their applicability and 

possible future directions are synthesized in Chapter 5. 
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CHAPTER 2. MULTI-OBJECTIVE CALIBRATION OF A HYDROLOGIC 

MODEL USING SPATIALLY DISTRIBUTED REMOTELY SENSED AND IN-

SITU SOIL MOISTURE 

2.1 Abstract 

The objective of this study is to evaluate the relative potential of spatially distributed 

surface and root zone soil moisture estimates in the calibration of Soil and Water 

Assessment Tool (SWAT) towards improving its hydrologic predictability with 

reduced equifinality. The Upper Wabash and Cedar Creek, two agriculture-dominated 

watersheds in Indiana, USA are considered as test beds to implement this multi-

objective SWAT calibration. The proposed calibration approach is performed using 

remotely sensed Advanced Microwave Scanning Radiometer-Earth Observing 

System surface soil moisture (~1 cm top soil) estimates (NASA's Aqua daily level-3 

gridded land surface product-version 2) in sub-basin/HRU level together with 

observed streamflow data at the watershed's outlet. Although application of remote 

sensing data in calibration improves surface soil moisture simulation, other 

hydrologic components such as streamflow and deeper layer moisture content in 

SWAT remain less affected. An extension of this approach to apply root zone soil 

moisture estimates from limited field sensor data showed considerable improvement 

of simulation for those cases. Difference in relative sensitivity of parameters and 

reduced extent of uncertainty are also evident from the proposed method, especially 

for parameters related to the subsurface hydrologic processes. Regardless, precise 

representation of vertical soil moisture stratification at different layers is difficult with 

current SWAT ET depletion mechanism. While the results from this study show that 

root zone soil moisture can play a major role in SWAT calibration, more studies 

including various soil moisture data products or actual evapotranspiration are 

necessary to validate the proposed approach.  
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2.2 Introduction 

Parameter calibration is a necessary step in setting up a hydrologic model for any 

study. Regardless of the uncertainties in input weather data and imperfections in 

model physics, a calibrated model tends to provide an “acceptable” output. 

Simulation of surface and subsurface fluxes in a hydrologic model is strongly affected 

by the choice of objective variables in model calibration procedure and resultant 

parameter values adopted from therein (Abbaspour et al., 2007; Park et al., 2014). 

Similarly, several parameter combinations are possible during calibration, producing 

equally reasonable simulation results (equifinality; Beven, 1993). Therefore, 

parameters associated with subsurface fluxes get poorly optimized when models are 

typically calibrated against observed streamflow hydrograph (Immerzeel and 

Droogers, 2008; White and Chaubey, 2005).  

Simultaneous use of multiple gauging stations in model calibration can help to reduce 

parameter uncertainty and improve streamflow simulations (e.g. Bekele and Nicklow, 

2007; Chiang et al., 2014; Her and Chaubey, 2015; Zhang et al., 2008), but the 

outcomes are often region-specific (e.g. Gong et al., 2012) and are also affected by 

the spatial distribution of gauges included in the study (Migliaccio and Chaubey, 

2007). Additionally, there is no literature which shows that use of multiple gauges 

can lead to better estimation of subsurface fluxes such as soil moisture and 

evapotranspiration (ET), including the reduction of uncertainty/equifinality of the 

associated parameters. Therefore, the traditional approach of model calibration using 

observed streamflow at one or more stations can still lead to a model where several 

components of the watershed's hydrologic system may remain virtually uncalibrated 

(Wanders et al., 2014). Considering these issues, good correspondence between  

observed and simulated streamflow is not sufficient to evaluate the simulation 

capability of physically based hydrologic models (Demarty et al., 2005; Eckhardt, 

2005; Gupta et al., 1998; Kuczera and Mroczkowski, 1998). Alternatively, the trade-

off between model fits constrained by multiple hydrologic variables observed at 

different spatial scale of evolution might lead towards lower parameter uncertainty, 



17 

 

improving model robustness and predictability and implicitly encountering possible 

deficiencies in model structure. The solution to this multi-objective calibration 

produces a parameter set that is optimal in a Pareto efficiency sense (Xie et al., 2012). 

Among different surface/subsurface components, soil moisture plays an important 

role in  energy and water balance of hydrologic cycle (Brocca et al., 2012), and hence, 

ensuring accurate soil moisture accounting in a hydrologic model can lead to better 

simulation of hydrologic processes including ET, surface runoff generation, 

groundwater recharge, and streamflow. While obtaining in-situ monitoring data of 

soil water fluxes/state variables is a long-standing challenge, remotely sensed surface 

soil moisture estimates can be obtained at high temporal resolution for the entire 

globe (Wanders et al., 2014).  

Most studies that use surface soil moisture estimates to improve model simulation 

involves assimilation of in-situ, synthetic or remotely sensed data (e.g. Alvarez-

Garreton et al., 2015; Bolten et al., 2010; Brocca et al., 2010; Chen et al., 2011; 

Draper et al., 2011; Han et al., 2012a, b; Houser et al., 1998; Lei et al., 2014; Pauwels 

et al., 2001, 2002; Reichle et al., 2002; Sawada et al., 2015; Scipal et al., 2008). Only 

few recent studies have applied remotely sensed surface soil moisture information in 

model calibration process (e.g. Milzow et al., 2011; Poovakka et al., 2013; Parajka et 

al., 2009; Sutanudjaja et al., 2014; Wanders et al., 2014). All these past studies 

conclude that using surface soil moisture, either in data assimilation or model 

calibration, improves model simulated surface soil moisture, without causing 

appreciable change in deeper layer (root zone) soil moisture and streamflow/surface 

runoff outputs. The limited success in modeling results from using remotely sensed 

soil moisture estimates is related to the shallow depth of assimilation/calibration 

which is in fact dependent on the sensing depth of the satellite product being used (1-

5 cm top soil), and the  model conceptualizations related to coupling of surface and 

root zone soil layers (e.g. Brocca et al., 2012; Chen et al., 2011; Han et al., 2012a).  

Considering the role of root zone soil moisture in regulating subsurface hydrology, 

Parajka et al. (2006) and Silvestro et al. (2015) showed the use of an empirically 

derived root zone soil moisture index for calibrating a hydrologic model. Brocca et al. 
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(2012) and Chen et al. (2011) recommended model calibration using both streamflow 

and root zone soil moisture prior to assimilating soil moisture data into the model, 

which can potentially improve the efficiency of data assimilation techniques. Despite 

the limitation of sensing depth from space-borne satellites and the scarcity of field 

based information, recent advancements in multi-model land surface data assimilation 

projects such as National Astronomy and Space Administration (NASA)'s North 

American Land Data Assimilation Systems (NLDAS; Xia et al., 2015a, b) and Soil 

Moisture Active Passive (SMAP; Entekhabi et al., 2014; Reichle et al., 2014) mission 

can lead to high resolution root zone soil moisture estimations. These estimates can 

ultimately be used to improve the representation of subsurface processes in 

hydrologic models through multi-objective calibration.  

Given the potential availability of root zone soil moisture, the overall goal of this 

study is to evaluate the performance of the SWAT model while using both soil 

moisture information and streamflow for calibration. Specific objectives include: (i) 

use of remotely sensed sub-basin/HRU scale surface soil moisture estimates along 

with streamflow observations in a spatially distributed calibration scheme; and (ii) 

use of root zone soil moisture and streamflow in similar spatially distributed model 

calibration scheme. Accordingly, comparison of the outcomes from these two 

objectives are used to evaluate the relative influence of surface and root zone soil 

moisture estimates in improving SWAT’s soil moisture accounting, streamflow 

simulation and parameter equifinality. Even with the recent remarkable advancements 

in developing new optimization algorithms and automatic tools specifically designed 

for SWAT, hydrologic calibrations of SWAT models can still be "conditional" 

(Abbaspour et al., 2015) and "sub-optimal" (Chen et al., 2011). Application of remote 

sensing data and/or associated data products, as shown in this study, is expected to 

overcome these limitations and provide more realistic hydrologic simulations.  
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2.3 Study Area and Data 

The Upper Wabash and Cedar Creek watersheds in Indiana, USA (Figure 2.1) are 

selected as the test beds for this study. Upper Wabash (18,500 km2) is suitable for the 

first objective because of its larger size to capture the variability in surface soil 

moisture from the coarse resolution satellite data, whereas field sensor-based 

profile/root zone soil moisture data are available for certain parts of Cedar Creek (700 

km2) to accomplish the second objective of this study. In order to evaluate the 

“relative” role of surface soil moisture, satellite data are also used for Cedar Creek 

watershed. Both watersheds have United States Geological Survey’s (USGS) 

streamflow gauge station at the respective outlet as shown in Figure 2.1.  

 

Figure 2. 1 Study areas: (a) Cedar Creek and (b) Upper Wabash watershed with 

corresponding landuse from 2006 NLCD land use. Streamflow gauge station at the 

respective watershed outlet is shown here. Map of Cedar Creek also shows the 

location for soil moisture field-sensors (AS1 and AME) being used in this study. 
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The landuse in both watersheds is mostly agricultural, although significant difference 

exists in the forest and developed portion. Table 2.1 presents a summary of their 

geospatial and hydro-climatic characteristics.  

Table 2. 1 Watershed characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

a 
Flow accumulation area threshold: 5% (Upper Wabash), 0.5% (Cedar Creek) 

b 
Basis of HRU definition: Upper Wabash (one subbasin-one HRU with dominant landuse, soil type 

and slope class in a particular subbasin), Cedar Creek (one subbasin-multiple HRUs, 10% threshold to 

create a unique combination of landuse, soil type and slope class within each subbasin) 

SWAT models for both watersheds are created by the ArcSWAT GIS interface by 

using the following data: (i) 30m digital elevation model (DEM) from the USGS 

National Elevation Dataset (USGS-NED, 2013); (ii) 30m land cover data for year 

2006 from the National Land Cover Database (USGS-NLCD, 2013); and (iii) 

1:250,000 scale State Soil Geographic Data (STATSGO) that is included within 

SWAT 2012 database. Total daily precipitation, average minimum and maximum 

daily temperature data covering the study period of 2004-2012 are obtained from the 

National Climatic Data Center for the stations that fall within or adjacent the 

 Upper Wabash Cedar Creek 

Drainage area, km2 18,500 700 

No. of Subbasins a 36 106 

No. of HRUs b 36 370 

Average Annual Rainfall during 

2004-2012, mm 
1050 993 

Number of weather stations used in 

the model 
6 5 

Maximum daily streamflow at the 

watershed outlet till December 31, 

2014, m3/s  

350 163 

Landuse as per NLCD 2006 (%)   

Agricultural  80 71 

Developed 9 11 

Forest 9 14 

Wetland/Open Water 2 4 
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watershed boundary. All other related climate variables, including solar radiation, 

wind speed and relative humidity, are obtained from the internal weather generator 

within ArcSWAT. Penman-Monteith equation is selected for computing potential 

evapotranspiration (PET). 

For model evaluation, observed daily streamflow time series is obtained from 

respective USGS station located at each watershed’s outlet (Figure 1). Remotely 

sensed surface soil moisture data (~1 cm top soil) is extracted from the Advanced 

Microwave Scanning Radiometer - Earth Observing System (AMSR-E). It is 

noteworthy that several algorithms have been so far applied to retrieve soil moisture 

information from AMSR–E, the most prominent of which have been developed by 

Jones et al. (2009), Koike et al. (2004), Njoku et al. (2003) and Owe et al. (2001). The 

data retrieved by the National Astronomy and Space Administration (NASA) 

following Njoku et al. (2003) (Aqua daily level-3 gridded land surface product-

version 2, AE_Land_3; Njoku, 2004) is used in this study. Metadata associated with 

this particular estimate, including data format, projection system, spatio-temporal 

coverage and resolution, as well as the procedure for accessing the data can be found 

at http://nsidc.org/data/ae_land3. In-situ soil moisture estimates at 5, 20, 40 and 60 

cm depths in the Cedar Creek watershed are obtained from 

http://amarillo.nserl.purdue.edu/ceap/ for two of the permanent field sensors (AS1 

and AME in Figure 1). These sensors are part of the National Soil Erosion Research 

Laboratory’s (NSERL) environmental monitoring network (Flanagan et al., 2008; 

Han et al., 2012c; Heathman et al., 2012a,b).  

The STATSGO database is modified while preparing the ArcSWAT model for Cedar 

Creek so that a uniform stratification of soil profile depth all over the watershed can 

be maintained from 0-5 cm, 5-20 cm, 20-60 cm, and 60 – 150 cm. This modification 

makes SWAT simulated soil moisture values at different layers compatible with the 

placement of field sensors. Such modification is not necessary while using the 

AMSR-E data because SWAT model invariably considers a 1 cm surface layer for 

any watershed (Neitsch et al., 2011), which is identical to the approximate sensing 

depth of the satellite data being used for this watershed. Prior assumptions and 

http://nsidc.org/data/ae_land3
http://amarillo.nserl.purdue.edu/ceap/
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processing are essential to make remotely sensed and field sensor-based soil moisture 

estimates comparable with SWAT simulations.  

2.4 Methodology 

2.4.1 Watershed spatial discretization and model setup 

While creating a watershed model in the GIS interface of SWAT model (ArcSWAT), 

spatial heterogeneity is represented through a two-step discretization (Geza and 

McCray, 2008). A watershed can be first divided into sub-basins, and then each sub-

basin is further divided into multiple Hydrologic Response Units (HRUs). 

Considering the coarse spatial resolution of NASA AMSR-E soil moisture data (25 

km x 25 km), sub-basins in the Upper Wabash watershed are not divided into 

multiple HRUs. Instead only one HRU is created per sub-basin based on dominant 

landuse, soil type and slope class (Winchell et al., 2010), resulting into total 36 sub-

basins (or 36 HRUs). Being a smaller watershed, boundary of Cedar Creek intersects 

with only four AMSR-E grid cells (not shown here). In order to imitate a condition 

when fine resolution spatially distributed soil moisture estimates (remotely sensed or 

model assimilated such as NLDAS/SMAP) are available, Cedar Creek watershed is 

discretized into 106 sub-basins and 370 HRUs (Table 2.1). HRU level calibration is 

performed in the Cedar Creek watershed, using both remotely sensed and in-situ soil 

moisture data. Curve Number and Variable Storage methods (Neitsch et al., 2011) are 

selected for surface runoff generation and channel routing simulation respectively, 

invariably in all cases.  

2.4.2 Calibration configuration 

Evaluating the relative effect of remote sensing and field sensor-based soil moisture 

estimates in model calibration needs prior consideration of several consistency factors. 
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For example, drainage areas of the two study watersheds are very different (700 and 

18,500 km2); AMSR-E surface soil moisture estimates are available for the whole 

basin in both cases, but in-situ estimates are obtained at fixed depths across the root 

zone and limited only to the few locations of the Cedar Creek watershed. Furthermore, 

surface soil moisture obtained from remote sensing are “noisier” than in-situ root 

zone estimates (Draper et al., 2009). Most importantly, in contrast to the field data 

which are point measurements, remotely sensed data are spatial estimates where the 

value of a grid cell denotes the average surface moisture of the entire landscape of a 

cell, ignoring the effects of possible heterogeneity in climate and land use-land cover 

therein. Thus, the climatology (mean and variance) captured by the satellite-derived 

soil moisture estimates can be very different from those in the in-situ data and model 

simulations (Entekhabi et al., 2010; Koster et al., 2009; Reichle and Koster, 2004; 

Reichle et al., 2004). The differences, traditionally referred as the systematic bias, get 

enhanced by the physical conceptualizations in satellite's soil moisture retrieval 

algorithm (Draper et al., 2009); respective retrieval algorithms can generate quite 

different soil moisture fields, with different degrees of realism (e.g. Tuttle and 

Salvucci, 2014). Persistence of systematic bias would be a considerable factor while 

applying other root zone soil moisture products as well including those from the 

NLDAS or SMAP. Hence, comparison of calibration results involving either remotely 

sensed, model assimilated or field measured soil moisture estimates should base upon 

the respective representativeness, scale and inherent uncertainty of these data sources.  

The proposed multi-variable spatial calibration scheme is evaluated under two 

configurations (M1 and M2 in Table 2.2) for each of the study watersheds. The first 

configuration (M1) involves calibration with streamflow only, and the second 

configuration (M2) is for the spatial calibration involving both streamflow and soil 

moisture. As indicated in Table 2.2, M2 configuration for the Upper Wabash 

watershed includes only the remotely sensed surface soil moisture. To enable a fair 

evaluation considering the aforementioned consistency issues, M2 in case of Cedar 

Creek is executed in three separate settings including remotely sensed surface 
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moisture (~1 cm, same as in Upper Wabash), in-situ surface moisture (5 cm) and in-

situ total root zone moisture (60 cm) contents.  

Table 2. 2 SWAT calibration configurations 

 

M1 M2 

Source and scale of 

soil moisture data in 

calibration 

Upper Wabasha Streamflow  Streamflow 

Surface moisture (~1 cm) 

AMSR-E,  

all sub-basins  

Cedar Creeka Streamflow Streamflow 

Surface moisture (~1 cm) 

AMSR-E,  

two particular HRUsb  

  Streamflow 

Surface moisture (5 cm) 

In-situ,  

two particular HRUsb  

    Streamflow 

Total root zone moisture (60 cm)   

M1: calibration only with streamflow 

M2: Multi-objective calibration with streamflow and soil moisture 

a Streamflow observations are at the watershed outlet  

b Two HRUs within which AS1 and AME field sensors (Figure 1) are located (in all the three M2 

setups for Cedar Creek) 

2.4.3 Spatial scaling of satellite data and creation of time-series 

The AMSR-E data needs to be geo-referenced and processed to enable the 

comparison between surface soil moisture values in an individual/group of AMSR-E 

grid cell(s) with the average sub-basin/HRU level model estimates. The geo-

processing task is accomplished by creating a python based automatic tool which can 

account for the heterogeneity in size, shape and location of the sub-basins/HRUs 

within any watershed. For a given temporal extent in the form of start and end date, 

and geographic extent in the form of shapefile, the python based tool creates an area 

averaged time series of AMSR-E soil moisture estimates for all the individual sub-

basins (or HRUs). Once the time series is obtained, the data are rescaled using a 
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statistical method in order to reduce its systematic bias relative to the SWAT model 

simulations.  

2.4.4 Reducing systematic bias in satellite data 

Systematic bias mostly arises from resampling the raw data into grid cells, 

continuously variable sensing depth of satellite instrument as a function of moisture 

content and the satellite's soil moisture retrieval algorithms (Draper et al., 2009; 

Reichle et al., 2004). Several approaches, including linear regression (Milzow et al., 

2011), cumulative distribution function (CDF) matching (Reichle and Koster, 2004; 

Scipal et al., 2008; Brocca et al., 2011; Matgen et al., 2012), µ-σ linear rescaling 

(Brocca et al., 2012, 2010; Dharssi et al., 2011; Draper et al., 2009; Jackson et al., 

2010), min-max correction (Albergel et al., 2010) and water holding capacity method 

(Bisselink et al., 2011; Wanders et al., 2014) can be applied for reducing the bias in 

remotely sensed soil moisture data. It is noteworthy that the temporally rescaled 

output might vary depending on the choice of scaling technique.   

Sub-basin and HRU scale AMSR-E soil moisture values, respectively for Upper 

Wabash and Cedar Creek, are first transformed into plant-available water (PAW, in 

mm H20 depth unit), because SWAT does not simulate residual water content of soil 

(DeLiberty and Legates, 2003; Milzow et al., 2011). Following the method used in 

SWAT source code (Neitsch et al., 2011), water content held at wilting point (WP) is 

calculated for the top 1 cm layer for a sub-basin/HRU as a function of percent clay 

content and bulk density, and then this calculated amount is deducted from the 

respective AMSR-E data, thereby producing sub-basin or HRU scale surface PAW 

values. These PAW values are then rescaled with the µ-σ linear technique using 

equation (2.1): 

Ѳ′(𝑅𝑆) = [Ѳ(𝑅𝑆) − µ(Ѳ(𝑅𝑆))] x 𝜎(Ѳ(𝑀))/𝜎(Ѳ(𝑅𝑆)) + µ(Ѳ(𝑀))...... (2.1) 
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Here, each AMSR-E PAW value (Ѳ(RS)) in a sub-basin/HRU is normalized (Ѳ′(RS)) 

to match the long-term mean (µ) and variance (σ2) of the SWAT simulated PAW 

time-series (Ѳ(M)), being limited by the period of model simulation. Ѳ(M) is obtained 

after the model parameters are adjusted against observed streamflow data with a small 

number of trial calibration iterations. This particular step is quite subjective, yet 

necessary to ensure a reasonable state of SWAT simulation. After the application of 

eq. (2.1), the resulting rescaled AMSR-E PAW product is used in SWAT calibration 

along with streamflow data.  

2.4.5 Processing field sensor-based soil moisture data 

SWAT simulated soil moisture cannot be directly compared with the estimates from 

field sensors because of two factors: (i) the sensors AS1 and AME (Cedar Creek 

watershed in Figure 2.1) measure the dielectric permittivity of soil to determine 

volumetric moisture content (m3/m3) for every 10 minutes using the frequency 

domain reflectometry method (Heathman et al., 2012a), whereas SWAT simulated 

soil moisture content represents the PAW content in the depth unit (mmH20) at the 

end of each simulation time-step (a day) (Deliberty and Legates, 2003); (ii) the 

sensors deliver point estimates at four different depths (5, 20, 40 and 60 cm) (Han et 

al., 2012c; Heathman et al., 2012a), but values obtained from SWAT are spatially 

averaged over particular HRUs. To overcome such limitations, sensor values are 

transformed into daily averages and then multiplied with the depth interval of sensor 

placement, producing soil moisture observations in the depth unit (mmH20) for those 

particular depth intervals (0-5, 5-20, 20-40 and 40-60 cm). Following the same 

method as discussed in section 2.4.4, water content held at wilting point is calculated 

for each layer and then this calculated amount is deducted from the sensor values, 

thereby producing observed PAW. Total PAW in the top 60 cm of the soil profile is 

obtained by adding the PAW values in all the four constituent layers. The total PAW 

in top 5 cm and 60 cm profile from the AS1 and AME locations are employed in 

HRU-scale calibration of the Cedar Creek model (Table 2.2), assuming that the point 
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estimates are representative of the average PAW in respective HRUs where these 

sensors are actually located. To keep the terminology simple, PAW will be referred to 

as soil moisture in the subsequent sections. 

