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Data security in sensitive remote services
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Send confidential data 
to a remote service

Guarantee that data 
cannot be collected!

Navigation DNA testingMessaging

Machine 
learning

Intrusion 
detection



SGX is designed to secure remote data
Program
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enclave

Enclave
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SGX secures remote data from clouds
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Client messages 
through Signal are 
safe from Amazon

Signal uses SGX; 
Amazon cannot access 

Signal’s service



SGX does not secure data from untrusted code
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Hacker exploits bugs to 
collect client messages Clients are 

unaware of theft!

Signal stealthily 
collects client messages



Software fault isolation restricts untrusted code
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Create a brick wall 
around untrusted code

Allow outside access only 
through a controlled gate



Native Client SFI requires multiple processes
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Does not implement 
in-process isolation

Cannot serve multiple 
clients in a process



Multiple processes consume a lot of memory
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Lack efficient and secure 
inter-process memory sharing

Must replicate common 
data in each process

Shared
database



High memory use reduces enclave performance
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SGX memory is only 256MB

Memory usage over 256 MB 
incurs expensive page faults
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Key-value store with 8 clients
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Native Client (NaCl) SFI can be 16 
times slower than native SGX!



Chancel implements efficient multi-client SFI
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Multiple clients are 
served by a process

Clients securely 
access shared memory



Chancel’s design
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Chancel 
runtime

Code

Shared 
data

1. Automated program
instrumentation

Offline stage Online stages

Chancel 
compiler

2. Enclave creation
and program loading

3. Secure client 
bootstrapping

4. Multi-client SFI 
enforcement

Code

Shared 
data

RO RW



1. Automated program instrumentation
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Compiler reserves 
registers R14 and R15

Registers = {RAX, … , R12, R13}

Compiler bounds writes relative to R14 
and reads relative to R14 or R15

Before: 
write at X

After: 
if X < R14 + thread size, 

write at X



2. Enclave creation and program loading 
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Thanks to validation, 
Chancel even supports 

proprietary code!

Create enclave installed with 
Chancel’s trusted runtime

Chancel 
runtime

Code

Shared 
data

Validate instrumentation 
using a binary disassembler



3. Secure client bootstrapping
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Clients attest Chancel and transmit 
their data through encrypted channels

Store each client’s data in a 
different enclave thread

Chancel 
runtime

Code

Shared 
data



4. Multi-client SFI enforcement
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Overhead over native SGX
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Ran all applications in Nbench, a popular SGX CPU and memory benchmark

Maximum overhead 
is 24.9 %

Minimum 
overhead is 0.6 %

Despite high security guarantees, 
Chancel’s overhead is modest!



Benefit over Native Client
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100,000 “GET” requests to ShieldStore key-value store from 8 clients

Chancel’s overhead is 
1.1 – 8.4% over native SGX

Across diverse applications, Chancel outperforms 
multi-process Native Client (NaCl) by up to 21 times!



Summary and conclusion
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SGX does not secure remote 
data from untrusted code

Multi-process SFI is slow in 
multi-client enclaves

Chancel’s SFI is up to 21 times 
faster than multi-process SFI

RO RW

Thank you!