2.4.6 Multi-variable spatial calibration using streamflow and soil moisture 

Following a split-sample approach (Klemes, 1986) over a continuous daily simulation 

period, all the six model setups for the Upper Wabash and Cedar Creek watersheds 

are calibrated for 2004-2008 and 2004-2010, using year 2004 as the warm-up period 

in each case. Total 14 parameters involving surface, subsurface and channel 

hydrologic responses are used for calibration (Table 2.3). The selection of parameters 

and their initial ranges are based on the review of existing literature and prior 

knowledge of the study area (e.g. Kumar and Merwade, 2009; Larose et al., 2007; 

Rajib and Merwade, 2016), as well as suggestions from SWAT developers 

(Abbaspour, 2015; Neitsch et al., 2011). Calibration is conducted by using the 

Sequential Uncertainty Fitting algorithm-version 2 (SUFI-2), which is a semi-

automated inverse modeling procedure available inside SWAT-CUP. Kling-Gupta 

Efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012) is used as an objective 

function to measure the agreement between simulated and observed variables. The 

KGE statistic decomposes Nash-Sutcliffe Efficiency (NSE) and Mean Squared Error 

(MSE) into a three-dimensional criteria space and finds out a Pareto front in terms of 

the shortest Euclidean distance (ED): 

𝐾𝐺𝐸 = 1 − 𝐸𝐷 =  1 − √{ (𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2} ......... (2.2) 

𝛽 = 𝜇𝑠 /𝜇0 

𝛾 = 𝜎𝑠  /𝜎0 

where r represents the correlation, β and γ respectively represent bias and variability 

ratio between the simulated and observed variable. μ and σ are the mean and standard 

deviation of the variable; the indices s and o denote simulation and observation, 
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respectively. KGE ranges from ∞ to 1, with a value closer to 1 produces a more 

accurate model. Soundness of KGE against the conventional application of NSE in 

hydrologic model calibration is discussed in detail by Gupta et al. (2009). 

Table 2. 3 SWAT calibration parameters 

No. Parameter Descriptiona Adjustment b Initial Rage 

1 CN2 Curve Number, moisture 

condition II 
x -0.2 – 0.2 

2 CH_K2 Channel Hydraulic 

Conductivity, mm/hr 
= 5.0 – 100.0 

3 CH_N2 Main Channel Manning’s n = 0.01 – 0.15 

4 CANMX Maximum Canopy Storage, mm = 0.0 – 25.0 

5 SURLAG Surface Runoff Lag 

Coefficient, days 
= 0.05 – 24.0 

6 ESCO Soil Evaporation Compensation 

Factor  
= 0.01 – 1.0 

7 EPCO Plant Uptake Compensation 

Factor 
= 0.01 – 1.0 

8 SOL_AWC Available Soil Water Capacity, 

mmH20 per mm of soil 
x -0.15 – 0.15 

9 SOL_K Saturated Hydraulic 

Conductivity, mm/hr 
x -0.15 – 0.15 

10 ALPHA_BF Baseflow Recession Constant, 

days 
= 0.01 – 1.0 

11 REVAPMN Re-evaporation (Upward 

Diffusion) Threshold, mm 
= 0.01 – 500.0 

12 GW_DELAY Groundwater Delay, days + -10.0 – 10.0 

13 GWQMN Threshold Groundwater Depth 

for Return Flow, mm 
= 0.01 – 5000.0 

14 GW_REVAP Groundwater Re-evaporation 

Coefficient 
= 0.02 – 0.2 

a Source: Neitsch et al. (2011) 

b Type of change to be applied over the existing parameter value: ‘x’ means the original value is 

multiplied by the adjustment factor (1+a given value within the range), ‘=’ means the original value is 

to be replaced by a value from the range, ‘+’ means a value from the range is added to the original 

value 
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In the first set of iteration, SWAT models for both watersheds are calibrated against 

daily streamflow records at the watershed outlets. In the case of Upper Wabash 

watershed, sub-basin scale surface soil moisture output (top 1 cm layer) from this 

initial streamflow-based calibration is used in the temporal rescaling of corresponding 

AMSR-E data (eq. (2.1)). After each set of iterations, SUFI-2 produces an updated 

parameter range which is centered on their best value. Taking the updated parameter 

range from the initial streamflow-based iteration as input, successive iterations are 

performed where streamflow at the watershed outlet and rescaled AMSR-E surface 

soil moisture estimates from all the 36 sub-basins are set as target variables for 

calibration. A similar approach is followed in the case of Cedar Creek, where the first 

set of calibration iterations is run only with streamflow; from the second set and 

onwards, AMSR-E surface moisture (~1 cm), in-situ surface moisture (5 cm) and in-

situ total root zone moisture (60 cm) contents at two particular HRUs are added into 

the calibration process along with streamflow data, in three separate settings. No prior 

rescaling (eq. (2.1)) of the field sensor-based soil moisture is necessary in this case, 

because of the relatively less uncertainty and systematic bias in these estimates 

compared to remote sensing data.   

With the addition of soil moisture as objective variable from the second set of 

iteration and onwards, the goal/objective function, KGE is modified to a weighted 

mean value, KGE' following the approach shown by Abbaspour et al. (2015): 

𝐾𝐺𝐸′ = ∑ 𝑤𝑓𝑖
(𝐾𝐺𝐸𝑓

𝑖
)

𝑛𝑓

𝑖=1
+ ∑ 𝑤𝑠𝑗

(𝐾𝐺𝐸𝑠
𝑗
)

𝑛𝑠
𝑗=1 ...... (2.3) 

where n and w are the number of objective variables (observational datasets) involved 

and the weight assigned to each of them, respectively; the indices f and s stand for 

streamflow and soil moisture, respectively. Also, i denotes the streamflow gauge 

stations and j denotes sub-basins/HRUs with soil moisture estimates brought under 

calibration. Thus, KGE calculated for individual sets of observed and simulated 

values are aggregated into KGE' and it is maximized toward an optimal solution. The 

assignment of weights being subjective, it may affect the outcome of the optimization 

exercise by SUFI-2 (Abbaspour et al., 1997). On the basis of few test iterations, the 
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weights in this study are set as 𝑤𝑓  = 0.5 (since only one streamflow gauge station for 

both study areas) and 𝑤𝑠𝑗  = 0.5/ns (ns is the total number of sub-basins/HRUs in 

calibration with soil moisture estimates). On the contrary, assigning equal weights to 

both streamflow and soil moisture components (𝑤𝑓 = 𝑤𝑠𝑗
=1/(nf +ns)) is found to 

have improved the KGE for soil moisture in individual sub-basins/HRUs, 

compromising with the KGE of streamflow. 

For an even comparison, M1 and M2 configurations are evaluated after equal number 

of iterations (1500). In each case, maximum three batches are executed each having 

500 SUFI-2 iterations. For each of the six calibration setups (Table 2.2), coefficient of 

determination (R2) and Percent Bias (PBIAS, Sorooshian et al., 1993) are also 

calculated to evaluate the goodness of fit between the observations/estimates and the 

best simulation having maximum objective function value (KGE or KGE' in this 

case). 

2.4.7 Modification of SWAT source code 

The default configuration of SWAT-CUP does not allow calibration with respect to 

estimates in a particular soil layer (e.g. top 1 cm in Upper Wabash and Cedar Creek) 

or in a portion of the whole soil profile (e.g. top 5 cm and 60 cm in Cedar Creek). To 

enable this layer-based calibration scheme, subroutine hruday.f from the SWAT 2012 

version source code (revision 629) is modified such that the simulated soil moisture 

in top 1 cm layer, and the sum of soil moisture in all the layers up to 5 cm and 60 cm 

get exported as three new variables in the HRU-level output file (output.hru). The 

edited sub-routine is then compiled with the rest of the source code to get a new 

SWAT executable file, which can be run in SWAT-CUP.  
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2.4.8 Relative parameter sensitivity analysis 

A relative sensitivity ranking of parameters is performed in order to ascertain the 

possible reasons behind the changes in simulation results caused from insertion of 

surface/root zone soil moisture estimates into model calibration process. The global 

sensitivity analysis technique in SWAT-CUP measures the average changes in 

objective function due to the changes in one parameter while all other parameters are 

also simultaneously changing (Abbaspour, 2015). Accordingly, the measure of 

relative sensitivity is translated in terms of p-values; where a smaller p-value 

represents more sensitive parameter. Relative sensitivity of parameters depends on 

the objective variables (soil moisture and/or streamflow) involved in the calibration 

process. Hence, to identify the effect of soil moisture by comparing the p-values 

between M1 and M2, this global sensitivity scheme is executed after the second set of 

500 iterations for both model configurations.  

2.4.9 Measure of parameter uncertainty 

Equifinality means that that several parameter combinations from the optimized range 

can potentially produce behavioral solutions that are considered equally satisfactory 

in comparison with the observed data (Beven, 1993; Vrugt et al., 2008). In this study, 

all parameter values staying within their final optimized space and producing a value 

of the objective function higher than a specified threshold (KGE or KGE' > 0.5) are 

categorized as behavioral solutions. Then, in order to compare the extent of 

uncertainty associated with each parameter in the same scale, all these behavioral 

parameter values are normalized from 0 to 100 using equation (2.4): 

𝑃𝑛 =  [
𝑃𝑏 − 𝐿𝑙

𝑈𝑙 − 𝐿𝑙
] 𝑥100 … … … . (4) 

where Pn is the normalized uncertainty score, Pb is the behavioral parameter value 

identified by SUFI-2, Ul and Ll are respectively the upper and lower limit of the 

corresponding parameter; Pb corresponds to the final batch of iterations producing 
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optimized parameter set. Example application of this normalized uncertainty scoring 

technique can be found in Kumar and Merwade (2009) and Rajib and Merwade 

(2016). 

2.4.10 Model validation 

The final optimized parameter ranges from the calibration scenarios are used in model 

validation, with respect to streamflow records and soil moisture estimates. SWAT 

models for Upper Wabash and Cedar Creek watersheds are validated for the period 

2009-2010 and 2011-2012, respectively. 

2.5 Results and Discussion 

This section presents the findings on the relative improvement in SWAT performance 

due to the simultaneous application of surface/root zone soil moisture and streamflow 

data in a spatial calibration approach. Various flow components from the two model 

configurations (M1 and M2) are compared both at temporal and spatial scale, in terms 

of their simulated values as well as their goodness of fit statistics with 

estimates/observations. The possible reasoning behind the differences in simulation 

results is analyzed in terms of relative parameter sensitivity between M1 and M2. 

Furthermore, potential reduction in equifinality is evaluated with the corresponding 

reduction in parameter uncertainty range.       

2.5.1 Fitness statistics for streamflow and soil moisture 

Table 2.4 compares the goodness of fit scores (KGE, PBIAS and R2) for the M1 and 

M2 configurations after equal number of SUFI-2 iterations. Overall, it is evident that 

high KGE and R2 with low PBIAS for streamflow can be achieved from M1, without 
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using any soil moisture information for data assimilation or model calibration (e.g. 

Immerzeel and Droogers, 2008; Park et al., 2014). Clearly the M1 configuration 

exhibit higher amount of bias, when the fit scores are compared for soil moisture. 

This validates the presence of sub-optimality of model calibration practices 

(Abbaspour et al., 2015) even with acceptable streamflow results. The scores for 

streamflow are slightly negatively impacted with M2 configuration for Upper Wabash, 

but this can be attributed to the optimization algorithm. The Upper Wabash has 37 

objective functions (one for each sub-basin and the outlet), and optimization 

algorithm seeks a goal that is best for all the objectives and thereby implicitly 

imposing an "averaging effect" across scales and the variables involved (White and 

Chaubey, 2005; Wanders et al., 2014). Having lesser number of objective functions 

(only 3) compared to the Upper Wabash, streamflow fit scores remain virtually the 

same for Cedar Creek when calibrated either with satellite or field estimates of 

surface moisture. This is not the case for Cedar Creek when root zone moisture is 

employed in the M2 configuration; KGE and R2 increase from 0.75 to 0.81 and 0.69 

to 0.72, respectively, PBIAS shows a substantial decrease from -12.2 to -0.9. 

Depending on how the relationship between soil wetness and runoff generation within 

a particular model is conceptualized, it is possible that the stronger influence of root 

zone moisture on regulating the parameters can overrule the "averaging effect" of 

multi-objective calibration, thus improving the fitness scores for streamflow 

simulation. 

Improved agreement between simulated soil moisture and the field/satellite estimates 

is also found in the M2 configuration (Table 2.4), especially in Cedar Creek, when 

total root zone moisture in upper 60 cm of the soil profile is brought into calibration 

and compared with the corresponding field estimates; PBIAS decreases from -19.1 to 

-8.7 with the increase in KGE and R2 from 0.13 to 0.35 and 0.18 to 0.23, respectively. 

Similar improvement is evident when watershed-average simulated surface moisture 

in Upper Wabash is compared with the AMSR-E estimates. These low fitness values 

may indicate that SWAT is still under-performing in soil moisture simulation even 

with the multi-objective calibration scheme. From this aspect, it is important to clarify 
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that these fitness statistics are calculated for the entire duration of simulation and are 

impacted by the differences in absolute values between the simulations and the 

observations; hence, they do not represent the actual improvement in the temporal 

dynamics of soil moisture simulation. However, using either AMSR-E or field 

sensor-based surface estimates in calibrating the Cedar Creek model does not produce 

any noticeable difference in fit scores for the 60 cm root zone moisture content, 

relative to those in the M1 configuration (Table 2.4).   

Table 2. 4 Descriptive statistics of calibration and validation schemes a 

a Within parentheses are the values from model validation 

b Upper Wabash: watershed-average statistics for surface soil moisture (~1 cm top soil). Rescaled 

AMSR-E surface estimates are used in calculation 

c Cedar Creek: Values are calculated with respect to the in-situ total root zone soil moisture estimates 

for top 60 cm of the soil profile. Averages of the two sensor locations (AS1 and AME) are reported 

here 

Goodness of fit 

criteria 

Upper Wabash Cedar Creek 

M1 M2  

AMSR-E: 

~ 1 cm 

M1 M2  

In-situ: 

60 cm 

M2   

In-situ: 

5 cm 

M2  

AMSR-E: 

~ 1 cm 

Streamflow at watershed outlet 

KGE 0.74 

(0.73) 

0.72  

(0.74) 

0.75 

(0.71) 

0.81 

(0.74) 

0.75 0.75 

PBIAS - 4.2 

(- 9.4) 

 - 8.6  

(1.7) 

 - 12.2 

(- 7.5) 

- 0.9 

(2.2) 

-12 -12.7 

R2 0.68 

(0.65) 

0.65  

(0.67) 

0.69 

(0.64) 

0.72 

(0.68) 

0.69 0.69 

Soil moisture b, c 

KGE 0.25  

(0.2) 

0.31 

 (0.24) 

0.13 

(0.11) 

0.35 

(0.25) 

0.14 0.14 

PBIAS 8  

(12.2) 

3.5  

(5) 

-19.1  

(-25.6) 

 -8.7  

(-11.7) 

-18.8 -19.1 

R2 0.18  

(0.2) 

0.3  

(0.25) 

0.18 

(0.19) 

0.23 

(0.21) 

0.18 0.18 
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In general, using surface estimates in model calibration can improve the simulation of 

surface moisture itself, but that may not be influential over the deeper layer moisture 

content which implicitly refers to the insensitivity of surface moisture to streamflow 

simulation. Assuming that the available field/satellite soil moisture estimates are 

representative of actual wetness conditions, calibration with root zone moisture is 

considered an effective approach as it makes the overall water budget more realistic 

in terms of the improvement in soil moisture and corresponding enhancement in 

streamflow prediction.     

2.5.2 Enhancement in soil moisture simulation  

In the case of Upper Wabash watershed, fitness scores for surface soil moisture listed 

in Table 2.4 actually represent watershed-average values. Figure 2.2, in contrast, 

helps to identify the actual extent of model performance improvement in terms of bias 

removal from individual sub-basins. A spatial comparison of sub-basin scale PBIAS, 

R2 and KGE between the simulated daily surface soil moisture and the AMSR-E 

estimates over the entire simulation period (2005-2010) is presented in Figure 2.2. 

Clearly, the spatially distributed calibration approach improves model simulation all 

over the watershed, irrespective of scales. However, the soil and land use 

characteristics of the sub-basins may have affected this particular spatial pattern of 

bias removal, but this is not explored further in the current study. Figure 2.3 shows 

the frequency distribution of the values being mapped in Figure 2.2. As seen from the 

results of M1 configuration in Figure 2.3, surface soil moisture in 12 out of 36 sub-

basins is overestimated by more than 10% (PBIAS), while R2 in all the sub-basins is 

less than 0.25. In the M2 configuration, maximum PBIAS in any of the sub-basins 

decreases to 8%, with almost half of the sub-basins showing much improved R2 

(0.25~0.5). Consequently, KGE in majority of the sub-basins also increases from 0.2 

- 0.3 in M1 to 0.25 - 0.35 in M2.  
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Figure 2. 2 Spatial distribution of (i) PBIAS, (ii) R2 and (iii) KGE between the 

simulated surface soil moisture (PAW) and AMSR-E estimates in the Upper Wabash 

watershed: M1 (left), M2 (right). Shapes in the figure correspond to individual sub-

basins. Statistics are calculated for the entire calibration-validation period. 

Figure 2.4 shows the temporal comparison of simulated surface soil moisture with 

AMSR-E estimates in the Upper Wabash watershed. Regardless of M1 or M2, there 

is a resemblance in temporal dynamics of AMSR-E estimates with that of the model 

simulation which validates the ability of SWAT model in subsurface characterization. 

However, extensive disagreement in their absolute values is visible in case of M1. 

Especially, SWAT simulated moisture for M1 is seen to have reached wilting point 

(PAW≈0) at numerous occasions both during calibration and validation. Calibration 

with M2 setting enhances model simulation, but disagreement between the absolute 

values of model simulation and AMSR-E estimates still persists. Literature supports 
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similar findings in other modeling studies that used remotely sensed surface soil 

moisture in calibration (e.g. SWAT (Milzow et al., 2011), LISFLOOD (Wanders et 

al., 2014)). Considering that the surface layer is the most interactive and hence very 

"noisy", the improvement in the temporal dynamics of SWAT simulated daily surface 

soil moisture obtained in this study, as evident in Figure 2.2-2.4, is quite convincing. 

 

Figure 2. 3 Frequency distribution of sub-basin scale PBIAS, R2 and KGE between 

simulated surface soil moisture (PAW) and AMSR-E estimates in the Upper Wabash 

watershed. Horizontal axis indicates the ranges of corresponding fit scores, where 

values in vertical axis mean the number of sub-basins within a particular range. 

 

Figure 2. 4 Comparison of watershed-average simulated surface soil moisture (PAW) 

with AMSR-E estimates in the Upper Wabash watershed: M1 (top), M2 (bottom). 
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In order to further ascertain the ability of surface moisture in regulating deeper layer 

soil moisture content through model calibration, the in-situ total root zone moisture 

(top 60cm soil profile) content in the AS1 location of Cedar Creek watershed is 

plotted with corresponding SWAT simulations resulted from the M2 configurations 

when the model was calibrated with AMSR-E (top 1 cm) and in-situ (top 5 cm) 

surface moisture estimates (Figure 2.5). In either case, there is no noticeable 

improvement in root zone soil moisture. On the contrary, considerable improvement 

in model simulation is observed when root zone moisture (60 cm) is employed in the 

multi-objective calibration (Figure 2.6). Parajka et al. (2006) and Silvestro et al. 

(2015) reported similar findings with more consistent root zone soil moisture 

simulation. Large offsets in M1 simulations from the field estimates are evident; the 

deviation, as seen from the error plots, can be more than 25 mm on a day which is 

quite significant considering the average daily precipitation in the watershed. In 

comparison, the M2 configuration matches well with the field estimates invariably 

during the calibration and validation phase, except during the summer months.  

 

Figure 2. 5 Temporal comparison of simulated soil moisture (PAW) and field-sensor 

estimates of total root zone moisture in the top 60 cm of soil profile, when AMSR-E 

and in-situ surface moisture estimates are applied in model calibration (Cedar Creek; 

Table 2.2). The values correspond to the HRU where the AS1 sensor is located. 

Results for only one year of calibration are shown here. Calibration results for AME 

sensor is fairly similar (not shown here). 
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Figure 2. 6 Temporal comparison of simulated soil moisture (PAW) and field-sensor 

estimates, with corresponding simulation error (Error, ∆= Model-Observed) from the 

AS1 sensor in the Cedar Creek watershed: (i) calibration, (ii) validation. The values 

represent total PAW in the top 60 cm profile of the root zone of the corresponding 

HRU where the sensor is located. Results for only one year of the whole 

calibration/validation period are shown here for vivid comparison. The 

calibration/validation results for AME sensor is fairly similar (not shown here). 

The error plot clearly indicates minimal or even zero residual of M2 simulations in 

the significant portion of the time-span, thereby attesting the greater utility of root 

zone soil moisture estimates toward improving model performance through 

calibration. The "summer deficiency" identified here is very much a model-specific 

issue and can be linked with the limitations in SWAT's ET depletion mechanism.    
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2.5.3 Potential model deficiency in ET mechanism 

SWAT's ET mechanism uses an exponential depth distribution function for soil 

moisture depletion that tends to withdraw 95% of soil evaporative demand and 50% 

of plant transpiration uptake approximately from upper 6% (~10 cm) of the root zone 

(~150 cm in this case) (Neitsch et al., 2011). In reality, the upper portion of the root 

zone may not always hold enough moisture to satisfy this calculated demand. SWAT 

regulates ET depletion such that when the moisture depletes from one layer due to ET, 

moisture from another layer cannot be extracted to replenish the deficit. According to 

the availability of soil moisture in upper layers, the exponential depth distribution 

function can be adjusted through two empirical parameters ESCO and EPCO such 

that the lower layers can take part in meeting the actual evaporative demand. Either 

way, the upper layers tend to dry out (PAW≈0) even when sufficient moisture is still 

available in the deeper layers. This is a model structure issue rather than a parametric 

issue, hence cannot be resolved by model calibration even using soil moisture 

estimates. Therefore, regardless of the M1 or M2 configuration, significantly large 

error in model simulation is observed at the time of heavy ET demand during the 

peak of crop growing season in summer months (July-August). During this period, 

SWAT simulated soil moisture (PAW) in the top 60 cm stays around the wilting point 

over a persistently long period of time. This has caused the high negative PBIAS 

score in SWAT simulated root zone moisture (Table 2.4), even though M2 

configuration produces substantial improvement in model performance by fairly 

imitating total amount of "observed" moisture in the top 60 cm throughout the rest of 

the year (Figure 2.6). 

Although M2 configuration tends to match total moisture in the top 60 cm profile 

(Figure 2.6), SWAT may still unable to replicate actual vertical distribution of 

moisture content in individual soil layers. Figure 2.7 shows monthly simulated and 

observed average soil moisture values in the year 2009 at particular soil layers (0-20, 

20-40 and 40-60 cm) at the AS1 sensor location of Cedar Creek watershed. Relative 

to the model simulations, average sensor values in a summer month (August 2009) 

are higher across the entire 60 cm depth being plotted here. Besides the structural 
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limitation in SWAT's ET mechanism, this can also be attributed with the actual 

agricultural management operations (e.g. spatial/temporal information on specific 

crop plantation and harvesting) which are not been considered in the model. 

Irrespective of that, relatively higher field estimates at around 15-35 cm depth 

compared to the model simulations (both M1 and M2) are persistent in other months 

along the year (e.g. May 2009 and November 2009), when growing crops and 

relevant management operations are not considerable issues. That indicates toward 

insufficient parameterization related to soil moisture and/or non-physical application 

of ESCO and EPCO, as well as the lack of vertical coupling strength among soil 

layers in SWAT's soil moisture accounting structure. From this standpoint, 

refurbishment of SWAT's ET mechanism would make the soil moisture based 

calibration even more efficient. 

 

Figure 2. 7 Vertical distribution of simulated and field-sensor based soil moisture 

(PAW) content for Cedar Creek watershed. The distribution is derived from the 

corresponding values at 0-20, 20-40 and 40-60 cm layers of the root zone. Values 

correspond only to the HRU where AS1 sensor is located. The monthly-average 

values for May, August and November 2009 are considered representing a seasonal 

variation in soil moisture. Vertical distribution in case of AME sensor is fairly similar 

(not shown here).   

2.5.4 Enhancement in streamflow simulation 

Antecedent soil wetness condition is the major controlling factors for surface runoff 

generation. Therefore, it is expected that the extent of changes in the whole root zone 

moisture caused by the model calibration scheme will lead to possible changes in 
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streamflow hydrographs (Figure 2.8). Both runoff methods in SWAT (Curve Number 

and Green-Ampt) use moisture content (PAW) in the whole root zone for necessary 

parameterizations and subsequent calculations. Theoretically, the larger the change 

being imparted in the entire root zone moisture content, the higher will be the impact 

on SWAT simulated runoff volume and streamflow, following a storm event. In the 

case of Upper Wabash watershed, where only the surface soil moisture is improved, 

simulated hydrograph from M2 configuration does not suggest appreciable 

enhancement in streamflow prediction (Figure 2.8). This can be explained by the 

inability of surface moisture estimates in producing big changes in the deeper layer 

moisture contents through model calibration, as evident in the examples of Cedar 

Creek (Figure 2.5 and Table 2.4). This is quite analogous to the findings by Parajka et 

al. (2009) and Wanders et al. (2014). On the other hand, in the case of Cedar Creek, 

where the entire root zone moisture (60 cm) is included in the M2 configuration, 

simulated streamflow matches well with the observed hydrograph compared to M1. 

Brocca et al. (2012) assimilated a semi-empirical exponential filter-based root zone 

soil moisture product into a hydrologic model and showed similar significant 

improvement in streamflow simulation. Especially for high flow conditions in Cedar 

Creek, SWAT simulations from M2 configuration are quite precise, thereby 

addressing the long-standing limitation of SWAT in replicating watershed physics 

under extreme flow situations (e.g. Arnold and Allen, 1996; Arnold et al., 2000; Chu 

and Shirmohammadi, 2004; Vazquez-Amábile and Engel, 2005; Arabi et al., 2006; 

Bracmort et al., 2006; Larose et al., 2007; Wang et al., 2008; Kumar and Merwade, 

2009; Oeurng et al., 2011; Rahman et al., 2012; Qiu and Wang, 2013; Rahman et al., 

2014). Since a simple hydrograph comparison does not appear to be decisive enough 

for the Upper Wabash watershed (Figure 2.8), Figure 2.9 provides supplementary 

information in this regard. Figure 2.9 shows the Percentage Error (PE) in daily 

streamflow for all the individual data points over the entire duration of model 

simulation along with the average daily residual for specific flow regimes. 

Comparison of average daily residuals (observed minus simulated streamflow) 

indicates that simulations for high and low flow regimes are improved invariably for 

both watersheds, with slight exception for the moist flow condition. Considerable 
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degree of reduction in PE for Upper Wabash is evident as well, thereby validating the 

potential of remotely sensed data in enhancing streamflow prediction through a model 

calibration approach. In conjunction with the better fit between simulated and 

observed hydrographs for Cedar Creek watershed (Figure 2.8), much pronounced 

reduction of PE in Figure 2.9 further proves the comparatively efficient role of root 

zone moisture in model calibration.   

 

Figure 2. 8 Comparison of streamflow hydrographs. Only a representative segment 

from the whole simulation period is shown here: (a) Upper Wabash, (b) Cedar Creek.  
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Figure 2. 9 (Left) Percentage Error (PE) in simulated streamflow during the entire 

calibration-validation period. PE = Abs[Model-Observed]/Observed x 100%. (Right) 

Average daily residual for three different flow regimes: (exceedance probability 0.0-

0.1: high flow, 0.1-0.6: moist and mid flow, 0.6-1.0: dry and low flow).  

2.5.5 Evaluation of relative parameter sensitivity 

During a model calibration, the parameter space gets optimized, and the outcome is 

heavily dependent on the choice of objective variable (observation). Hence, relative 

sensitivity of parameters in a calibration only with observed streamflow will be 

different from a calibration involving both streamflow and soil moisture. Figure 2.10 

compares the relative ranking of sensitive parameters between the two configurations 

based on p-value measurements. Obtained from the global sensitivity analysis of 

parameters during a set of calibration iterations, p-value determines the significance 

of the sensitivity, where a value closer to zero indicates more significance. The 

important feature from Figure 2.10 is that some of the parameters related to sub-
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surface processes such as GWQMN, ESCO, ALPHA_BF in Upper Wabash, and 

SOL_AWC, ESCO, EPCO, SOL_K in Cedar Creek become more sensitive in the M2 

configuration. In streamflow based calibration (M1), these subsurface related 

parameters do not get an appropriate constraint in their own spatial scale of variation 

(observations/estimates on soil moisture and ET in HRU/sub-basin scale) based on 

which they can be optimized, as such they play a less effective role in the calibration 

process. This is likely to be the cause for which the M1 configuration in this study 

suffers from imprecise soil moisture accounting even having well-predicted 

streamflow results with high goodness of fit scores. This shows that streamflow based 

calibration leads to parameter equifinality (Beven, 1993) and higher degree of 

uncertainty.  

 

Figure 2. 10 Relative sensitivity of parameters. The numbers on the vertical axis 

indicate sensitivity ranking based on p-value; within parentheses are the values 

corresponding to M1 configuration.  Results shown here are based on the Global 

Sensitivity Analysis being run after the 2nd set of 500 iterations in all the cases.   

2.5.6 Reduction of parameter uncertainty 

The calibrated parameter values for all the four modeling cases are listed in Table 2.5. 

Although Table 2.5 denotes the best estimate on how the parameters should be 
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changed in order to best fit the simulated outputs with the observations, it does not 

help measuring the reduction in parameter uncertainty that might have happened with 

the application of soil moisture in model calibration. Reduction in equifinality and 

associated degree of uncertainty can be evaluated in terms of the "behavioral range" 

of parameters. Hence, the narrower the behavioral range, the lower is the extent of 

equifinality or uncertainty (Price et al., 2014).  

Table 2. 5 Calibrated parameter ranges a,b 

Parameter c 

Best parameter value  

Upper Wabash Cedar Creek 

M1 M2 M1 M2 

CN2 -0.002 0.009 0.09 0.04 

CH_K2 64 60 38 74 

CH_N2 0.15 0.13 0.02 0.02 

CANMX 21.4 25 18.5 7.7 

SURLAG 14.8 14.5 1.1 3.45 

ESCO 0.97 0.91 0.93 0.86 

EPCO 0.54 0.32 0.77 0.31 

SOL_AWC 0.09 0.04 0.01 -0.08 

SOL_K -0.01         0.03 0.14 0.11 

ALPHA_BF 0.77 0.65 0.73 0.45 

REVAPMN 500 391 500 361 

GW_DELAY 10 1.83 3.7 -1.9 

GWQMN 81 14.7 1222 1135 

GW_REVAP 0.15 0.15 0.2 0.2 

a After equal number of SUFI-2 iterations (1500) in all the cases   

b M1: calibration only against streamflow; M2: calibration against both streamflow and soil moisture 

c Initial parameter ranges and the basis of adjustment are shown in Table 2.3 

The range of uncertainty in parameters produced by M1 and M2 is tested by applying 

equation (2.4), which converts each behavioral parameter value into a normalized 

uncertainty score (Figure 2.11). For Upper Wabash watershed, two major parameters 

related to subsurface hydrology, GWQMN and ESCO, show prominent decrease in 

their uncertainty range in the M2 configuration compared to M1. Applying remotely 



47 

 

sensed surface soil moisture in calibration of LISFLOOD, Wanders et al. (2014) 

obtained similar results related to parameter uncertainty. However, the output from 

M2 in the case of Cedar Creek watershed is more remarkable as it is showing 

significant decrease in the uncertainty for all the parameters involved. This proves the 

stronger effect of root zone soil moisture in reducing equifinality when employed in 

model calibration.         

 

Figure 2. 11 Normalized uncertainty of parameters. Out of total 14 parameters, 10 

most sensitive parameters are selected for this plot. 
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2.6 Conclusion 

Good correspondence of observed and simulated streamflow cannot be sufficient as a 

criterion for evaluating physically based hydrologic models. Being derived from such 

notion, this study employs remotely sensed AMSR-E surface soil moisture (~ 1 cm 

top soil) estimates in calibrating SWAT model simultaneously at individual sub-

basins, along with observed streamflow data at particular stream location. In order to 

validate the stronger role of root zone moisture over the surface moisture estimates in 

model calibration, similar approach is followed involving AMSR-E surface moisture 

(~1 cm), in-situ surface moisture (5 cm) and in-situ total root zone moisture (60 cm) 

contents in HRU scale calibration under three different settings. These cases are 

tested over two different agriculture-dominated watersheds in Indiana, USA (Upper 

Wabash and Cedar Creek, respectively) and compared with calibration results based 

on streamflow only. Following conclusions are drawn: 

1. Acceptable streamflow simulation can be obtained without using any soil 

moisture information in model calibration. However, considerable amount of bias 

is still noticed in soil moisture outputs, indicating significant room for model 

uncertainty/equifinality. Using sub-basin scale AMSR-E data in calibration 

improves model simulated surface soil moisture all over the Upper Wabash 

watershed.  

2. Such improvement is more prominent when root zone soil moisture data are 

employed in the calibration process as the PBIAS in root zone moisture (~60 cm) 

decreases from -19.1 to -8.7 with corresponding increase in KGE and R2 from 

0.13 to 0.35 and 0.18 to 0.23, respectively. Regardless of these low performance 

scores which may give an impression that SWAT is still under-performing even 

with the multi-objective calibration scheme, improvement achieved in the 

temporal dynamics of root zone soil moisture simulation is quite considerable. 

3. Even though root zone moisture based calibration produces minimal or zero 

residual (simulation minus observed) in fairly large portion of the simulation 

time-span invariably during the calibration and validation periods, significant 
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negative PBIAS (model underestimation) is detected in the peak of summer 

growing season along with the inability of the model to replicate vertical 

distribution of moisture content throughout the year. This is likely to be 

influenced by SWAT's structural limitation regarding ET mechanism which 

cannot be resolved by calibration even with soil moisture information.   

4. Use of either AMSR-E or field sensor estimates of surface moisture in calibrating 

the Cedar Creek model does not change the total moisture content of the top 60 

cm soil profile. Thus, using surface estimates in model calibration can improve 

the simulation of surface moisture itself but that may exert minimal effect on the 

deeper layer moisture contents. Greater effect of using root zone soil moisture 

estimate in model calibration compared to that of surface layer is further validated 

in terms of enhancement in streamflow prediction. Especially for high flow 

conditions, SWAT simulation from the root zone moisture based calibration is 

found fairly matching with the observed data. In contrast, potential of surface 

estimates in improving streamflow simulation is still noticeable in terms of the 

reduced Percentage Error (PE) and residual of different flow conditions; however, 

those improvements may not be considered as substantial as in the earlier case. 

5. Besides producing better water budget, the proposed approach shows reduced 

uncertainty of parameters. Also, the parameters specifically related to sub-surface 

hydrologic processes have been found more influential in this proposed scheme in 

contrast to the streamflow based calibration, thereby producing a less equifinal 

optimization.   

Prior to the application of the distributed multi-objective calibration, this study also 

shows application of an automatic tool that helps to address the long-standing 

problem of extracting remotely sensed data in desired spatio-temporal resolution of 

SWAT model. While the tool is tested only on SWAT model framework through this 

study, it has a flexible design to be adopted for any hydrologic/land surface model’s 

geo-spatial structure. 

Although the results from this study are promising, vigorous experiments are 

necessary to endorse the proposed approach across different scales, geographic and 
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hydro-climatic settings. Increasing the number of streamflow gauge stations in 

calibration along with the spatially distributed soil moisture estimates might result 

into improved watershed average streamflow simulations, however, that would 

complicate the optimization problem with too many objective variables involved. 

Another point of attention is the availability of remotely sensed ET data. ET, being a 

major driver of controlling the vadose zone and atmospheric interaction, inclusion of 

ET estimates in model calibration can also be considered as a potential avenue for 

increasing the efficiency of the proposed approach. The enhanced prediction skills 

and reduced equifinality from SWAT simulations, as shown here, can significantly 

contribute in studies related to long-term climate and land use impacts, flood 

forecasting, as well as nutrient transport, crop yield and agricultural management 

practices.  
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CHAPTER 3. IMPROVING SOIL MOISTURE ACCOUNTING AND 

STREAMFLOW PREDICTION IN SWAT BY INCORPORATING A MODIFIED 

TIME-DEPENDENT CN METHOD  

3.1 Abstract 

The objective of this study is to incorporate a time-dependent Soil Moisture 

Accounting (SMA) based Curve Number method (SMA_CN) in Soil and Water 

Assessment Tool (SWAT) and compare its performance with the existing CN method 

in SWAT by simulating the hydrology of two agricultural watersheds in Indiana, 

USA. Results show that fusion of the SMA_CN method causes decrease in runoff 

volume and increase in profile soil moisture content, associated with larger 

groundwater contribution to the streamflow. In addition, the higher amount of 

moisture in the soil profile slightly elevates the actual evapotranspiration. The SMA-

based SWAT configuration consistently produces improved goodness-of-fit scores 

and less uncertain outputs with respect to streamflow during both calibration and 

validation. The SMA_CN method exhibits a better match with the observed data for 

all flow regimes, thereby addressing issues related to peak and low flow predictions 

by SWAT in many past studies. Comparison of the calibrated model outputs with 

field-scale soil moisture observations reveals that the SMA overhauling enables 

SWAT to represent soil moisture condition more accurately, with better response to 

the incident rainfall dynamics. While the results from the modification of the CN 

method in SWAT are promising, more studies including watersheds with various 

physical and climatic settings are needed to validate the proposed approach. 

3.2 Introduction 

Simulation of soil moisture content through a physically-based continuous-simulation 

distributed hydrologic model is largely dependent on simulation of runoff generation 
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process (Neitsch et al., 2011; Han et al., 2012b). Numerous models of varying 

complexity use the Soil Conservation Service Curve Number (SCS-CN) method for 

computing rainfall excess [e.g. EPIC (USDA, 1990); HELP (Schroeder et al., 1994); 

L-THIA (Harbor, 1994); PRZM (Carsel et al., 1997); APEX (Williams et al. 2000); 

SWIM (Krysanova et al., 2000); CELTHYM (Choi et al., 2002); SWAT(Neitsch et 

al., 2011)]. The versatility of CN method lies on its simplicity and capacity of 

accounting runoff producing watershed characteristics, such as land cover, soil type 

and antecedent moisture condition (Ponce and Hawkins, 1996; Geetha et al., 2007; 

Chung et al., 2010). However, the CN method is empirical in nature and its use has 

been extended beyond its intended purpose of estimating cumulative runoff depth and 

peak flow rate (White et al., 2009; Collick et al., 2014). Many of the practical 

limitations associated with CN method are discussed by Hawkins et al. (2009). In 

addition, the CN method suffers from several structural inconsistencies and lack of 

theoretical foundation which need to be addressed to enable better soil moisture 

accounting in a continuous simulation model.  

Within a continuous model structure, the inherent SMA perception of the CN method 

is left unutilized mainly because of following two limitations. First, the runoff 

equations within the CN method compute surface runoff without incorporating any 

information of how much water is currently stored in the soil profile. The role of soil 

moisture content is rather implicit within the retention parameter and the initial 

abstraction, keeping the method independent of the infiltration excess or saturation 

excess phenomenon (Schneiderman et al., 2007; Lee and Huang, 2013) . Secondly, 

SCS-CN was originally designed as an event-based method without incorporating 

time in its equation, which is essential for its application in a continuous hydrologic 

model. Accordingly, there have been limited attempts to incorporate SMA procedure 

into the CN methodology. Among the noteworthy, Williams and LaSeur (1976) were 

perhaps the first to attempt an SMA conceptualization by computing rainfall excess 

using the antecedent 5-day rainfall-dependent CN values. An arbitrary fixation of 

maximum soil profile storage to 20 inches was the major weakness of that modified 

model (Mishra and Singh, 2004; Williams et al. 2012). Hawkins (1978) tried to 
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overcome this limitation by relating evapotranspiration (ET) with CN and varying 

storage from 0 to ∞, with a notion that soil profile never depletes fully out of moisture. 

Mishra et al. (2003) differentiated between static and dynamic infiltration, and 

incorporated the static part into the runoff equation as a loss factor along with the 

antecedent soil moisture amount. Williams et al. (2000) related retention parameter S 

with soil moisture depletion rather than available storage; later this was tested in Soil 

and Water Assessment Tool (SWAT) both by Kannan et al. (2008) and Williams et al. 

(2012). Kim and Lee (2008) pointed out the inconsistency associated with the 

updating process of S based on daily root zone soil moisture in a continuous 

simulation model such as SWAT. Need for a refurbishment of CN methodology 

within the existing SWAT structure has also been discussed in Gassman et al. (2007), 

Borah et al. (2007) and Bryant et al. (2006). Easton et al. (2008, 2010), White et al. 

(2009) and Collick et al. (2014) integrated the concept of Variable Source Area (VSA) 

hydrology with CN equations (Steenhuis et al., 1995; Lyon et al., 2004) inside the 

SWAT model with a view to better represent saturation excess runoff from VSAs. 

Jain et al. (2006) proposed a non-linear power functional relationship between the 

initial abstraction, incident rainfall and soil moisture retention parameter, and this was 

implemented within SWAT by Wang et al. (2008) in a slightly modified form. 

Among the proposed CN modifications, the hypothesis proposed by Michel et al. 

(2005) is considered to be the most consistent from SMA standpoint because it 

counteracted both the aforesaid limitations. The SMA procedure adopted by Michel et 

al. (2005) assumes that the fraction of rainfall to be converted into runoff is directly 

proportional to the current moisture store level. Also, the runoff equations are re-

derived as a function of time, validating CN to be applicable in a continuous model 

not only at the end of a storm but also at any instant during the storm. The objective 

of this study is to incorporate the time-dependent SMA-based CN hypothesis by 

Michel et al. (2005) within the existing structure of SWAT, which is a semi-

distributed hydrologic model, and then test the modified SWAT model for improved 

simulation of streamflow regimes and soil moisture in different layers of the soil 

profile.  
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3.3 Conceptual Background on the SMA-based CN Equation 

The original CN method (equation (3.1)) calculates accumulated runoff Q 

corresponding to an accumulated rainfall P at the end of a single rainfall event and 

hence, it is time-independent.  

𝑄 =  
( 𝑃 − 𝐼𝑎)2

𝑃 − 𝐼𝑎 + 𝑆
 𝑖𝑓 𝑃 > 𝐼𝑎 𝑜𝑟 0 otherwise … … … . (3.1) 

Here, Ia is the initial abstraction, which is computed as Ia=0.2S. S is the maximum 

potential retention or the maximum infiltration capacity after the runoff begins (P>Ia) 

(USDA-NRCS, 1999; USDA-NRCS, 2004).  

𝑆 =  
25400

𝐶𝑁
− 254 … … … . (3.2), where S is in mm 

In the original CN methodology, S is computed using equation (3.2) for a given 

rainfall event based on antecedent moisture condition and the curve number, thus 

making both S and Ia constant for the entire event.  

In a continuous model, a storm event can get separated into several simulation time-

steps depending on whether the chosen time-step is shorter or longer than the actual 

duration of the storm. For use in a continuous model, the CN method should be time-

dependent and hence, cannot be restricted to accumulated depths. From this 

perspective, the proposed re-conceptualization considers rainfall and runoff within 

one particular simulation time-step as 'rate' in terms of rainfall intensity (dP/dt) and 

runoff rate (dQ/dt) respectively, t being the time. Differentiating equation [1] with 

respect to time (t) gives the following:  

𝑑𝑄

𝑑𝑡
=

𝑑𝑃

𝑑𝑡

(𝑃 − 𝐼𝑎)(𝑃 − 𝐼𝑎 + 2𝑆)

(𝑃 − 𝐼𝑎 + 𝑆)2
  … … … . (3.3) 

In Equation (3.3), S and Ia are updated at the beginning of each simulation time-step 

in response to rainfall amount, simulated surface runoff, evapotranspiration from the 

soil profile and resultant soil moisture at the previous time step. Such updating of S 

and Ia enables the use of CN method in a continuous model (SWAT in this case), 
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without violating the integrity of its basic assumptions. 

Despite of the regular updating at each time-step, the ‘lumped’ insertion of S and Ia in 

calculating runoff (equations (3.1) and (3.2)) does not allow the method to account 

for the variation of soil moisture during an event and over a continuous period of time. 

This lacking can be addressed by incorporating direct contribution of current soil 

moisture amount into equation (3.3). From the SMA perspective, a soil profile store 

would ideally absorb that part of the rainfall which is not transformed into runoff (P-

Q). This can be attributed to a notion that higher the moisture store level or moisture 

content, higher the fraction of rainfall that is converted into runoff. If the moisture 

store level is full, that is, for a saturated soil, all the incident rainfall will turn into 

runoff. On the basis of this hypothesis, following equation can be conceptualized: 

𝑉 − 𝑉0 =  𝑃 − 𝑄  ………. (3.4) 

where 𝑉0 = soil moisture store level at the beginning of simulation time-step of a 

continuous model, also taken as the current soil moisture amount and 𝑉  = soil 

moisture store level at the end of time-step when the accumulated rainfall is equal to 

𝑃.  

Combining equations (3.1, 3.3 and 3.4) gives the following equation (3.5), where Vʹ= 

(𝑉0+Ia) 

𝑑𝑄

𝑑𝑡
=

𝑑𝑃

𝑑𝑡

𝑉 − 𝑉ʹ

𝑆
[2 −  

𝑉 − 𝑉ʹ

𝑆
] if 𝑉 > 𝑉ʹ … … … . (3.5) 

𝑑𝑄

𝑑𝑡
 =  0 otherwise 

Hence, Vʹ is obtained as a threshold for runoff to occur. Therefore, the condition P>Ia 

can be transformed as (𝑉0+P)>(𝑉0+Ia) or, (𝑉0+P)>𝑉ʹ, in which difference between 

(𝑉0+P) and Vʹ means the moisture deficit or surplus beyond this new threshold value 

Vʹ. Hence, the incident rainfall will initially get utilized to bring the store level upto Vʹ. 

To be precise, when P is not large enough such that (𝑉0+P) is smaller than Vʹ, there 

will be no runoff. Together (Vo+Ia) is not a portion of S; and Ia is independent of 𝑉0 
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too (USDA-NRCS, 1999; USDA-NRCS, 2004). Thus, Vʹ is conceptually different 

from S. 

Michel et al. (2005) assumed 𝑉ʹ to be a fraction of 𝑆 such that 𝑉ʹ(𝑡) = 𝛼𝑆(𝑡), where 

𝛼 is determined through model calibration. Similar approach is followed by Sahu et al. 

(2007), Durbude et al. (2011) and Jain et al. (2012). This makes 𝑉ʹ a model parameter, 

thus affecting its physical meaning. By the definition provided in this study, 𝑉ʹ is 

equal to (𝑉0 +  𝐼𝑎), where 𝑉0  denotes the current moisture content which the soil 

profile has gained from the previous time-step and Ia is the amount to be intercepted 

in the current time-step. 𝑉ʹ in the present study is updated at the beginning of each 

modeling time-step using the information of S, Ia and 𝑉0 from the previous time-step, 

thereby eliminating the need to determine it through model calibration. This makes 

the new soil moisture-based runoff threshold internally consistent within the regular 

updating process of the continuous simulation structure of the SWAT model from one 

time-step to another (Neitsch et al., 2011), yet staying within the basic assumptions 

and formulations (equations (3.1) and (3.2)] based on which the CN method was 

originally formed. 

Now, taking the time derivative of equation (3.4) and then combining with equation 

(3.5) will give equation (3.6): 

𝑑𝑉

[
𝑉 − 𝑆 − 𝑉ʹ

𝑆 ]
2  =  

𝑑𝑃

𝑑𝑡
𝑑𝑡 … … … . (3.6) 

Integration of equation (3.6) produces, 

1

𝑆 + 𝑉ʹ − 𝑉
−

1

𝑆 + 𝑉ʹ − 𝑉0
 =  

𝑃

𝑆2
 … … … . (3.7) 

The detail steps of these derivations are shown in Appendix A. Replacing V by its 

expression from equation (3.4) into equation (3.7), a new expression of Q can be 

obtained as 

𝑄 =  𝑃 [1 − [
(𝑆 + 𝑉ʹ − 𝑉0)2

𝑆2 + 𝑃(𝑆 + 𝑉ʹ − 𝑉0)
]] … … … . (3.8) 
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A full storage implies dV/dt=0, which means all the rainfall become rainfall excess or 

surface runoff to yield dQ/dt=dP/dt. According to equation (3.8), this state is 

mathematically achieved only if 𝑉0  becomes equal to (S+𝑉ʹ), representing a full 

storage. The condition 𝑉𝑜 = (𝑆 + 𝑉ʹ ) can be re-written as 𝑉𝑜 = (𝑆 + 𝑉𝑜 + 𝐼𝑎) . 

Cancelling Vo from both sides, we get 0=Ia+S. According to USDA-NRCS (2004), 

this (Ia+S) is the total actual loss or retention. Now, from physical perspective, a 

saturation condition is achieved when soil storage does not have any room to hold 

moisture, needless to say Ia demand has already been filled beforehand. So, 

physically this state can be referred to as S ≈0 and Ia ≈0, meaning there is no loss 

when the soil is saturated. 

Equation (3.8) is valid not only when 𝑉ʹ < (𝑉0  +  𝑃) < (𝑆 + 𝑉ʹ), rather it is valid all 

through when (𝑉0  +  𝑃) > 𝑉ʹ . Moreover, two concurrently possible extreme 

scenarios [𝑉𝑜 = (𝑆 + 𝑉ʹ) and (𝑉𝑜 + 𝑃) ≫ (𝑆 + 𝑉ʹ)] can now be satisfied with the 

runoff equation, if the condition is re-written as (𝑉0  +  𝑃) > 𝑉ʹ. Thus, the original 

CN method can be re-conceptualized and transformed into a time-dependent approach, 

which will include the available moisture content of the soil profile directly inside the 

runoff equation. The derivation, being presented here in the light of Michel et al. 

(2005), can be summarized by the following set of equations and their relevant 

conditions: 

𝑖) 𝐼𝑓 (𝑉0  +  𝑃) ≤ 𝑉ʹ , 𝑡ℎ𝑒𝑛 𝑄 =  0 … … … . (3.9) 

𝑖𝑖) 𝐼𝑓 (𝑉0  +  𝑃) > 𝑉ʹ , 𝑡ℎ𝑒𝑛 𝑄 =  𝑃 [1 − [
(𝑆 + 𝑉ʹ − 𝑉0)2

𝑆2 + 𝑃(𝑆 + 𝑉ʹ − 𝑉0)
]] … … … . (3.10) 

3.4 Study Area and Data 

The proposed SMA-based CN routine is analyzed by creating SWAT models for two 

watersheds in Indiana, USA (Figure 3.1). Both watersheds, Cedar Creek and White 

River, have United States Geological Survey's (USGS) streamflow gauging station at 
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their outlet (USGS station 04180000 and 03353000 respectively). The land use based 

on the NLCD 2006 data (USGS-NLCD, 2013) in both watersheds is mostly 

agricultural, although significant difference exists in the forest and developed portion. 

Table 3.1 presents a summary of their geospatial and hydro-climatic characteristics.  

 

Figure 3. 1 Study areas: (a) Cedar Creek and (b) White River watershed with 

corresponding NLCD 2006 land use, Indiana, USA. 

Creation of the SWAT models in ArcSWAT requires topography, soil texture, land 

use and climate data. The sources/resolution of these input data are the same as 

described in section 2.3. Soil moisture observations at 5, 20, 40 and 60 cm depths are 

obtained from one of the permanent field sensors (AS1) at Cedar Creek (Figure 3.1). 

The STATSGO database is modified while preparing the ArcSWAT model for Cedar 

Creek so that a uniform stratification of soil profile depth all over the watershed can 

be maintained (0-5, 5-20, 20-40, 40-60 cm, 60 cm to the maximum plant root depth). 

This modification is necessary to make SWAT simulated soil moisture values at 

different layers compatible with field measurements. Observed daily streamflow time 
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series for model calibration and validation are obtained from the USGS stations 

located at each watershed’s outlet. 

Table 3. 1 Watershed characteristics 

 

 

 

 

 

 

 

 

 

 

 

3.5 Methodology 

3.5.1 Modification of runoff sub-routine in SWAT 

The current version of SWAT computes runoff by using either the CN or the Green-

Ampt method. In the CN methodology, S is derived as a function of soil profile water 

content excluding the water held at wilting point, potential maximum retention, soil's 

field capacity and saturation, and the antecedent moisture conditions (Neitsch et al., 

2011; Williams et al., 1984, 2012). The SMA re-conceptualization is incorporated by 

replacing equation (3.1) with equations (3.9-3.10) in the sub-routine that performs 

runoff volume estimation in SWAT. The proposed modification does not involve 

defining any new parameters. The sub-routine that computes retention parameter at 

 Cedar Creek White River 

Drainage area, km2 700 4,235 

No. of Sub-basins (1% threshold)  57 67 

No. of HRUs (10% threshold)   253 365 

Average Annual Rainfall during 

2004-2012, mm 
993 1,136 

Maximum daily streamflow at the 

watershed outlet till December 31, 

2014, m3/s  

163 1982 

Landuse as per NLCD 2006 (%)   

Agricultural  71 67 

Developed 11 26 

Forest 14 6 

Wetland/Open Water 4 1 
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individual time-steps and updates CN based on the antecedent moisture conditions is 

kept unaltered. The edited sub-routine is then compiled with the SWAT 2009 version 

source code (revision no. 481) to get a new executable file. This modified version of 

CN approach in SWAT is referred to as SMA_CN; whereas the original 

implementation is referred to as CN. 

3.5.2 Watershed discretization and modeling 

To represent spatial heterogeneity, the study watersheds are first divided into sub-

basins using 1% flow accumulation area threshold and then all sub-basins are further 

discretized into Hydrologic Response Units (HRUs) (Geza and McCray, 2008) using 

a threshold of 10% for land use, soil and slope. Table 3.1 lists the number of resultant 

sub-basins and HRUs for each study watershed.  

In this study, the SWAT models for both watersheds are calibrated against daily 

streamflow records by using the existing CN method and the modified CN method 

(SMA_CN), thus creating a total of four calibrated models. A split-sample approach 

is followed for the calibration-validation study (Klemes, 1986), where a continuous 9-

year daily simulation period is divided into two consecutive non-overlapping phases 

of calibration from 2004-2010 and validation from 2011-2012. The year 2004 is used 

as warm-up period.   

Before starting the calibration process, 18 parameters involving surface, subsurface 

and channel hydrologic responses are used in the One-Factor-at-a-Time sensitivity 

analysis scheme (Morris, 1991) within ArcSWAT, separately for CN and SMA_CN 

configurations. This produced a common subset of 12 most sensitive parameters 

(Table 3.2) because both configurations are run with the same objective variable (i.e. 

streamflow). However, the difference in relative ranking of these sensitive parameters 

is determined through a global sensitivity analysis during the calibration phase. With 

a pre-defined initial range of these sensitive parameters, calibration is conducted in 

the SWAT Calibration and Uncertainty Program (SWAT-CUP) interface using 
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Sequential Uncertainty Fitting alogorithm-version 2 (SUFI-2) (Abbaspour et al., 2007; 

Yang et al., 2008; Abbaspour, 2015). Initial ranges of parameter value are defined 

based on the suggestions from model developers (Neitsch et al., 2011), existing 

literature and prior knowledge of the study area (Larose et al., 2007; Kumar and 

Merwade, 2009; Han et al., 2012b).   

In SWAT-CUP, the efficiency or performance of an ongoing batch of iteration is 

quantified by ‘P-factor’ and ‘R-factor’. The P-factor denotes the percentage of 

observed data bracketed within the 95 Percent Prediction Uncertainty (95PPU) of 

simulation results; whereas the R-factor denotes the average thickness of that 95PPU 

band divided by the standard deviation of the observed data (Abbaspour et al., 2007). 

Theoretically, a P-factor of 1 and R-factor of 0 is a simulation corresponding exactly 

to the observed data. As SUFI-2 is a sequential semi-automated procedure, more 

iterations can always be performed leading to a smaller 95PPU at the expense of more 

observation points falling out of the prediction band (Yang et al., 2008). Therefore, a 

stopping rule is imposed in this study following Price et al. (2014) with a view to 

avoid over-restricting the parameter space. Batch iterations are continued until the 

following two conditions are satisfied: P-factor > 0.75 and R-factor <1, with a 

maximum of four batches (i.e. 2001+1000+1000+1000 = 5001 total simulations). For 

each of the batch, coefficient of determination (R2) is also calculated to assess the 

goodness of fit between the observed streamflow data and the best simulation having 

maximum objective function value (Nash Sutcliffe efficiency, NSE in this case). 

3.5.3 Global sensitivity analysis in SWAT-CUP 

A relative sensitivity ranking of parameters is obtained by the global sensitivity 

analysis technique in SWAT-CUP after executing the first batch of calibration 

iterations. The global sensitivity analysis in SWAT-CUP measures the ‘relative’ 

effect of parameters while they are getting optimized, thus reflecting the average 

changes in objective function values due to the changes in one parameter while all 

other parameters are also simultaneously changing (Abbaspour, 2015). Accordingly, 
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the measure of relative sensitivity among the parameters involved in optimization is 

translated through t-stat and p-values, providing respectively the extent and the 

significance of the sensitivity measured. Since the relative sensitivity of one 

parameter depends on the ranges of the others, this global sensitivity scheme is 

executed after first 2001 iterations when parameters are having a bigger control space 

and the deviation of the simulated streamflow from the observed data is still 

considerably large. Running this scheme for the later batches with narrower 

parameter space would have simply altered the relative sensitivity rankings. 

Table 3. 2 SWAT calibration parameters 

No. Parameter Descriptiona Adjustment b Initial Rage 

1 CN2 SCS Curve Number, moisture 

condition II 
x -0.2 – 0.2 

2 CH_K2 Channel Hydraulic Conductivity, 

mm/hr 
= 5.0 – 100.0 

3 CH_N2 Main Channel Manning’s n = 0.02 – 0.15 

4 CANMX Maximum Canopy Storage, mm = 0.0 – 25.0 

5 ESCO Soil Evaporation Compensation 

Factor  
= 0.01 – 1.0 

6 SURLAG Surface Runoff Lag Coefficient, 

days 
= 0.05 – 24.0 

7 SOL_AWC Available Soil Water Capacity, 

mm/mm 
x -0.15 – 0.15 

8 ALPHA_BF Baseflow Recession Constant, 

days 
= – 1.0 

9 REVAPMN Re-evaporation Threshold, mm = 0.01 – 500.0 

10 GW_DELAY Groundwater Delay, days 
+ 

0.02 -10.0 – 

10.0 

11 GWQMN Threshold Groundwater Depth 

for Return Flow, mm 
= 0.01 – 5000.0 

12 SOL_K Soil Hydraulic Conductivity, 

mm/hr 
x -0.15 – 0.15 

a 
Source: Neitsch et al. (2011); 

b 
See Table 2.3 for necessary explanations of the symbols 
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3.5.4 Model validation 

The optimized parameter ranges are further used in SUFI-2 to generate a new set of 

2001 simulations for the 2011-2012 validation period. Model performance for 

streamflow simulation during the validation period is also evaluated through P-factor 

and R-factor values. Comparing the model output against observed streamflow is the 

conventional approach in validating a hydrologic model, but to test the effectiveness 

of soil moisture accounting, model simulated soil moisture output also needs to be 

compared with observed data. Hence, after calibrating the models for observed 

streamflow data, daily soil moisture in a particular Cedar Creek sub-basin is matched 

with the AS1 field sensor values (see Figure 3.1) during an average rainfall year 2007. 

However, prior assumptions and processing are essential to make field measurements 

comparable with SWAT simulations. Following the same methodology described in 

section 2.4.5, AS1 point measurements taken at 5, 20, 40 and 60 cm depths are made 

approximately comparable with the moisture contents simulated respectively at 0-5, 

5-20, 20-40 and 40-60 cm layers in the particular sub-basin where AS1 is located. 

3.6 Results and Discussion 

This section presents the comparison of SWAT performance by looking at various 

flow fluxes over the study watersheds using the two model configurations (CN and 

SMA_CN). First, un-calibrated results are presented because calibrated outputs will 

be influenced by parameter optimization process and associated parameter 

equifinality (Beven, 1993). The un-calibrated outputs are obtained by running both 

model configurations with the same parameter values. After comparing the un-

calibrated outputs, the models are calibrated to get the goodness of fit for simulated 

streamflow at respective watershed outlets. Finally, the root zone soil moisture in a 

single sub-basin of Cedar Creek is evaluated with respect to corresponding observed 

data.   
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Table 3.3 presents an overall view of the average annual differences in surface runoff, 

plant-available water, evapotranspiration, baseflow and water yield in the whole 

watershed scale. Here, ‘difference’ refers to the change in amount (mm) obtained by 

subtracting the output of the original SWAT model (CN) from the corresponding 

output of the modified SWAT model (SMA_CN).  

Table 3. 3 Calculated change in water fluxes for a dry and wet year1, 2 

Watershed Year PREC(mm) 
∆SURQ 

(mm) 

∆PAW 

(mm) 

∆ET 

(mm) 

∆GWQ 

(mm) 

∆WYLD 

(mm) 

Cedar 

Creek 
Dry 812.5 -9.8 5.6 1.5 12.5 3.2 

Wet 1107.4 -13.6 0.2 2.5 23.7 10.8 

White 

River 

Dry 1007.6 -13.4 2.0 3.7 16.1 3.3 

Wet 1303.1 -21.9 0.2 1.4 24.8 4.2 

1PREC = Total annual precipitation, SURQ = surface runoff, PAW = plant-available water 

content in soil profile, ET= evapotranspiration, GWQ = groundwater contribution to 

streamflow, WYLD = water yield = SURQ + GWQ + lateral flow – losses.  

2Difference, ∆= SMA_CN – CN 

Entries in Table 3.3 are separately listed for a dry (2010) and a wet (2006) year, 

having respectively the least and the most amount of total incident annual rainfall 

during the simulation period. The water fluxes in Table 3.3 show a specific pattern of 

change for both watersheds. Specifically, the SMA_CN method leads to decrease in 

the surface runoff and increase in profile soil moisture content, which in turn leads to 

larger contribution of groundwater to the streamflow (e.g. Kannan et al., 2008). 

Increase in profile/root zone soil moisture content also elevates the model 

evapotranspiration. All these changes result in overall increase in the water yield. The 

differences in various components are discussed in detail in the following sections. 

3.6.1 Surface runoff 

Figure 3.2 shows the difference in average daily CN and surface runoff in a typical 
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agricultural sub-basin in the study watersheds. It is difficult to relate the temporal 

change in CN value caused by the SMA-based method to the change in runoff (Figure 

3.2) because of the incident precipitation amount and use of a threshold (Ia and V'). 

Moreover, the PAW in the whole root zone is not an instantaneous result of the 

weather on a particular day; rather, it is influenced by the antecedent weather of 

preceding many days or weeks (Wagner et al., 1999). SWAT's existing formulation 

uses the total root zone PAW at the end of previous day's simulation to update S and 

CN, and then the total precipitation of the current day is used to compute the runoff. 

Thus, correlating the variations among CN, runoff and/or soil moisture values 

becomes even more ambiguous (Kim and Lee, 2008; Qiu et al., 2012), regardless of 

the incorporation of SMA_CN method. 

 

Figure 3. 2 Difference (SMA_CN – CN) in daily average CN and surface runoff 

volume in a typical agricultural sub-basin; (a) Cedar Creek, (b) White River. Values 

correspond to un-calibrated model output. 

Many past studies report SWAT’s inaccurate representation of overland flow 

processes. For example, Kannan et al. (2008), Neitsch et al. (2011) and Williams et al. 

(2012) pointed out the weaknesses of SWAT’s original CN method for shallow soil 
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regions. Moreover, in humid well-vegetated regions, which is likely the case for the 

current study watersheds, SWAT does not capture the spatial distribution as well as 

the volumetric magnitude of the runoff (Easton et al. 2008, 2010). Similarly, many 

other studies have reported the shortcomings of the modeling of overland flow in 

SWAT across various regions, even after model calibration (e.g. Di Luzio et al., 2005; 

Kang et al., 2006; Tripathi et al., 2006; Borah et al., 2007; Wang et al., 2008; Santhi 

et al., 2009; White et al., 2009; Licciardello et al., 2011; Qiu et al., 2012; Collick et 

al., 2014). In this regard, the overall lowering of surface runoff volume as shown in 

Table 3.3 based on the SMA-based SWAT model delivers a positive notion. However, 

these results need to be validated against field observations under various geographic 

and climate conditions 

3.6.2 Moisture content at different soil layers 

SWAT conceptualizes the soil profile as the topmost portion of the vadose zone 

having thickness equal to the maximum plant root depth (approximately 150 cm for 

this study). To visualize the effect of change in surface runoff volume as induced by 

the SMA-based method, temporal variations in PAW content at different depths are 

analyzed for different land use conditions. Figures 3.3 shows the PAW simulated by 

the original CN method, as well as the calculated difference between the two 

configurations, at three consecutive layers from the surface (0-40, 40-60 and 60-150 

cm) and the whole root zone (0-150 cm) for agricultural land use. The frequent 

fluctuations in moisture in the topmost layer (0-40 cm) show that this layer is readily 

active in response to the incident rainfall amount as well as the change in runoff 

resulting from the SMA_CN method. But the change in overland runoff volume does 

not have an immediate effect on the moisture content in underlying deeper layers due 

to the use of saturation flow phenomenon and associated exponential storage routing 

methodology in SWAT. SWAT’s current moisture depletion mechanism can 

potentially remove all the available moisture (i.e. PAW) from the top layers till 60 cm 

because of increased plant uptake and elevated surface temperature during the 
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summer growing season (Milzow et al., 2011). On the contrary, the SMA_CN method, 

which reduces the surface runoff, allows more water to enter the soil profile; as a 

result, the moisture content in all layers stays above the wilting point. 

 

Figure 3. 3 Un-calibrated model outputs for plant-available water (PAW) content and 

the calculated difference (SMA_CN - CN) at different soil layers: (a) Cedar Creek, (b) 

White River. Values correspond to HRU-averages aggregated for agricultural land 

use. 

Thus, the overall increase in the soil moisture as simulated by the SMA_CN model is 

more prominent particularly in summer months. Total increase in the whole profile 

moisture content has been found to be as high as 25 mm on a given day in one 

agricultural HRU, if considered separately. Such extent of change is quite significant 

considering the amount of daily average rainfall the watersheds usually receive.  

In case of developed land use as in Figure 3.4, the middle and bottom layers (40 – 

150 cm) maintain nearly a constant soil storage level due to less plant root density 

and hence less ET depletion. 
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Figure 3. 4 Un-calibrated model outputs for plant-available water (PAW) content and 

the calculated difference (SMA_CN - CN) at different soil layers: (a) Cedar Creek, (b) 

White River. Values correspond to HRU-averages aggregated for developed land use. 

3.6.3 Partitioning of soil and plant ET  

Figure 3.5 shows the calculated difference (SMA_CN - CN) in actual soil evaporation 

and plant transpiration across the entire soil profile. SWAT partitions 

evapotranspiration into its soil and plant components primarily as a function of 

aboveground biomass and leaf area index, respectively (Neitsch et al., 2011). The 

partitioning mechanism in SWAT maintains a balance between the two ET 

components such that amount of soil evaporation gets adjusted during the period of 

high plant water use and vice versa. SWAT allocates the demand for both the ET 

components into different layers of the soil profile using a depth distribution function 

(discussed in section 3.6.7 with examples).  
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Figure 3. 5 Calculated differences (SMA_CN - CN) in HRU-average ET components: 

(a) agricultural landuse, (b) developed landuse. Values correspond to the un-

calibrated ET outputs from the entire 150 cm soil profile. 

From Figure 3.5, it is evident that the increased soil moisture content induced by the 

SMA_CN method is likely to alter both ET components irrespective of land use types. 

Calculations on the watershed-scale reveal a net increase in total ET amounts (Table 

3.3), staying within the same PET limit, which is empirically calculated using the 

Penman-Monteith method. However, these potential differences in ET as detected 

from the SMA_CN model can be significant in applications related to irrigation and 

plant growth.  

3.6.4 Spatial pattern of changes in profile soil moisture  

Corresponding to the temporal variation in PAW between the two model 

configurations in different layers of the soil profile (Figures 3.3 and 3.4), Figure 3.6 

shows the spatial maps of the difference across the entire soil profile (~ 150 cm) for 

two extreme wetness conditions in a given year for both watersheds. Figure 3.6(a) 

shows the spatial map for Cedar Creek for Julian days 245 and 264 from year 2008. 

Julian day 245 represents a dry day after at least 7 dry days; whereas day 264 

represents a wet day immediately after the end of a wet period. Similarly, spatial map 
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for White River is shown in Figure 3.6(b) for Julian days 256 and 273 from year 2005. 

Clearly, on a given day, difference in PAW across the whole soil profile caused by 

the SMA_CN method has been found to be as high as 16 mm after a continuous 

rainfall event subsides. Most importantly, even after a consecutive number of dry 

days, there can be 6-10 mm difference in significant portion of the area.  

 

Figure 3. 6 Spatial pattern of calculated difference (SMA_CN - CN) in plant-

available water (PAW) across the whole soil profile (~ 150 cm) at two opposite 

wetness conditions: (a) Cedar Creek, (b) White River. 

With correspondence to the land use map from Figure 3.1, the difference in soil 

moisture levels between the original CN and the SMA_CN configurations are not 

observed in urban areas, thus validating the fact that the SMA-based approach does 

uniformly affect soil moisture over the entire watershed. Furthermore, the SMA_CN 

method tends to produce negative difference in soil moisture during or just after a 

storm event only in case of denser vegetative cover (forest and perennial grassland) 

along with soils of higher infiltration capacity (hydrologic group B), under a 

condition when HRUs of this category receives nearly equal amount of precipitation. 

Therefore, the magnitude and spatial pattern of the difference in soil moisture 

between these two model configurations are largely dependent on land use and soil 

drainage characteristics, besides being affected by the incident precipitation intensity 
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and its spatial distribution. Further analysis is required in order to ascertain the causal 

effect of these watershed characteristics over the changes in soil moisture content 

caused by the SMA_CN method under different geographical contexts.  

3.6.5 Streamflow calibration and validation  

Streamflow prediction skills metrics from calibration and validation periods are 

presented in Table 3.4. Table 3.4 indiactes that the SMA_CN method produces 

consistently higher P-factor at the end of the calibration- validation phase relative to 

the original CN method. In addition, the R-factor shows a desired value of less than 1 

in all cases. Both P-and R-factors form a conjugate and need to be assessed together. 

Higher P-factor is achievable through higher R-factor values. However, a balance 

between these two measures needs to be drawn, which essentially produces an 

‘optimized’ set of model parameters including most of the observed data within 

95PPU as well as the narrowest possible uncertainty band.  

Validation of Cedar Creek exemplifies a critical scenario in this aspect. As reported in 

Table 3.4, the CN and the SMA_CN models have nearly the same P-factor (84% and 

85%, respectively) in the validation stage. But the SMA_CN model has R-factor 

equal to 0.75, which is 0.82 for the original CN model. Thus, in case of Cedar Creek 

the SMA-based technique brackets almost the same amount of the observed 

streamflow data within its 95PPU band as in the conventional method, yet producing 

a narrower output uncertainty width. In addition, the fit scores (NSE and R2) are 

relatively higher for the SMA-based model, except for a single case of Cedar Creek’s 

validation.  

Values obtained in all the four modeling cases are acceptable according to the 

evaluation guidelines by Moriasi et al. (2015). The calibrated parameter ranges 

(holding the best estimates) are shown in Table 3.5. 
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Table 3. 4 Goodness of fit statistics for streamflowa 

 
Cedar Creek White River 

CN SMA_CN CN SMA_CN 

Goodness of fit b, c  

NSE 0.67 (0.69) 0.69 (0.66) 0.60 (0.72) 0.66 (0.73) 

R2 0.68 (0.70) 0.70 (0.77) 0.65 (0.70) 0.66 (0.73) 

Calibration and validation efficiency b  

P-factor 0.81 (0.84) 0.86 (0.85) 0.87 (0.75) 0.89 (0.81) 

R-factor 0.99 (0.82) 0.99 (0.75) 0.97 (0.68) 0.99 (0.84) 

a 
Single objective calibration/validation with respect to the streamflow at watershed outlet; 

b 
Within 

parentheses are the values from model validation; 
c 

Only for best simulation 

 

Table 3. 5 Calibrated Parameter Ranges obtained from SUFI-2 iterations  

Parameter 

Calibrated parameter range 

Cedar Creek White River 

CN SMA_CN CN SMA_CN 

CN_2 0.03 – 0.19 -0.07 – 0.11 0.04 – 0.12 0.04 – 0.14 

CH_K2 70.0 – 100.0 34.0 – 78.0 62.0 – 84.5 40.0 – 74.0 

CH_N2 0.02 – 0.06 0.02 – 0.06 0.02 – 0.05 0.02 – 0.05 

CANMX 4.4 – 13.17 5.6 – 16.8 8.6 – 19.2 17.6 – 22.5 

ESCO 0.31 – 0.91 0.66 – 1.0 0.39 – 0.75 0.55 – 0.85 

SURLAG 0.05 – 6.7 0.05 – 6.8 0.05 – 3.8 0.05 – 3.7 

SOL_AWC -0.12 – -0.03 -0.15 – -0.02 -0.02 – 0.06 -0.12 – -0.05 

ALPHA_BF 0.5 – 0.97 0.6 – 0.95 0.76 – 1.0 0.68 – 0.96 

REVAPMN 127.0 – 280.0 296.0 – 500.0 0.01 – 227.5 213.0 – 288.0 

GW_DELAY -10.0 – -3.4 2.6 – 9.2 -3.4 – 4.8 -2.4 – 5.0 

GWQMN 1267 – 3340 0.01 – 1440 2859 – 4288 1665 – 3086 

SOL_K -0.07 – 0.02 0.03 – 0.15 -0.05 – 0.05 -0.07 – 0.04 

Number of 

runs required 

in SUFI-2a 

2001+1000 

(2001) 

2001+1000 

(2001) 

2001+1000+ 

1000 (2001) 

2001+1000+ 

1000 (2001) 

a 
Numbers within parentheses refer to model validation;  

c Initial parameter ranges and the basis of adjustment are shown in Table 3 
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Figure 3.7 shows the comparison of calibrated streamflow hydrographs for three 

discrete time segments from the entire calibration-validation period (2005-2012). The 

time segments are chosen such that they individually represent dry, moist and high 

flow phenomenon. A better match between the SMA_CN hydrographs and observed 

data is clearly visible in Figure 3.7. With few deviations, the rising and falling limbs 

of the SMA_CN hydrographs tend to match with observed data, thereby validating 

that SMA-based SWAT model can reproduce watershed physics more accurately in 

response to rainfall dynamics. Specifically, SMA_CN uses the current soil moisture 

amount directly inside the CN equation, thus enabling better representation of the 

actual wetness condition of the watershed before and during a rainfall event. As a 

result, the limbs of these simulated event-based hydrographs tend to match well with 

the observed data.  

 

Figure 3. 7 Comparison of calibrated streamflow hydrographs for shorter time 

segments: Cedar Creek (top), White River (bottom). Time segments represent dry, 

moist and high flow conditions respectively (left to right). 

The calibrated models are also compared over the period 2004-2010 at three different 

flow regimes using flow duration curve (FDC) analysis (Figure 3.8). These regimes 
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consist of high flow, moist and mid flow, dry and low flow, respectively having 0.0-

0.1, 0.1-0.6 and 0.6-1.0 exceedance probability. FDCs from SMA_CN method 

provides a better match with observed data compared to the CN method for all flow 

regimes. This addresses the long-standing concern of SWAT not precisely 

representing the high and low flow conditions in many past studies (e.g. Arnold and 

Allen, 1996; Arnold et al., 2000; Chu and Shirmohammadi, 2004; Vazquez-Amábile 

and Engel, 2005; Arabi et al., 2006; Bracmort et al., 2006; Larose et al., 2007; Wang 

et al., 2008; Kumar and Merwade, 2009; Oeurng et al., 2011; Rahman et al., 2012; 

Qiu and Wang, 2013; Rahman et al., 2014). 

 

Figure 3. 8 Flow duration curve comparison of calibrated streamflow at three 

different flow regimes (0.0-0.1: high flow, 0.1-0.6: moist and mid flow, 0.6-1.0: dry 

and low flow): (a) Cedar Creek, (b) White River. 

3.6.6 Measure of relative parameter sensitivity 

Figure 3.9 compares p-value and t-stat measurements between the two model 

configurations for the study watersheds, resulted from the global sensitivity analysis 

of parameters. The p-value determines the significance of the sensitivity, where a 

value closer to zero means more significance. In addition, t-stat provides the extent of 
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sensitivity, where larger t-stat absolute value for a particular parameter means it is 

more sensitive relative to others. Larger t-stat is associated with smaller p-values.  

 

Figure 3. 9 Relative sensitivity results: p-value and t-stat measurements. 

As presented in Figure 3.9, CH_K2, CH_N2, CN2 and SURLAG are the four most 

sensitive parameters having very high t-stat with p-values close to zero for both 

watersheds and model configurations. All other parameters show a large variation in 

the p-value between the CN and SMA_CN models. Another important feature is the 

opposite t-stat signs between the two models for some of the less significant 

parameters (lower t-stat with higher p-value). For example, in case of CANMX, 

REVAPMN and ESCO, t-stat between the two models show opposite signs even for 

the same watershed, signifying reversal in the directionality of effect of the same 

parameter on streamflow. To ascertain the opposite trend of relationships of these 

parameters with streamflow, a set of 25 iterations are run separately in SWAT-CUP 

for each of the four model cases using SUFI-2, employing all the 12 parameters with 

their initial ranges. Figure 3.10 (a) and (b) compare the trend of change in resultant 

objective function values (NSE) relative to each 25 iterated values of ESCO and 

REVAPMN respectively for Cedar Creek and White River, while the other 

parameters are also simultaneously changing. Clearly, the trends of NSE with these 
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two parameter values are simply the opposite for the SMA_CN configuration. 

Because parameters such as REVAPMN and ESCO can affect the simulation of 

storage, fate and transport of nutrients and contaminants through root zone, their 

different behavior in the SMA-based model may have substantial influence in case of 

multi-variable optimization involving both hydrologic and water quality parameters 

together. 

 

Figure 3. 10 Change in objective function with parameter values from a sample SUFI-

2 iterations of 25 runs using initial parameter ranges: (a) Cedar Creek, (b) White 

River. 

3.6.7 Validation using observed soil moisture data 

In this section, model simulated soil moisture from both model configurations is 

compared with field observations (Figure 3.11). The simulated values presented in the 

figure represent the average moisture content for the soil layers at 5-20, 20-40 and 40-
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60 cm depth spacing, in the particular sub-basin where AS1 sensor is located. Clearly, 

soil moisture at different layers of the soil profile is poorly captured by the original 

model with respect to in-situ data. 

 

Figure 3. 11 (a) Model validation with observed soil moisture data, (b) soil moisture 

depletion in three separate days following SWAT’s depth distribution function 

(Neitsch et al., 2011). 
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Although the general temporal variation between the two configurations are quite 

identical, soil moisture simulated by the new SMA_CN model is relatively closer to 

the field condition in terms of higher R2 value in all layers. Furthermore, Figure 

3.11(b) shows summer moisture depletion as exhibited by both model configurations, 

which is largely attributed to the model conceptualization of ET removal. Here, using 

the depth distribution functions described by Neitsch et al.(2011), maximum water 

demand for soil evaporation and plant uptake is calculated at three different days (140, 

187 and 275) at different depths across the root zone. It is found that the model 

conceptualization causes nearly 100% of the demands to get exerted within first 40 

cm from the surface. This means, that the top layers (up to 60 cm) may not have 

sufficient water to meet this ‘calculated’ demand, causing moisture content to get 

fully depleted as seen in Figure 3.11(a). This is an issue which cannot be overcome 

by a better soil moisture accounting approach; rather it needs to be addressed by 

looking at the formulation of the two ET components in the SWAT model. It is also a 

valid concern that the two model configurations in this study are calibrated with 

respect to streamflow only; therefore, comparing the two models for soil moisture 

would have been more legitimate if the models were put under multi-variable 

calibration with respect to observed soil moisture data as well. 

3.7 Conclusion 

This study proposes a modified soil moisture accounting (SMA) based modification 

to the existing CN methodology in the SWAT model. The proposed SMA_CN 

method is then compared with the CN method by applying the SWAT model to two 

watersheds in Indiana, USA. The following conclusions are drawn: 

1. The calibration and validation of SMA based model produce relatively higher 

fitness and efficiency statistics compared to the original model. The flow duration 

curve analysis shows that the SMA_CN method produces better match with the 

observed data for all flow regimes. These results address SWAT’s long-standing 
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difficulty in exact representation of flood and dry conditions. Moreover, the rising 

and falling limbs of the SMA_CN hydrographs tend to match with those of the 

observed data, thereby validating that the newly configured SMA-based SWAT 

model can more accurately capture watershed behavior in response to rainfall 

dynamics.  

2. The SMA_CN method produces elevated soil moisture store level compared to 

the CN method. This increased soil moisture can support additional plant uptake 

and soil evaporation without totally removing the available moisture from the top 

60 cm, which is a prominent phenomenon in the current SWAT model. The 

spatial distribution of this soil moisture variation even in dry condition is found to 

be consistent with the results obtained through time series. Specifically, the total 

profile moisture content as simulated by the modified model remain 6-10 mm 

higher than that of the original model in significant parts of the watersheds even 

after seven consecutive dry days with zero rainfall.  

3. Besides providing better water budget, the calibration of SMA based model 

produces narrower parameter band compared to the original model for the same 

number of calibration iterations.  

4. Finally, as part of a model validation with respect to the observed soil moisture 

data, the SMA-based model is found to produce soil moisture that is closer to 

observations compared to the soil moisture estimates from the original model in 

terms of R2 values.  

Overall, the major focus of the current study is to modify the soil moisture accounting 

in SWAT in order to improve the model physics and predictability. The results 

obtained herein are quite supportive of this attempt. While the proposed time-

dependent CN method can be potentially used with any time-step, the current study 

used only daily time-step to avoid the major overhaul of all the sub-routines in the 

program, which is beyond the expertise of the authors. Even with the daily time-step, 

results from this study showed that the proposed method is able to improve the soil 

moisture predictability and consequently the streamflow hydrograph output. Although 

the results from this study are promising, vigorous experimentations are necessary for 
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validating the modified SWAT model under heterogeneous scenarios, including 

diverse land use types, soil characteristics, geographic locations and climate settings. 

Similarly, in addition to the hydrologic perspective discussed in this study, research 

looking at how nutrient transport and plant growth get affected from the proposed 

SMA method can be of immense interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

CHAPTER 4. RATIONALE AND EFFICIACY OF DIRECTLY INGESTING 

REMOTELY SENSED POTENTIAL EVAPOTRANSPIRATION IN A 

HYDROLOGIC MODEL 

4.1 Abstract 

Source-attribution of evapotranspiration uncertainty in a hydrologic model and 

evaluation of a remote sensing based solution are the two main aspects of this study. 

Using Soil and Water Assessment Tool (SWAT) for three US watersheds in different 

geophysical settings, this study first addresses the effects of parameter equifinality, 

energy related weather input-uncertainty and lack of geo-spatial representation on 

evapotranspiration simulation. In every case, remotely sensed 8-day total actual 

evapotranspiration (AET) estimate from Moderate Resolution Imaging 

Spectroradiometer (MODIS) is used as the reference to evaluate model outcome. 

Results from these assessments indicate the likelihood of a pseudo-accurate model 

that invariably shows high streamflow prediction skills despite having severely 

erroneous spatio-temporal dynamics of AET. As a remedial measure, a hybrid daily 

PET estimate, derived from MODIS and the North American Land Data Assimilation 

System phase 2 (NLDAS-2), is directly ingested at each Hydrologic Response Units 

(HRUs) of the SWAT model to create a new configuration called SWAT-PET. 

Noticeably increased accuracy of three water balance components (soil moisture, 

AET and streamflow) in SWAT-PET, being evaluated against completely 

independent sources of observations/reference estimates (i.e. field sensor, satellite and 

gauge stations), proves the efficacy of the proposed approach towards improving 

physical consistency of hydrologic modeling. A key contribution of this study is the 

development of a modified SWAT source code to execute SWAT-PET that is fully 

integrated with an automatic remote sensing data processor. While the proposed 

approach is evaluated for a past period, the main motivation here is to serve the 

purpose of hydrologic forecasting once near real-time PET estimates become 

available. 
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4.2 Introduction 

Evapotranspiration, the largest outgoing component in the hydrologic cycle, regulates 

Soil Moisture Accounting (SMA) (Long et al., 2014; Wang and Dickinson, 2012), 

which in turn affects the accuracy of surface/sub-surface runoff simulation in a 

hydrologic model (Rajib and Merwade, 2016). Precipitation input is the “supply of 

water” from atmosphere to the land surface, whereas, potential evapotranspiration 

(PET) is an index of “available energy” required by the model to drive the water back 

to the atmosphere. Inaccuracy in calculated PET induced from relevant weather 

inputs propagates into the simulation of actual evapotranspiration (AET) and other 

hydrologic processes (Yin et al., 2016). Moreover, many of the poorly understood 

land-to-atmosphere feedback mechanisms that affect AET are described in semi-

empirical ways in otherwise physics-based hydrologic models (Beven, 2012; Lin et 

al., 2017). Precision of geo-spatial heterogeneity (e.g. topography, land use, soil 

texture, anthropogenic management practices) also has serious implications; however, 

their explicit effects on AET have hardly been examined. Despite using more reliable 

precipitation input which typically shows enhanced model performance (e.g. Fuka et 

al., 2014; Golden et al., 2010; Looper et al., 2012; Price et al., 2014; Strauch et al., 

2012), the above-indicated factors can persistently induce wrong spatio-temporal 

dynamics in the simulated water balance. Traditional practice is to perform parameter 

calibration that supposedly encounters “all forms of uncertainty” in a model 

(Abbaspour et al., 2015; Daggupati et al., 2015; Her and Chaubey, 2015). However, 

an apparently well-calibrated model can still be a pseudo-accurate, equifinal model 

giving right answers for wrong reasons (Beven, 2012; Favis-Mortlock, 2004). 

Therefore, reliance only on the best precipitation input or a rigorous model calibration 

is not the panacea. In such context, it is timely to explore how to advance the 

representation of PET/AET such that overall consistency and predictability of a 

hydrologic model can also be improved.  

The general objectives of this study include the source-attribution of inaccuracies in 

SWAT’s AET simulation, and accordingly, proposing an effective solution. The 
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specific tasks include separately analyzing the effects of parameter equifinality, 

energy related weather input-uncertainty and model’s physical deficiency on the 

prediction accuracy of AET. Ultimately, spatially-distributed direct ingestion of 

remotely sensed daily PET is introduced as a corrective measure towards enhancing 

the overall hydrologic response of the model including streamflow, root zone soil 

moisture and AET. The notion of ingestion (direct insertion assimilation, DI or 

“nudging”) refers to the replacement of model-calculated PET with corresponding 

remotely sensed data at each simulation time-step. Integration of remote sensing and 

hydrologic modeling also requires hydroinformatics for data management purposes. 

Complex binary formats, large volume of data, and most importantly, inconsistency 

with the conventional hydrologic models in spatial resolution and geo-structure (e.g. 

grid versus sub-basin) have turned remote sensing application into a “big data” 

problem. This is likely the reason why remote sensing integrated hydrologic modeling 

is not yet full-fledged despite availability of data in public domain across the globe. 

To meet the level of interoperability required in spatially-distributed continuous 

hydrologic simulation, this study shows the application of a new, adaptive tool that 

can perform rapid extraction and processing of remotely sensed PET/AET time-series 

at user-defined spatial resolution.   

SWAT (Arnold et al., 2012; Neitsch et al., 2011) is chosen for this study because it is 

a semi-distributed, physics-based, integrated hydrology-water quality model that has 

been extensively tested in different geographic/hydro-climatic settings (e.g. 

Abbaspour et al., 2015; Daggupati et al., 2016; Schuol et al., 2008; Zang et al., 2012). 

Considering the wide-ranging applications of SWAT on water availability, flood 

prediction, sediment/nutrient transport and crop yield, positive outcomes of the 

proposed approach would be beneficial to a large scientific community worldwide. 

The model is undergoing continuous development in its geo-spatial structure, with a 

view to represent physical characteristics of a landscape as realistically as possible 

(e.g. Bieger et al., 2016; Rathjens et al., 2015). A replicable way to integrate remote 

sensing data resources, as shown in this study, is a valuable contribution to the 

ongoing developments of the SWAT model.  
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Three US watersheds, Upper Wabash and Cedar Creek in Indiana and the Saline 

River in Arkansas (Figure 4.1) are selected here as the test beds. Upper Wabash 

watershed (18,500 km2), because of its larger size, is suitable to capture the effects of 

parameter equifinality and energy related weather input-uncertainty on AET. Cedar 

Creek (700 km2), is a test site for the National Soil Erosion Research Laboratory’s 

(NSERL) environmental monitoring network, having well-maintained database on 

agricultural management practices and in-situ root zone soil moisture observations 

(Boles et al., 2015; Han et al., 2012a,b; Heathman et al., 2012). It is possible to create 

a robust SWAT model for Cedar Creek incorporating “known” watershed 

characteristics such that the model is physically realistic, hence, can be used as a 

reference to evaluate the effects of model’s physical deficiency on AET. Both Upper 

Wabash and Cedar Creek watersheds are predominantly agricultural, whereas Saline 

River watershed (5,500 km2) in Arkansas has a forested land use and a much drier 

climatic condition compared to Indiana. Therefore, directly ingesting remotely sensed 

PET in Cedar Creek and Saline River watersheds enables testing the efficacy of the 

proposed approach in two different geo-physical settings. 

4.3 Related Works 

There have been attempts to improve SMA (thereby, AET) via re-conceptualizing the 

model physics on infiltration mechanisms (e.g. Grimaldi et al., 2013; Kannan et al., 

2007; Michel et al., 2005; Rajib and Merwade, 2016). These modifications cannot 

overcome model’s physical deficiency to represent bio-geochemical cycles/vegetation 

growth or the uncertainties in energy related weather inputs. Mediating model SMA 

with remotely sensed estimates has emerged as an alternative solution in recent times. 

Applications of remote sensing in hydrologic modeling have long been confined on 

assimilating surface (“skin”) moisture estimates (e.g. Alvarez-Garreton et al., 2015; 

Crow and Van den Berg, 2010; Parajka et al., 2006; Reichle and Koster, 2005; 

Renzullo et al., 2014). Depending on the model structure, using surface moisture may 
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have minimal effects on the simulation of total root zone soil moisture, AET and 

streamflow (e.g. Chen et al., 2011; Han et al., 2012). Considering such limitation, 

recent studies (e.g. Brocca et al., 2012; Rajib et al., 2016a; Silvestro et al., 2015) have 

recommended constraining models with estimate(s) that represents the entire/most 

part of the root zone, not necessarily using only soil moisture. Remotely sensed PET 

and/or AET estimates can be useful resources from these perspectives.   

While there are several methods to estimate evapotranspiration (either evaporation, 

transpiration or both) using remotely sensed soil temperature, radiation (albedo), land 

use and vegetation indices (Bastiaanssen et al., 1998; Cleugh and Dunin, 1995; Mu et 

al., 2007, 2011; Nishida et al., 2003a,b; Su, 2002; Zhang et al., 2008; Zhang and 

Wegehenkel, 2006), use of these evapotranspiration data to improve hydrologic 

models is still very limited. Kunnath-Poovakka et al. (2016) applied MODIS 

(Moderate Resolution Imaging Spectroradiometer) AET (Guerschman et al., 2009) to 

calibrate the AWRA-L (Australian Water Resource Assessment – Landscape) model 

at daily time-step, proving AET to be more influential than surface moisture in 

parameter identification. Immerzeel and Droogers (2008) used SEBAL (Surface 

Energy Balance Algorithm for Land) monthly AET data (Bastiaanssen et al., 1998) to 

calibrate SWAT (Soil and Water Assessment Tool) model. Besides calibration, 

another approach is to assimilate remotely sensed AET into the model using 

techniques such as the Ensemble Kalman Filter (e.g. Pan et al., 2008; Yin et al., 2016).  

However, given the highly non-linear relations between the parameter(s) and 

respective hydrologic component(s) as well as the unknown degree of intra-parameter 

correlations, feeding the “extra water” (i.e. difference between modeled and remotely 

sensed AET, Δw) back to the water balance is not simple. Pan et al. (2008) could not 

show any favorable outcome after assimilating SEBS (Surface Energy Balance 

System) AET data (Su et al., 2005) into the Variable Infiltration Capacity (VIC) 

model. This is because AET in many models, including VIC and SWAT, is a non-

state variable as such the assimilation effect cannot be fed back to update other 

hydrologic processes. Yin et al. (2016) assimilated limited amount of Landsat daily 

AET data into the Distributed Time Variant Gain (DTVG) model; it is viable in this 
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particular case because AET in DTVG model is regarded as a state-variable in terms 

of soil moisture recurrence relations. Which layer of the root zone would receive Δw 

is another pivotal factor regardless of the assimilation technique, because simulation 

of infiltration, surface runoff, plant uptake and soil evaporation can intrinsically 

depend on the vertical stratification of the soil moisture profile (e.g. SWAT; Chen et 

al., 2011; Rajib et al., 2016a). Hence, assimilation of AET is conceptually complex 

and prone to implementation error depending on model structure; in comparison, use 

of PET offers a universally effective solution. Direct ingestion is an appropriate 

method to input remotely sensed PET; several studies have previously applied this 

technique in a variety of models to assimilate snow cover, leaf-area index (LAI) and 

surface moisture data (e.g. Arsenault et al., 2013; Fletcher et al., 2012; Heathman et 

al., 2003; Meng et al., 2013; Zhang et al., 2009).    

 

Figure 4. 1 Study watersheds with corresponding 2011 land use. Streamflow gauge 

stations used in model calibration are shown here. Map of Cedar Creek also shows 

the location for soil moisture field-sensors being used in this study. 
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4.4 Methodology and Data Sources 

This study involves four modeling experiments (Table 4.1). SWAT model(s) under 

each experiment is created in the ArcSWAT GIS interface using respective 

topography, land use, soil texture and weather input data as listed in Table 4.2. In 

every case, remotely sensed AET estimate from MODIS (Mu et al., 2011, 2013) is 

used as the reference to evaluate the inaccuracy in SWAT simulations. 

Table 4. 1 Modeling experiments with respective SWAT simulation periods  

Experiment Assessment purpose(s) Watershed(s) Simulation period (years) 

1 Effect of multi-site 

streamflow calibration 

on the spatial accuracy 

of AET simulation 

Upper 

Wabash 

Initialization: 2005-2006 

Calibration: 2007-2010 

2 Effect of energy related 

weather input-

uncertainty on 

simulated AET and 

streamflow 

3 - Level of accuracy in 

AET simulated by a 

“fully realistic” SWAT 

model; 
 

- cross-validation of 

remotely-sensed 

estimate 

Cedar Creek a Initialization: 2006-2007 

Calibration: 2008-2010 

4  Efficacy of directly 

ingesting remotely 

sensed PET  

Cedar Creek, 

Saline River b 

Saline River:  

Initialization: 2005-2006 

Calibration: 2007-2010 
 

Cedar Creek: 

Same as in (3) 

a (3) involves creation of two configurations for the same watershed: SWAT and SWAT-Process 

b (4) involves creation of two configurations for each watershed: SWAT and SWAT-PET.  
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8
8
 

 Table 4. 2 Data used in SWAT model creation a 

Data Source Spatial/temporal resolution 

Digital elevation model (DEM) National Elevation Dataset (USGS-NED, 2016)  30m  b 

Land use 2011 National Land Cover Database (USGS-NLCD, 2016)  b 30m 

Soil type/texture/class State Soil Geographic (STATSGO) data included in SWAT 2012 database b 1:250,000 

Total precipitation National Oceanic and Atmospheric Administration, temporally interpolated by the US Department 

of Agriculture (USDA, 2016)    

Daily; 

no. of gauge stations used:  

23 (UW), 12 (SR), 5 (CC)   

Average maximum and minimum temperature, solar 

radiation, wind speed, relative humidity   

National Centers for Environmental Prediction - Climate Forecast System Reanalysis (NCEP-

CFSR) (NCAR-RDA, 2016) c 

~ 38 km x 38 km; daily; 

no. of grid points used: 

19 (UW), 11 (SR), 2 (CC) 

Statistical weather generator (WGN) included in SWAT 2012 database (developed on the basis of 

Matalas, 1967; Nicks et al., 1995; Richardson and Wright, 1984) c 

Daily; assigned to each sub-basin 

Average streamflow US Geological Survey (https://waterdata.usgs.gov/nwis/sw) Daily; gauge data for selected locations 

(Figure 1) 

Remotely sensed PET and AET Moderate Resolution Imaging Spectroradiometer 8-day total estimates - MOD16 A2 

(http://www.ntsg.umt.edu/project/mod16; Mu et al., 2011, 2013) 

 

~ 1km, spatially re-scaled to HRU level; 8-

day total estimates 

Root zone soil moisture d Permanent field-sensors of the National Soil Erosion Research Laboratory 

(http://amarillo.nserl.purdue.edu/ceap/; Rajib et al., 2016a)  

Sensors in 5, 20, 40 and 60 cm depths at two 

locations (Figure 1); daily average 

Agricultural management operations e Adopted from Boles (2013) and Boles et al. (2015) 

 

 

a UW: Upper Wabash, SR: Saline River, CC: Cedar Creek; b 10m NED, 30m - 2011 National Agricultural Statistics Service – Cropland Data Layer (NASS-CDL, 

2016) and 1:12,000 Soil Survey Geographic (SSURGO) database (Soil Survey Staff, 2016) are used to create the SWAT-Process configuration for CC (modeling 

experiment 3; Table 4.1); c CFSR and WGN inputs are separately used in the Upper Wabash model (modeling experiment 2; Table 4.1); d available only for CC; 
e used in SWAT-Process configuration for CC 

https://waterdata.usgs.gov/nwis/sw
http://www.ntsg.umt.edu/project/mod16
http://amarillo.nserl.purdue.edu/ceap/
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A “Hybrid” PET estimate generated from MODIS (Mu et al., 2011, 2013) and the 

North American Land Data Assimilation System phase 2 (NLDAS-2; Rui and Mocko, 

2014) is directly ingested in the Cedar Creek and Saline River watersheds. To enable 

compatibility with MODIS/NLDAS-2 estimates, all SWAT models being created in 

this study use Penman–Monteith (P-M) equation (Neitsch et al., 2011) for 

evapotranspiration related computations. Simulations are performed in daily time-step 

using Curve Number (CN) method for surface runoff and Variable Storage method 

for channel routing computations (Neitsch et al., 2011).    

4.4.1 Spatial rescaling of MODIS data and creation of daily time-series 

In this study, the original ~1 km gridded MODIS data (both PET and AET) are geo-

referenced, spatially re-scaled and aggregated into each of the HRUs using an 

automatic python-based tool (Figure 4.2). The newly developed tool dynamically 

accounts for the heterogeneity in size, shape and locations of any number of HRUs 

within any watershed. For a given temporal extent in the form of start and end date, 

and geographic extent in the form of GIS shapefile, the tool assigns an area-weighted 

average value of 8-day total PET and AET (in mm H20) from encompassing and/or 

intersecting MODIS grids onto each Hydrologic Response Units (HRUs – the spatial 

unit of SWAT simulation). Creating HRU-scale MODIS PET or AET data for each 8-

day span in case of a watershed with 200 HRUs takes about 1.5 minutes in a 

Windows Intel core i7 2.4 GHz computer. The output is stored in a database that can 

be linked with the SWAT model by respective HRU IDs. 

The same tool is applied to extract daily NLDAS-2 PET at sub-basin level due to a 

much coarser spatial resolution (~ 12 km). MODIS 8-day total PET for an HRU is 

temporally disaggregated (equation 4.1) using the daily NLDAS-2 estimate for the 

corresponding sub-basin where that particular HRU is actually located: 

𝑃𝐸𝑇𝑖(𝑀) = 𝑃𝐸𝑇𝑇(𝑀)x [
𝑃𝐸𝑇𝑖(𝑁)

𝑃𝐸𝑇𝑇(𝑁)
]…… (4.1) 



90 

 

where M and N represent values from MODIS and NLDAS-2 respectively; T refers to 

the total 8-day value; the index i denotes a particular day within that 8-day segment 

(T). NLDAS-2 PET is derived from the North American Regional Reanalysis (NARR) 

climate modeling, whereas MODIS is based on satellite remote sensing. Possible 

differences between MODIS and NLDAS-2 in the absolute values of PET might 

impart nominal bias in 𝑃𝐸𝑇𝑖(𝑀). This is because the use of NLDAS-2 in equation (4.1) 

is limited only as a temporal scaling factor which does not alter the total amount of 

PET estimated by MODIS in each 8-day span (𝑃𝐸𝑇𝑇(𝑀)). Therefore, it is justified to 

refer the MODIS-NLDAS hybrid estimate (𝑃𝐸𝑇𝑖(𝑀)) simply as daily MODIS PET.  

 

Figure 4. 2 Comparison of MODIS and NLDAS-2 8-day total PET for a sub-basin in 

the Upper Wabash watershed. HRU-level aggregation of gridded remote sensing 

estimates using an automatic data processor tool is also demonstrated here. 

An older prototype version of the “processor tool” was used in evaluating the 

accuracy of WRF-Hydro (Lin et al., 2017), by extracting MODIS 8-day AET time-

series for each of the 269 x 314 model grid-cells at 5 km resolution. Rajib et al. 

(2016a) also showed the application of a different version by preparing Advanced 

8-day total potential ET
2-9 Jun, 2008

HRU 2
HRU 3

HRU 4

HRU 3: 54.3 mm

HRU 4: 44.7 mmHRU 2: 46.2 mm

[not to scale]
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* area-weighted average value from the encompassing/intersecting pixels
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±
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Microwave Scanning Radiometer - Earth Observing System (AMSR-E) soil moisture 

time-series for sub-basin level calibration of SWAT models. Thus, the processor tool 

has a flexible architecture that can be universally applied to any model framework 

with any structure of spatial representation, which can also be improvised to interact 

with different sources/formats of remotely sensed data. Pertinent to such value, an 

important contribution of this study is the “tight-coupling” of the processor tool with 

a new version of SWAT source code.   

4.4.2 Development of new SWAT source code 

The default version of SWAT model does not allow direct ingestion of alien PET data 

at a user-defined spatial scale (each HRU in this case). A new sub-routine is 

developed in SWAT’s FORTRAN source code (version 2012 - revision 629) that 

calls the daily MODIS PET from the newly developed python-based data processor 

(Figures 4.3) and directly ingests in respective HRUs. It would also allow sub-basin 

level ingestion of monthly total PET, especially in large scale SWAT models that are 

often created without HRU discretization (e.g. Abbaspour et al., 2015; Faramarzi et 

al., 2017). For HRUs/sub-basins where MODIS data is not available (e.g. highly 

urbanized areas, large water bodies), the sub-routine will reinstate SWAT’s default P-

M based PET (Neitsch et al., 2011). The new sub-routine is compiled with the rest of 

the source code to get a new executable file which is compatible both in Windows 

and Linux based computer operating systems, along with other supporting software 

services such as SWAT-CUP (Abbaspour, 2015) or high-performance 

cyberinfrastructures such as SWATShare (Rajib et al., 2016b). However, the 

simulation time for the new executable file is slightly longer relative to the default 

version.  

As a whole, dynamic coupling of an automatic earth observation processor with the 

modified SWAT exemplifies a unique case of scale/space-independent, user-friendly 

interoperability between open-source “big data” resources and complex hydrology-

water quality models. While the coupling framework is evaluated in this study in 
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simulation mode over a past period, the main motivation here is to serve the purpose 

of hydrologic forecasting once near real-time PET estimates become available (e.g. 

Tang et al., 2009).     

 

Figure 4. 3 Schematic representation of an integrated SWAT modeling framework 

with the option of directly ingesting MODIS PET (hereafter, SWAT-PET). Use of 

NLDAS-2 data is limited only to temporally disaggregate MODIS PET from 8-day 

total to daily estimates. The new source code for SWAT-PET executes the current 

approach to calculate PET in highly urbanized HRUs where MODIS data is not 

available. (aNeitsch et al., 2011; bMu et al., 2011, 2013; cRui and Mocko, 2014; P-M: 

Penman–Monteith; LAI: Leaf-Area Index; PAR: Photosynthetically Active Radiation; 

MERRA-GMAO: Modern Era Retrospective analysis for Research and Applications 

– Global Modeling and Assimilation Office)     

4.4.3 Modeling experiment 1: parameter equifinality 

In the first modeling experiment, effect of parameter equifinality on model simulated 

AET is evaluated for the Upper Wabash watershed. The Upper Wabash model is 

created using 30 m Digital Elevation Model (DEM), 2011 National Land Cover 

database (NLCD) and State Soil Geographic (STATSGO) data (Table 4.2). The 

model has 209 HRUs, being discretized using a 10% area aggregation threshold. 

Gauge records are used for precipitation forcing while the weather data related to 

PET calculation, specifically referred here as the “energy related weather inputs” 

(surface temperature, solar radiation, wind speed and relative humidity), are obtained 



93 

 

from Climate Forecast System Reanalysis (CFSR). Effect of parameterization is 

captured by separately calibrating the model first by using average daily streamflow 

observations only at the watershed outlet and then simultaneously at seven gauge 

stations across the watershed (denoted as the outlet only and multi-site calibration, 

respectively).  

A common set of 19 parameters involving surface, subsurface, channel routing and 

snow-melt processes are used in the calibrations (Table 4.3). Selection of parameters 

and their initial ranges are based on the prior knowledge of the study area (Kumar and 

Merwade, 2009; Larose et al., 2007; Rajib et al., 2016a) and suggestions from the 

SWAT developers (Abbaspour, 2015; Neitsch et al., 2011). Calibrations are 

conducted by using the Sequential Uncertainty Fitting algorithm-version 2 (SUFI-2) 

which is a semi-automated inverse modeling procedure available inside SWAT-CUP. 

Kling-Gupta Efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012) is used as an 

objective function to measure the agreement between simulated and observed data. 

With the addition of multiple streamflow gauge stations as objective variables, KGE 

is modified to a weighted mean value, KGE' following the approach shown by 

Abbaspour et al. (2015): 

𝐾𝐺𝐸′ = ∑ 𝑤𝑓𝑖
(𝐾𝐺𝐸𝑓

𝑖
)

𝑛𝑓

𝑖=1
... ... (4.2) 

where n and w are the number of objective variables (observational datasets) involved 

and the weight assigned to each of them, respectively. The index f stands for 

streamflow and i denotes the respective gauge stations brought under calibration. 

Equal weights are assigned in this study for calculating KGE', however, the choice is 

subjective. For an even comparison, models are evaluated after equal number of 

SUFI-2 iterations. Coefficient of Determination (R2), Percent Bias (PBIAS) and 

Nash-Sutcliffe Efficiency (NSE) are also calculated to evaluate the goodness of fit 

between observed streamflow and the best simulation having the highest objective 

function value (KGE or KGE'). 
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Table 4. 3 Parameters used in SWAT calibrations  

 

No. Parameter a Definition b Initial range  

1 v_ALPHA_BF Baseflow recession constant (days) 0.01 - 1 

2 v_CANMX Maximum canopy storage (mm H2O) 0.01 - 25 

3 v_SURLAG Surface runoff lag coefficient (days) 0.05 - 24 

4 v_CH_K2 Main channel hydraulic conductivity (mm/hr) 5 - 100 

5 v_CH_N2 Main channel Manning's n  0.01 - 0.15 

6 r_CN2 Curve number (moisture condition II) -0.2 – 0.2 

7 v_EPCO Plant uptake compensation factor 0 - 1 

8 v_ESCO Soil evaporation compensation factor 0 - 1 

9 a_GW_DELAY Groundwater delay (days) -10 - 10 

10 v_GW_REVAP Groundwater "revap" coefficient 0.01 - 0.2 

11 v_GWQMN Threshold depth for return flow (mm H2O) 0.01 - 5000 

12 v_REVAPMN Re-evaporation threshold (mm H2O) 0.01 - 500 

13 r_SOL_K Soil saturated hydraulic conductivity (mm/hr) -0.15 – 0.15 

14 r_SOL_AWC Available soil water capacity (mm/mm) -0.15 – 0.15 

15 v_SFTMP c Snowfall temperature (oC) 0 - 5 

16 v_SMFMN c 
Melt factor for snow on December 21 (mm H2O/ 

oC-day) 
0 - 10 

17 v_SMFMX c 
Melt factor for snow on June 21 (mm H2O/ oC-

day) 
0 - 10 

18 v_SMTMP c Snow melt base temperature (oC) -2 - 5 

19 v_TIMP c Snow pack temperature lag factor 0 - 1 

 a The indices shown with the parameter names denote the type of change to be applied over the 

existing parameter value: ‘v_’ means the original value is to be replaced by a value from the range, ‘a_’ 

means a value from the range is added to the original value, ‘r_’ means the original value is multiplied 

by the adjustment factor (1+ given value within the range); b Source: Neitsch et al. (2011); c Snow 

related parameters are not included in the calibrations of the Saline River models 

4.4.4 Modeling experiment 2: energy imbalance 

Inaccurate PET in the model indicates energy imbalance, which can affect AET 

simulation despite having the best precipitation forcing and rigorous parameter 

calibration process. In order to evaluate the role of energy input (i.e. PET) on model’s 
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hydrologic responses, the second modeling experiment involves a separate setup of 

the Upper Wabash model using surface temperature, solar radiation, wind speed and 

relative humidity data from SWAT’s weather generator (WGN; Neitsch et al., 2011; 

Table 4.2). WGN creates daily weather inputs for any watershed in the continental 

US from monthly average statistics summarized over a number of years (1960-2010 

for this study). The WGN-based model is calibrated with the same multi-site 

approach as in the first modeling experiment. Since the precipitation forcing (gauge 

data), method to calculate PET (P-M equation) and calibration tactic are kept 

unaltered, differences in model outputs in this case come solely from the different 

sources of energy related weather inputs (i.e. CFSR versus WGN). 

4.4.5 Modeling experiment 3: process uncertainty 

The third modeling experiment involves creation of two configurations (SWAT and 

SWAT-Process) for the Cedar Creek watershed. The objective of this particular 

experiment is to test whether a model having the best available weather inputs, 

precise geo-spatial representation, anthropogenic management practices, better model 

physics, as well as the least-equifinal parameter set can produce AET that is near to 

reality. Similar to the first modeling experiment, gauged precipitation and CFSR 

weather inputs are used for both configurations. SWAT configuration includes 30 m 

DEM, NLCD land use and STATSGO soil data; whereas, SWAT-Process is built 

upon 10 m DEM, spatially-explicit Cropland Data Layer (CDL) and a much finer 

resolution Soil Survey Geographic (SSURGO) data. Most importantly, SWAT-

Process configuration also incorporates agricultural management operations, being 

adopted from Boles (2013) and Boles et al. (2015) (Table 4.2). These management 

data include annual crop rotation, dates of plantation and crop harvest/kill operations, 

tillage and manuring practices, sub-surface (tile) drainage, as well as the 

timing/type/rate of fertilizer and pesticide applications. CDL and agricultural 

operations impart a conjugate effect, because together they enable crop-specific 

growth-cycles and biome-properties to be used in model simulation; otherwise, the 
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model would just assume some lumped conjectures giving way to inaccurate AET. 

While the SWAT configuration has only 217 HRUs due to the 10% area aggregation 

threshold being used, SWAT-Process has 10,252 HRUs (0% threshold) with no loss 

of spatial heterogeneity in the landscape. Another difference between these 

configurations lies in the model physics as the SMA in SWAT-Process follows a 

modified time-dependent CN method (Rajib and Merwade, 2016). SWAT 

configuration is calibrated only with streamfow data at the watershed outlet. SWAT-

Process intends to have least equifinality through a multi-objective calibration (e.g. 

Rajib et al., 2016a) including streamfow data at the watershed outlet and root zone 

soil moisture data (~top 60 cm of the soil profile) from two permanent field-sensors 

(Figure 4.1). Both calibrations are performed using the same parameters and their 

initial ranges as in experiment 1. KGE'' (equation 4.3) is used as the objective 

function for the multi-objective calibration with equal weights assigned to each 

variable: 

𝐾𝐺𝐸′′ = ∑ 𝑤𝑓𝑖
(𝐾𝐺𝐸𝑓

𝑖
)

𝑛𝑓

𝑖=1
+ ∑ 𝑤𝑠𝑗

(𝐾𝐺𝐸𝑠
𝑗
)

𝑛𝑠
𝑗=1 ... ... (4.3) 

where the indices f and s stand for streamflow and soil moisture, respectively. Also, i 

denotes the streamflow gauge stations and j denotes sub-basins with soil moisture 

estimates. Certain assumptions and pre-processing are essential to enable 

compatibility of sub-basin average model output and the in-situ point estimates of soil 

moisture. Detail on these assumptions/processing steps are discussed by Rajib et al. 

(2016a).  

Ideally, SWAT configuration represents the default model, standard data availability 

scenario and modeling practice. SWAT-Process, on the other hand, leverages all the 

“known” watershed information which may not be available in every case. That is 

why a model configuration similar to SWAT-Process could not be created for Upper 

Wabash and Saline River. Considering that the SWAT-Process configuration for 

Cedar Creek is robust, physically-realistic, and hence, supposedly accurate, the 

simulated AET from therein can be used to cross-validate remotely sensed estimates. 
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4.4.6 Modeling experiment 4: ingestion of MODIS PET 

The last modeling experiment involves spatially-distributed direct ingestion of daily 

MODIS PET estimates into each of the HRUs. Figure 4.3 schematically shows the 

methodology in contrast to the default/current approach of SWAT modeling. The 

proposed methodology is implemented for Cedar Creek and Saline River watersheds 

by creating two configurations for each watershed: SWAT and SWAT-PET. SWAT 

configuration for Saline River is created using 30 m DEM, NLCD land use and 

STATSGO soil data as the geo-spatial inputs, with 10% area threshold resulting into 

223 HRUs; precipitation is obtained from gauge stations while other weather inputs 

are obtained from CFSR. SWAT configuration for Cedar Creek in the third 

experiment has the same source of geo-spatial/weather input data and HRU 

discretization scheme, which makes it suitable to be reused here. However, execution 

of SWAT-PET requires using the new SWAT source code (section 4.4.2). SWAT-

PET models are calibrated with average daily streamflow data at respective watershed 

outlets enabling even comparison with the models in SWAT configuration. Model 

calibrations for Saline River do not include snow parameters because of its location in 

a warmer climate region; initial ranges for other parameters are the same as in the 

case of Cedar Creek (Table 4.3). 

4.5 Results and Discussion 

The following discussion sequentially presents the outcomes of the four modeling 

experiments in separate sub-sections by addressing the effects of parameter 

equifinality, energy related weather input-uncertainty and lack of geo-spatial 

representation on the possible inaccuracies in SWAT’s AET simulation. These 

assessments rationalize the adoption of a remedial measure. Accordingly, efficacy of 

the new approach involving spatially-distributed direct ingestion of MODIS PET is 

evaluated. Differences between SWAT and MODIS in their respective 

evapotranspiration algorithms are also presented here. Improvement in model’s 
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overall hydrologic responses as a result of PET ingestion are shown by comparing 

AET, soil moisture and streamflow outputs with corresponding reference 

estimates/observations.  

4.5.1 Effect of parameter equifinality on actual ET  

Simultaneously using multiple streamflow gauge stations in model calibration can 

reduce parameter equifinality with improvement in streamflow simulation (e.g. 

Chiang et al., 2014; Her and Chaubey, 2015), however, the consequence on model’s 

SMA have not been explored in previous studies. Figure 4.4 shows the effect of 

outlet-only and multi-site calibrations on simulated streamflow for an upstream 

location in the Upper Wabash watershed.  

 

Figure 4. 4 Modeling experiment 1: comparison of outlet-only and multi-site 

streamflow calibration in the Upper Wabash watershed. Numbers in the watershed 

boundary map correspond to specific USGS gauge station IDs. Performance skills 

reported here represents the entire simulation periods of respective models (Table 4.1). 

The multi-site calibration has invariably produced higher fit scores (R2, KGE, NSE 

and PBIAS) across the watershed, especially with noticeably lower PBIAS (i.e. 
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increased accuracy in the water balance). Differences in the best parameter values 

(Table B1 in Appendix B) that have evolved from different arrangements of model 

calibration indicate equifinality. Because of the consistently higher accuracy in 

simulated streamflow regardless of the location, parameters in the multi-site 

calibrated model can be considered less equifinal.    

Figure 4.5 shows the spatial pattern of bias in simulated AET (SWAT minus MODIS) 

in the Upper Wabash watershed, over an 8-day time period between two successive 

precipitation events. Despite showing very high fit scores (R2 = 0.70, KGE = 0.80, 

NSE = 0.73 and PBIAS = -5.5; Figure 4.4), parameter equifinality/sub-optimality in 

the outlet-only calibration is still at large which makes the model produce erroneous 

AET. Bias larger than ±10mm (±1.25 mm/day) in the 8-day total AET in many of the 

sub-basins can be considered significant given the small amount of average daily 

precipitation the watersheds in the Midwestern US usually receives. A more rigorous 

streamflow calibration is found to have improved the accuracy of AET in almost all 

the sub-basins (bar plots in Figure 4.5), although the bias may persist in huge 

magnitudes. Figures 4.4 and 4.5 prove that parameter equifinality is not the main 

reason causing inaccurate AET simulation. The problem could be just the opposite; it 

might be the inaccurate AET consistently inducing inappropriate parameter values 

which is beyond the model’s capacity to overcome via streamflow calibrations. 

Therefore, parameter calibration cannot be taken as the unique solution to enable 

better AET prediction by the model. 

4.5.2 Effect of uncertainty in energy related weather inputs  

Several studies have shown the differences in model outputs resulting from different 

methods of calculating PET (e.g. Aouissi et al., 2016; Kannan et al., 2007, Schneider 

et al., 2007; Wang et al., 2006), but none of these studies have examined the effect of 

energy related weather inputs that are the determinants of PET (and so, AET). The 

Upper Wabash model that uses SWAT’s weather generator (WGN; Table 4.2) to 

obtain energy related weather inputs shows noticeably poor fit scores for streamflow, 
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even though the model is calibrated at multiple sites (Figure 4.6). Relying on WGN 

generally provides reasonable outputs where required data are discontinuous or 

sparsely available (Alighalehbabakhani et al., 2017; Evenson et al., 2016; Paul et al., 

2017; Price et al., 2014). Accordingly, the WGN-based model for Upper Wabash, 

despite under-performing with R2 = 0.56 and NSE = 0.5 in daily streamflow 

simulation, can be vetted acceptable based on the criteria suggested by SWAT 

developers (e.g. Moriasi et al., 2015). The model with CFSR data has a completely 

different state of optimized parameter space (Table B1 in Appendix B) with 

significantly higher fit scores in streamflow simulation, although precipitation forcing, 

watershed characteristics and calibration operation are the same as in the WGN-based 

model.  

 

 

Figure 4. 5 Modeling experiment 1: effect of multi-site streamflow calibration on the 

spatial accuracy of simulated AET in the Upper Wabash watershed. Numbers on the 

watershed (top left) indicate sub-basin IDs to help relating the spatial maps with the 

bar diagram. 
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Figure 4. 6 Modeling experiment 2: effect of energy related weather input-uncertainty 

on streamflow simulation. CFSR and WGN refers to the SWAT model for which 

input of temperature, solar radiation, relative humidity and wind speed are obtained 

from Climate Forecast System Reanalysis and SWAT’s default weather generator, 

respectively. Performance skills reported here represents the entire simulation periods 

of respective models (Table 4.1). 

Figure 4.7 compares watershed-average MODIS AET in Upper Wabash with the 

corresponding output from both CFSR and WGN-based SWAT models over a 3-year 

period (2007-2009; Table 4.1). Although CFSR data is better in accuracy compared to 

WGN (Faramarzi et al., 2017; Fuka et al., 2014), it is not unlikely that the CFSR-

based model would show high magnitude of bias in simulated AET. Assuming 

precipitation to be accurate, bias in AET in the CFSR-based model could be attributed 

to SWAT’s process uncertainties. However, because of using the exact same model 

approximations, process uncertainties in this particular experiment have equal effects 

on both cases. Consequently, it must be the lesser uncertainty in energy related 

weather inputs (i.e. more accurate PET) that makes CFSR-based model mimic the 

temporal pattern of MODIS AET more closely. Temporal variability of AET in the 

WGN-based model is rather erratic and apparently unrealistic. Thus, results presented 

in Figures 4.6-4.7 shed light on an often disregarded aspect, that is, energy imbalance 

due to erroneous PET can significantly impact the simulation of water balance in a 

hydrologic model even if the model is forced with the best available precipitation or 

has relatively small equifinality extent in parameters.   
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Figure 4. 7 Modeling experiment 2: effect of energy related weather input-uncertainty 

on AET simulation. Results indicate watershed-average values. Significance of CFSR 

and WGN weather input is explained in Figure 4.6. 

4.5.3 Effect of geo-spatial representation in the model 

A “physically realistic” model should have minimal bias in simulated AET (and other 

hydrologic fluxes). The notion of being physically realistic, though barely pragmatic, 

refers to a model that does not have any deficiency in representing actual watershed 

characteristics and physical processes; of course, it includes use of reliable 

precipitation and energy-related weather inputs in the model. A relevant key 

determinant is the model’s bio-geochemical database (default biome properties/plant 

growth parameters) which is more functional if used with a detailed land use. User-

specific modeling practices such as the lumping of land use/soil/slope in HRU 

discretization (e.g. Her et al., 2015) and multi-objective calibration (e.g. Rajib et al., 

2016a) can also affect accuracy of AET. The SWAT-Process configuration for Cedar 

Creek is designed to have all these aspects in the model. As seen from the HRU-scale 

spatial map in Figure 4.8(b), the SWAT-Process model has nearly zero bias in 8-day 

total AET in the majority portion of the landscape, especially in the summer growing 

season. Its counterpart model configuration (SWAT), despite having nearly 
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equivalent streamflow accuracy (Figure 4.8(a)), exhibits large bias in AET (+12 mm 

i.e. +1.5 mm/day) during the same period of time (Figure 4.8(b)). Although Figure 

4.8(b) shows one example, pattern of relative accuracy between the configurations 

(very high and very low, respectively in SWAT-Process and SWAT) is found to be 

the same in every growing season throughout the 3-year simulation period (2008-

2010; Table 4.1). In the context of an agricultural watershed such as Cedar Creek, 

achieving minimal bias in model simulated AET is indeed significant because the 

land-atmosphere interaction through AET feedback and the root zone soil moisture 

dynamics are vibrant during the growing season, therefore, misrepresentation by the 

model is not unlikely. What is remarkable in this regard is that a hydrologic model 

like SWAT, regardless of its semi-empirical approximations on many physical 

processes, can “behave” realistically. Considering the degree of accuracy, simulated 

AET from SWAT-Process is further used in this study for HRU/sub-basin scale cross-

validation of remotely sensed data. Table B1 in Appendix B lists the best parameter 

sets for the two configurations. 

Despite its robustness, SWAT-Process could not get past through all the deficiencies 

in the model. Although SWAT-Process is fed with survey-based data on plant’s 

growth cycle corresponding to the CDL land use, these inputs have effectively 

regulated AET simulation only where/when they are relevant (i.e. agricultural 

area/growing season). In the remaining portion of the landscape (e.g. forest, wetland) 

or the year (e.g. spring), AET from SWAT-Process may not be fully accurate. One 

vivid example of persistent AET bias in the SWAT-Process configuration lies with 

the riparian wetlands along the flood-plain (Figure 4.8(b)), where the difference 

(model minus MODIS) over an 8-day period of summer growing season is found as 

high as -18 mm (-2.25 mm/day). Such extensive bias is expected because the model is 

conceptually under-developed in representing wetland vegetation and fill-spill 

dynamics (Evenson et al., 2016) which control release of AET from depression areas; 

neither the CDL or the maximum heterogeneity of HRUs could provide any 

meaningful help to minimize this process deficiency in the model. Traces of similar 

magnitude of bias along the flood-plain wetlands are not evident in the SWAT 
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configuration. This is due to the 3 times coarser topography, a lumped land use and a 

10% threshold of land use aggregation used is HRU discretization which have 

virtually removed wetlands form the landscape while reducing some computational 

burden.     

 

Figure 4. 8 Modeling experiment 3: performance evaluation of the default SWAT 

model and one of its “physically realistic” configurations (SWAT-Process). (a) 

Streamflow hydrographs and corresponding prediction skill metrics. Performance 

skills reported here represents the entire simulation periods of respective models 

(Table 1). (b) HRU-scale AET bias in one particular sub-basin in an 8-day period of 

summer growing season during 2008.  

The three modeling experiments presented above prove the likelihood of getting 

pseudo-accurate water balance from an apparently well-calibrated model; such a 

model can show high streamflow prediction skills despite having severely erroneous 
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AET. On the positive side, overall soundness and physical consistency of the same 

model can be significantly improved (with some discrepancies) if that model is jointly 

driven with the best possible weather/geo-spatial inputs, model physics and 

parameters. Ironically, in this era of big data, high resolution precipitation, DEM, 

land use and soil inputs are still not available in the data-poor developing world. Even 

if they are available, using coarser DEM or lumped HRUs is not uncommon where 

computational resource is limited. Regardless, a major difficulty in making a realistic 

model remains in the proper acquisition of required “ground-truths” related to actual 

vegetation types and their characteristics across space and time, which play decisive 

role in predicting AET by mediating model physics (Long et al., 2014). Not to 

mention, the default bio-geochemical database even in the case of a well-developed 

model cannot have the perfect realization of nature let alone the semi-empirical 

process-approximations in so-called physics-based models. These blockades cannot 

be overcome by parameter calibration. Against these conceptual and practical 

complexities, an effective solution needs to be sought that could implicitly 

compensate model’s inability to capture land surface processes without trading-off 

with the circumstantial dependency on coarse geo-spatial representation. In this 

regard, remotely sensed PET data as a model input might offer efficient solution by 

minimizing many of the uncertainties from the source.     

4.5.4 Efficacy of directly ingesting remotely sensed potential ET 

A closer look on the critical differences between SWAT and MODIS 

evapotranspiration algorithms (according to Neitsch et al. (2011) and Mu et al. (2013) 

respectively) would justify the causal effects of ingesting MODIS PET data towards 

improving hydrologic simulations. While calculating PET using the P–M equation, a 

major difference between SWAT and MODIS lies in the use of albedo. SWAT uses a 

constant albedo (= 0.23) for vegetation surface irrespective of crop/plant types to 

estimate net radiation; whereas, albedo for soil surface is a user-defined parameter 

(SOL_ALB) that is derived from soil database and often calibrated (e.g. Sellami et al., 
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2014; Schierhorn et al., 2014). On the other hand, MODIS albedo (MCD43B2/B3) is 

a satellite product that has been evaluated for accuracy at selected locations using 

field estimates. SWAT also ignores soil heat flux, G assuming that the heat stored in 

soil during day time gets dissipated when temperature drops at night. To have more 

precision in PET, MODIS algorithm calculates G using a simplified version of the 

method proposed by Jacobsen and Hansen (1999). Canopy/surface and aerodynamic 

resistances in the P–M equation strongly regulates the rate at which water vapor gets 

released from soil, intercepted precipitation and plant tissue. Without considering the 

degree of spatial details in the user-defined land use, SWAT invariably assumes 

constant values of canopy height, hc (= 40 cm) and LAI (= 4.1) to approximate these 

resistances for PET calculation. In comparison, resistance terms in the MODIS 

algorithm are calculated by applying calibrated biome-properties on the remotely 

sensed, time-varying 1km spatial grids of LAI and fraction of absorbed 

photosynthetically active radiation, FPAR (MOD15A2; Myneni et al., 2002). All of the 

biome-properties, including the leaf resistance parameters (e.g. stomatal conductance, 

CS) and the day/nighttime thresholds of vapor pressure deficit, VPD for stomata 

opening and closure (i.e. diurnal cycle of CO2 fertilization), are spatially linked with a 

land use grid (MOD12Q1; Friedl et al., 2002) of 17 UMD (University of Maryland) 

classes.  

Both PET and AET estimates in MODIS have the exact same representation of 

“observed” vegetation in their respective computations. Having detected the true state 

of vegetation on the ground in terms of remotely sensed LAI/FPAR, MODIS algorithm 

calculates PET by assuming fully wet canopy and soil surface. MODIS AET is 

estimated for the actual fraction of wet surface for which the dry and wet surfaces are 

distinguished using relative humidity data (e.g. Fisher et al., 2008). In SWAT, the 

crudely estimated PET is taken as the maximum permissible limit to simulate 

evaporative demand (AETd) separately for canopy and soil surface. AETd depends on 

time-varying LAI and hc that are simulated following a semi-empirical optimal leaf 

development curve with several user-defined biome-properties including maximum 

LAI for a plant, BLAI and maximum canopy height, hcmax. SWAT also uses CS and a 
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radiation-use efficiency constant, RUe to imitate the role of VPD and FPAR on 

vegetation growth (e.g. Stockle and Kiniry, 1990). Finally, AETd is factorized by the 

actual amount of moisture present in different layers of the soil profile to produce 

AET.   

Compared to SWAT’s AET that relies on simulated LAI and root zone soil moisture, 

remotely sensed estimate is superior in capturing vegetation effects but less-informed 

about actual wetness conditions. Actually, no hydrologic model can simulate LAI and 

soil moisture with full congruence of reality, while remotely sensed PET/AET retain 

their value by implicitly capturing soil moisture through “observed” LAI (Long et al., 

2014). Yet, there remains the dilemma whether such AET estimate should at all be 

used to mediate model’s SMA via direct ingestion or other data assimilation 

approaches (Lin et al., 2017). Direct ingestion of MODIS PET seems to be the least-

ambiguous avenue as it essentially means using a remotely sensed energy and 

vegetation constraint, at the same time, allowing the hydrologic model to apply its 

own SMA algorithm and bio-geochemical database for AET simulation.  

Part of the remote sensing algorithm that depends on semi-empirical relationships to 

estimate PET/AET may not be too deviant from well-developed models (e.g. SWAT, 

VIC). From this perspective, use of hcmax, CS, BLAI and RUe rather indicates a 

potential structural strength of the SWAT model. In fact, SWAT is equipped with a 

bio-geochemical database, containing biome-properties for 79 different crop/plant 

types, that has evolved from numerous experiments/field campaigns (e.g. Kiniry et al., 

1989, 1991, 1995; Körner et al., 1979). However, depending on the available land use 

data for model construction, these parameters may or may not be active in AET 

simulation. For example, if NLCD (land use with generic classes) is used instead of 

CDL (spatially explicit crop/plant information), the model assumes only corn and oak 

trees respectively on the entire agricultural and forested landscapes. Accordingly, full 

functionality of the bio-geochemical database with respect to CDL might have helped 

SWAT-Process (Figure 4.8) to show minimal AET bias compared to the SWAT 

configuration. Since both PET and AET in MODIS are estimated considering the 

same satellite-derived radiation, land use and vegetation indices, direct ingestion of 
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PET time-series at each HRU of the SWAT configuration should work as a surrogate 

for a fully-functional bio-geochemical database despite having generic land 

classification (NLCD) in the model with no other exquisite geo-spatial attributes 

(finer resolution DEM/soil etc.). Of course, use of MODIS PET would also set a more 

accurate “available energy” in the model barring SWAT’s crude assumptions and the 

probable weather uncertainties induced from limited user-inputs. Being driven by a 

realistic spatio-temporal distribution of PET, the model is likely to be forced to follow 

its pattern and better predict AET as well (e.g. Figure 4.7). Therefore, it is expected 

that remotely sensed PET is capable of enhancing the overall representativeness of a 

well-developed, semi-distributed model that has a more-or-less physics-based SMA 

and bio-geochemical architecture. Similarly, using this approach for a lumped model 

may produce limited improvements.    

Figure 4.9 compares 8-day total AET simulated by the SWAT and SWAT-PET 

configurations with corresponding MODIS estimates for Cedar Creek and Saline 

River watersheds. The improved model outputs in SWAT-PET are entirely the effect 

of remotely sensed PET because other influential model attributes (e.g. SWAT-

Process) do not exist in either of the configurations. AET from the SWAT-Process 

configuration (Cedar Creek) are also shown here with a two-fold objective: showing 

the accuracy of SWAT-PET configuration and cross-validation of MODIS algorithm. 

Even with the least-detailed geo-spatial inputs and the absence of a multi-objective 

parameter calibration, SWAT-PET in Cedar Creek closely replicates MODIS and 

SWAT-Process. In the case of Saline River, a configuration such as SWAT-Process 

cannot be created because of unavailable data. However, SWAT-PET is found to 

have captured a moderate-to-severe drought followed by a prolonged wet period that 

actually took place in the Saline River watershed during July-September, 2008 (US 

Drought Monitor, http://droughtmonitor.unl.edu/). These consecutive extreme events 

are evident from MODIS but completely misrepresented in the SWAT configuration. 

Overall, irrespective of the watersheds’ geo-physical setting (size, location, 

topography, land use and soil type), ingestion of remotely sensed PET seems to 

produce more realistic simulation of AET.  

http://droughtmonitor.unl.edu/
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Figure 4. 9 Modeling experiment 4: effect of directly ingesting remotely sensed PET 

on model simulated AET (* MODIS PET is ingested/nudged in the SWAT 

configuration that produces SWAT-PET). Results shown here represent a subjectively 

chosen sub-basin within a watershed. AET simulated by the SWAT-Process (Cedar 

Creek) configuration is also shown here for cross-validation purposes.     

As indicated earlier, MODIS AET data, like many other remote sensing product, are 

more of an estimation than actual observation. Although the biome-properties used in 

MODIS algorithm are extensively calibrated using in-situ AmeriFlux data (Mu et al., 

2013), uncertainties in the calibrated data might still exist mostly because of satellite 

retrieval issues (Yang et al., 2006). It is also possible that the processor tool used in 

creating HRU-scale MODIS time-series (section 4.4.1; Figures 4.2 and 4.3) might 

have disturbed the spatial pattern of the actual gridded product. The fairly good 

correlation of AET between MODIS and SWAT-Process in Figure 4.9, both in terms 

of absolute values and overall temporal distribution, validates the accuracy of MODIS 

data while also proving the reliability of the processor tool. A pessimistic impression 

could arise assuming that some of the calibration sites are in close proximity to Cedar 

Creek and Saline River for which MODIS has the least uncertainty in these particular 

locations. In fact, the nearest AmeriFlux stations used in MODIS AET calibrations 

are approximately 200 km (Oak Openings, Ohio; latitude 41.6o/longitude -83.8o) and 

680 km (Freeman Ranch, Texas; latitude 29.9o/longitude -98.0o) away from the center 

location of Cedar Creek and Saline River watersheds, respectively. Although the 

biome-property calibration has so far been conducted only over the North and South 

America, Mu et al. (2013) showed 85% accuracy of the current algorithm with 
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respect to quasi AET observations (e.g. Budyko, 1974; Donohue et al., 2007) across 

232 global watersheds. Thus, use of MODIS data in SWAT modeling is expected to 

produce favorable results for watersheds outside the US as well. 

Plant uptake and soil evaporation in SWAT are regulated by vertical stratification of 

root zone soil moisture using a pair of semi-empirical parameters (esco and epco; 

Neitsch et al., 2011). These parameters and the associated model conceptualizations 

do not allow consistent vertical coupling of soil moisture between adjacent soil layers 

(Chen et al., 2011; Rajib et al., 2016a). Accordingly, soil moisture simulated by 

SWAT can be closer to the wilting point in one particular layer while substantial 

volume can still exist in the bottom layers depending on the values of esco and epco. 

Since esco and epco are applied on residual PET (= PET – canopy evaporation) in 

their respective computations (Neitsch et al., 2011), relatively accurate PET in the 

SWAT-PET configuration might have indirectly influenced the model to obtain a 

reasonable value for these parameters (Table B2 in Appendix B). Accordingly, soil 

moisture profile might have become realistic while improving the plant uptake/soil 

evaporation and vice versa. Figure 4.10 shows the differences among the simulated 

(SWAT and SWAT-PET) and the in-situ daily average soil moisture (~60 cm of the 

root zone) throughout the year 2008, for a particular sub-basin of Cedar Creek where 

the permanent soil moisture sensors are located (Figure 4.1 shows the sensor 

locations). In order to correlate how increased accuracy in AET as a result of PET 

ingestion might have improved soil moisture, Figure 4.10 also draws an analogy of 

biases. For example, SWAT generally underestimates AET and overestimates soil 

moisture before the start of summer growing season (e.g. March). In the peak of 

growing season (e.g. July), SWAT severely overestimates AET which gets reflected 

into drastic depletion of soil moisture from the upper layers. In the SWAT-PET 

configuration, model’s tendency to show such “conditional bias” is nearly eliminated 

as both the soil moisture and AET outputs match better with the corresponding 

reference estimates. Increased accuracy of two hydrologic components (soil moisture 

and AET), being evaluated against two completely independent sources of 

observations/reference estimates (i.e. field sensor and satellite), attests the worth of 
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the proposed approach towards improving overall soundness and predictability of the 

model.   

 

Figure 4. 10 Modeling experiment 4: (a) comparison of simulated root zone soil 

moisture (~ 60 cm) in the SWAT and SWAT-PET configurations with field sensor 

estimates, for the sub-basin where sensors are located (Figure 1). Moisture values 

reported here represent Plant Available Water (water content above the wilting point), 

being averaged for the two sensors. (b) Spatial maps of AET bias in the same sub-

basin before/after PET ingestion. The “before-ingestion” (SWAT configuration) map 

for the summer season is replicated from Figure 8. (↑ indicates overestimation and ↑↑ 

indicates very high overestimation by the model while ↓ and ↓↓ indicate the opposite). 
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The effect of directly ingesting remotely sensed PET in simulated streamflow is 

demonstrated in Figure 4.11. SWAT-PET has comparatively higher fitness scores for 

streamflow in both Cedar Creek and Saline River watersheds. Especially, simulation 

of high-flow events is noticeably better in the SWAT-PET configuration irrespective 

of the watershed. Poor performance in the low-flow conditions is apparent in some 

cases which contradicts the general expectation that a better AET (and soil moisture) 

simulation by the SWAT-PET configuration should ideally produce relatively 

accurate baseflow. This leads to the likelihood that sub-optimal sub-surface 

parameters can persist despite the improvements shown in Figures 4.9 and 4.10. This 

is because SWAT’s sub-surface parameters, even after ingesting remotely sensed 

PET, might remain insensitive to streamflow calibration. Although such limitation 

could be specific to SWAT, putting AET along with streamflow in a multi-objective 

calibration can render a more robust solution irrespective of the model being used (e.g. 

Kunnath-Poovakka et al., 2016). Specifically, a simultaneous ingestion-calibration 

approach using remotely sensed PET as the energy forcing and AET as the objective 

variable in parameter optimization should be explored in future studies.   

 

Figure 4. 11 Modeling experiment 4: effect of directly ingesting remotely sensed PET 

on model simulated streamflow. Performance skills reported here represents the entire 

simulation periods of respective models (Table 4.1).   
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4.6 Conclusion 

This study features a two-fold aspect: first identifying the effects of parameter 

equifinality, energy related weather input-uncertainty and lack of geo-spatial 

representation on the simulation of actual evapotranspiration (AET), and then 

evaluating a remedial solution by directly ingesting daily MODIS potential 

evapotranspiration (PET). To accomplish these objectives, four modeling experiments 

are conducted using SWAT. In every experiment, 8-day total AET from MODIS and 

daily streamflow from USGS gauge stations are used as references to measure the 

degree of model accuracy, while one of the experiments also includes in-situ root 

zone soil moisture enabling a holistic assessment. Based on the outcome of these 

experiments, following conclusions can be drawn.   

1. Inaccurate AET in a hydrologic model is not a parametric issue. Comparison of a 

single-site and multi-site streamflow calibration in a watershed proves the 

inability of rigorous parameter optimization to eliminate inaccuracy from 

simulated AET output, although some improvements might be possible.  

2. Inaccurate PET in the model, due to the uncertainties in energy related weather 

inputs, significantly affects AET and streamflow even if the model is forced with 

the best available precipitation data and has relatively less parameter equifinality. 

This finding sheds light on an often disregarded aspect, that is, energy balance is 

as crucial as ensuring realistic water balance to achieve accurate prediction from a 

hydrologic model.  

3. In the absence of detailed geo-spatial/process representation, results suggest the 

likelihood of a pseudo-accurate model that invariably shows high streamflow 

prediction skills despite having severely erroneous spatio-temporal dynamics of 

AET.  

4. The new SWAT configuration, developed to allow direct ingestion of MODIS 

PET at each HRU (hereafter, SWAT-PET), shows increased accuracy in the 

simulation of root zone soil moisture, AET and streamflow. As an additional 

reference, a “physically realistic” SWAT setup is created incorporating high 
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resolution DEM and soil texture, detailed land use and crop-specific agricultural 

operations, better runoff estimation method, as well as a multi-objective 

calibration protocol with both streamflow and soil moisture. MODIS and SWAT-

PET are cross-validated against this reference model, showing noticeably good 

agreements in AET for both cases. Where such a reference model cannot be 

created due to unavailable data, temporal variability of AET from the SWAT-PET 

model is found to have detected specific drought and wet periods as reported in 

the national database.        

An alternative that could have been considered is to use remotely sensed AET instead 

of PET. However, that approach would be questionable if AET in the particular 

hydrologic model is not designated as a state variable. Since both PET and AET in 

MODIS have the exact same representation of LAI/FPAR in their respective retrieval 

algorithms (only difference is how the wetness condition is approximated), the PET 

estimate is an equally capable surrogate as AET for conveying actual vegetation 

effects into a hydrologic model. Thus, spatially distributed direct ingestion of MODIS 

PET is the least-ambiguous, universally-applicable solution as it essentially means 

using a remotely sensed energy and vegetation constraint while allowing the model to 

apply its built-in SMA algorithm for AET simulation. Such data-model fusion is quite 

effective because the semi-empirical approximations used in the current generation 

land surface/ hydrologic models (e.g., SWAT, VIC) to estimate PET/AET are quite 

similar to those used in the remote sensing algorithms.   

With the availability of real-time remotely sensed PET in near future, the proposed 

approach would help increasing the accuracy of hydrologic forecasting. Pertinent to 

the usefulness of the proposed approach for data-poor regions of the globe, a 

noteworthy factor is that SWAT-PET produces improved results despite having 

static/lumped land classification (e.g. NLCD) with no other exquisite geo-spatial 

attributes (e.g. finer resolution DEM, soil or the best quality solar radiation, humidity, 

wind speed data). This has significant implications even for the data-rich regions 

where modeling is often done using coarse geo-spatial inputs trading-off the 

prediction accuracy with available computational resource.  
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CHAPTER 5. SYNTHESIS 

This dissertation resonates Klemes (1986) who wrote: “For a good mathematical 

model it is not enough to work well. It must work well for the right reasons. It must 

reflect, even if only in a simplified form, the essential features of the physical 

prototype”. Because of its regulatory role on how closely a hydrologic model would 

reflect physical processes, Soil Moisture Accounting (SMA) needs considerable 

attention. Against all the circumstantial uncertainties associated with hydrologic 

modeling, a sound physically consistent SMA would supposedly enable better 

prediction. 

5.1 Parameter Uncertainty 

Traditional practice is to perform parameter calibration that supposedly encounters 

“all forms of uncertainty” in a model and provides “acceptable” outputs. However, 

several parameter combinations are possible for the same model that can produce 

equally reasonable results (equifinality). Not to mention, simulation of surface and 

sub-surface fluxes in a hydrologic model is strongly affected by the choice of 

objective variables used in calibration and the resultant parameter values adopted 

from therein. Therefore, the traditional approach of model calibration using observed 

streamflow data only at discrete locations might produce a model where several 

components of the watershed's hydrologic system remain virtually uncalibrated, 

consequently leading towards imprecise SMA and inaccurate predictions. The 

proposed approach of using remotely sensed surface moisture estimates in sub-

basin/HRU level together with observed streamflow data at the watershed's outlet for 

model calibration could not noticeably effect streamflow and deeper layer moisture 

content. An extension of this approach to apply root zone soil moisture estimates 

from limited field sensor data showed considerable improvement of simulation for 

those cases. Difference in relative sensitivity of parameters and reduced extent of 
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uncertainty are also evident from the proposed method, especially for parameters 

related to the subsurface hydrologic processes. 

5.2 Process Uncertainty 

The process of rainfall-runoff partitioning in the continuous simulation structure of 

hydrologic models directly influences estimation of root zone soil moisture and vice 

versa. Effectively relating actual state of soil wetness condition with the infiltration 

mechanism can potentially increase the accuracy of SMA. From this perspective, a 

time-dependent, SMA based Curve Number method (SMA_CN) is incorporated 

within the existing structure of the Soil and Water Assessment Tool (SWAT). The 

main argument here is that CN method, though formulated for event-based 

cumulative rainfall-runoff simulation, should be modified for a continuous model 

such that it is valid not only at the end of a storm but also at any instant during the 

storm. At the same time, the fraction of rainfall to be converted into runoff should be 

directly proportional to the existing moisture store level. Based on daily simulation 

for a past period, rising and falling limbs of streamflow hydrographs simulated using 

the SMA_CN method tend to match with those of the observed data, thereby 

validating that the newly configured SMA-based SWAT model can more accurately 

capture watershed behavior in response to rainfall dynamics. The SMA-based model 

is also found to produce soil moisture that is closer to observations compared to the 

soil moisture estimates from the original model. These attributes have important 

implications for sub-daily hydrologic forecasting. Improved runoff mechanism such 

as SMA_CN can still be influenced by the uncertainties in other hydrologic processes. 

Hence, re-conceptualizing model physics is not the panacea; it can only address part 

of a bigger problem.   
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5.3 Input Uncertainty 

While better parameterization or model physics can enable a relatively accurate state 

of water balance, energy balance in a hydrologic model is often disregarded even 

though it has considerable influence on SMA via evapotranspiration. Precipitation 

input is the “supply of water” from atmosphere to the land surface, whereas, potential 

evapotranspiration (PET) is an index of “available energy” required by the model to 

drive the water back to the atmosphere. Inaccuracy in calculated PET induced from 

relevant weather inputs propagates into the simulation of actual evapotranspiration 

(AET) and other hydrologic processes. Moreover, lack of precision in capturing geo-

spatial heterogeneity (e.g. topography, land use, soil texture, vegetation, 

anthropogenic management practices) also have serious implications. Despite using 

more reliable precipitation input which typically shows enhanced model performance, 

the above-indicated factors can persistently induce wrong spatio-temporal dynamics 

in the simulated AET (and hence, SMA). Some of this issues are rather practical than 

scientific, hence, these may not be avoided. In such context, spatially distributed 

direct ingestion of remotely sensed PET is found to provide a holistic solution. While 

the proposed approach is evaluated for a past period, the main motivation here is to 

serve the purpose of hydrologic forecasting once near real-time PET estimates 

become available. 

5.4 Future Work 

Although results from this dissertation are promising, application of the proposed 

approaches to address more science-based and practice-oriented questions would 

establish their functionality. Fully distributed spatial calibration of a large scale high 

resolution model using remotely sensed actual evapotranspiration would justify the 

use of multi-objective, intensive calibration protocol in an operational flood 

prediction system. Direct ingestion of remotely sensed potential evapotranspiration to 
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see the relative change in wetland hydrologic responses and associated effects on fill-

spill volume could be another avenue to explore. Benefits of using the SMA-based 

CN method in near real-time 3 or 6-hourly flood forecasting also needs thorough 

evaluation. The enhanced prediction skills and reduced uncertainty of the SWAT 

model as shown in this dissertation can also contribute in studies related to sediment 

and nutrient transport, crop yield, as well as climate and land use impact assessments.  
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APPENDIX A 

Derivation of the time-dependent SMA-based CN equation 

𝑉 = 𝑉0 +
𝑃(𝑆 + 𝐼𝑎)− 𝐼𝑎

2

𝑃 −  𝐼𝑎 + 𝑆
 

⟹ 𝑃(𝑆 + 𝐼𝑎) − (𝑉 −  𝑉0)𝑃 = (𝑉 −  𝑉0)(𝑆 − 𝐼𝑎) +  𝐼𝑎
2 

⟹ 𝑃 =
(𝑉 −  𝑉0)(𝑆 − 𝐼𝑎)+ 𝐼𝑎

2

𝑆 +  𝐼𝑎 − 𝑉 +  𝑉0
 … … … . [𝐴. 1] 

Equation [A.1] can be expanded as follows: 

𝑃 − 𝐼𝑎 =
(𝑉 −  𝑉0)(𝑆 − 𝐼𝑎)+ 𝐼𝑎

2 − 𝐼𝑎(𝑆 +  𝐼𝑎 − 𝑉 + 𝑉0)

𝑆 +  𝐼𝑎 − 𝑉 +  𝑉0
 

⟹ 𝑃 − 𝐼𝑎 =
(𝑉 −  𝑉0)(𝑆 − 𝐼𝑎) − 𝑆𝐼𝑎 + 𝑉𝐼𝑎 − 𝑉0𝐼𝑎

𝑆 +  𝐼𝑎 − 𝑉 +  𝑉0
 

⟹ 𝑃 − 𝐼𝑎 =
𝑆(𝑉 −  𝑉0) − 𝑉𝐼𝑎 + 𝑉0𝐼𝑎 − 𝑆𝐼𝑎 + 𝑉𝐼𝑎 − 𝑉0𝐼𝑎

𝑆 +  𝐼𝑎 − 𝑉 +  𝑉0
 

⟹ 𝑃 − 𝐼𝑎 =
𝑆(𝑉 −  𝑉0 − 𝐼𝑎)

𝑆 +  𝐼𝑎 − 𝑉 +  𝑉0
 … … … . [𝐴. 2] 

Again,  

𝑃 − 𝐼𝑎 + 𝑆 =
𝑆(𝑉 − 𝑉0 − 𝐼𝑎) + 𝑆(𝑆 +  𝐼𝑎 − 𝑉 +  𝑉0)

𝑆 + 𝐼𝑎 − 𝑉 +  𝑉0
 

⟹ 𝑃 − 𝐼𝑎 + 𝑆 =
𝑉𝑆 − 𝑆(𝑉0 + 𝐼𝑎) + 𝑆(𝑉0 + 𝐼𝑎) − 𝑉𝑆 + 𝑆2

𝑆 +  𝐼𝑎 − 𝑉 + 𝑉0
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⟹ 𝑃 − 𝐼𝑎 + 𝑆 =
𝑆2

𝑆 +  𝐼𝑎 − 𝑉 +  𝑉0
 … … … . [𝐴. 3] 

Similarly, 

𝑃 − 𝐼𝑎 + 2𝑆 =
𝑆2 + 𝑆(𝑆 +  𝐼𝑎 − 𝑉 +  𝑉0)

𝑆 + 𝐼𝑎 − 𝑉 +  𝑉0
  … … … . [𝐴. 4] 

Combining equation [A.2] – [A.4],  

(𝑃 − 𝐼𝑎)(𝑃 − 𝐼𝑎 + 2𝑆)

(𝑃 − 𝐼𝑎 + 𝑆)2
 =

{𝑉 − (𝑉0 + 𝐼𝑎)}(2𝑆 + 𝐼𝑎 − 𝑉 + 𝑉0)

𝑆2
 

⟹
(𝑃 − 𝐼𝑎)(𝑃 − 𝐼𝑎 + 2𝑆)

(𝑃 − 𝐼𝑎 + 𝑆)2
=

{𝑉 − (𝑉0 + 𝐼𝑎)}

𝑆
[2 −

𝑉 − (𝑉0 + 𝐼𝑎)

𝑆
] 

Since (𝑉0 + 𝐼𝑎) = 𝑉′ 

𝑑𝑉

𝑑𝑡
 =  

𝑑𝑃

𝑑𝑡
− 

𝑑𝑄

𝑑𝑡
 

⟹
𝑑𝑉

𝑑𝑡
 =  

𝑑𝑃

𝑑𝑡
[1 −

𝑉 − 𝑉′

𝑆
[2 −  

𝑉 − 𝑉′

𝑆
]] 

⟹
𝑑𝑉

𝑑𝑡
 =  

𝑑𝑃

𝑑𝑡
[1 − 2 [

𝑉 − 𝑉′

𝑆
] + [

𝑉 − 𝑉′

𝑆
]

2

] 

⟹
𝑑𝑉

𝑑𝑡
 =  

𝑑𝑃

𝑑𝑡
[1 − [

𝑉 − 𝑉′

𝑆
]]

2

 

⟹
𝑑𝑉

[
𝑉 − 𝑆 − 𝑉′

𝑆 ]
2  =  

𝑑𝑃

𝑑𝑡
𝑑𝑡 … … … . [𝐴. 5] 
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Now, producing limit integral of equation [A.5] after rearrangement, 

∫
𝑑𝑉

[𝑉 − 𝑆 − 𝑉′]2
 =  ∫

𝑑𝑃

𝑆2

𝑃

0

𝑉

𝑉0

 

⟹
1

𝑆 + 𝑉′ − 𝑉
−

1

𝑆 + 𝑉′ − 𝑉0
 =  

𝑃

𝑆2
 

which refers to equation (3.7) in section 3.3. 
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APPENDIX B: Table B1. Calibrated parameter values  

a Parameter definitions and their initial ranges are provided in Table 3. All calibrations are performed using the same initial range; b Modeling experiment 1; 

cModeling experiment 2; d Modeling experiment 3  

Parameter a 

 Best estimate 
Upper Wabash Cedar Creek 

Single-site calibration/ 

CFSR weather b 
Multi-site calibration/ 

CFSR weather b, c 
Multi-site calibration/ 

WGN weather c 
SWAT d SWAT-Process d 

v_ALPHA_BF 0.85 0.68 0.20 0.95 0.83 

v_CANMX 8.50 8.47 25.0 20.2 5.0 
v_SURLAG 2.18 7.67 5.72 0.86 18.90 

v_CH_K2 33.06 30.72 64.05 85.37 81.95 

v_CH_N2 0.086 0.068 0.087 0.056 0.039 

r_CN2 0.19 -0.18 0.13 0.09 -0.09 

v_EPCO 1.0 0.70 0.42 0.38 0.50 

v_ESCO 0.23 0.01 1.0 0.95 0.20 

a_GW_DELAY 0.45 -10.0 4.80 -2.55 -0.35 
v_GW_REVAP 0.11 0.01 0.06 0.01 0.07 
v_GWQMN 4643.0 0.01 4162.0 723.0 3803.0 

v_REVAPMN 247.0 244.0 81.0 450.0 9.0 

r_SOL_K -0.14 0.15 -0.04 -0.15 -0.1 

r_SOL_AWC 0.12 0.15 0.08 0.14 -0.07 

v_SFTMP c 1.37 4.13 4.43 2.55 1.54 

v_SMFMN c 0.62 6.61 10.0 5.04 8.0 

v_SMFMX c 4.05 0.85 4.40 8.32 5.87 

v_SMTMP c 1.29 0.22 -2.0 -0.86 1.52 

v_TIMP c 0.42 0.54 0.38 0.47 0.48 
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APPENDIX B: Table B2. Calibrated parameter values  

a Parameter definitions and their initial ranges are provided in Table 3. All calibrations are performed 

using the same initial range; b Modeling experiment 1; c Modeling experiment 2; d Modeling 

experiment 3  

 

 

Parameter a 
Cedar Creek Saline River 

SWAT b SWAT-PET  SWAT  SWAT-PET  

v_ALPHA_BF 0.95 0.98 0.82 0.75 

v_CANMX 20.2 15.5 18.8 15.75 

v_SURLAG 0.86 0.80 0.41 0.77 

v_CH_K2 85.37 98.0 58.5 78.6 

v_CH_N2 0.056 0.035 0.052 0.05 

r_CN2 0.09 0.12 0.24 0.19 

v_EPCO 0.38 0.26 0.89 0.40 

v_ESCO 0.95 0.63 0.72 0.07 

a_GW_DELAY -2.55 -6.12 0.81 -8.75 

v_GW_REVAP 0.01 0.08 0.02 0.07 

v_GWQMN 723.0 2643.0 4118.0 825.0 

v_REVAPMN 450.0 182.0 397.0 468.0 

r_SOL_K -0.15 0.12 -0.05 -0.13 

r_SOL_AWC 0.14 -0.15 0.5 0.13 

v_SFTMP c 2.55 1.90   

v_SMFMN c 5.04 8.10   

v_SMFMX c 8.32 5.40   

v_SMTMP c -0.86 1.77   

v_TIMP c 0.47 0.28   
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