
Chancel: efficient multi-client 
isolation under adversarial programs

Adil Ahmad, Juhee Kim, Jaebaek Seo, 
Insik Shin, Pedro Fonseca, and Byoungyoung Lee



Data security in sensitive remote services

2

Send confidential data 
to a remote service

Guarantee that data 
cannot be collected!

Navigation DNA testingMessaging

Machine 
learning

Intrusion 
detection



SGX is designed to secure remote data
Program

Non-
enclave

Enclave

3

DRAM

Encrypted

OSSoftware 
access

Physical 
access



SGX secures remote data from clouds

4

Client messages 
through Signal are 
safe from Amazon

Signal uses SGX; 
Amazon cannot access 

Signal’s service



SGX does not secure data from untrusted code

5

Hacker exploits bugs to 
collect client messages Clients are 

unaware of theft!

Signal stealthily 
collects client messages



Software fault isolation restricts untrusted code

6

Create a brick wall 
around untrusted code

Allow outside access only 
through a controlled gate



Native Client SFI requires multiple processes

7

Does not implement 
in-process isolation

Cannot serve multiple 
clients in a process



Multiple processes consume a lot of memory

8

Lack efficient and secure 
inter-process memory sharing

Must replicate common 
data in each process

Shared
database



High memory use reduces enclave performance

9

SGX memory is only 256MB

Memory usage over 256 MB 
incurs expensive page faults

1.0E+04

1.0E+05

1.0E+06

1.0E+07

32 64

Native SGX NaCl

T
im

e 
(m

s)

1.0E+05

1.0E+06

1.0E+07

1.0E+08

32 64
Pa

ge
 fa

ul
ts

KV store size (MB)

Key-value store with 8 clients

KV store size (MB)

Native Client (NaCl) SFI can be 16 
times slower than native SGX!



Chancel implements efficient multi-client SFI

10

Multiple clients are 
served by a process

Clients securely 
access shared memory



Chancel’s design

11

Chancel 
runtime

Code

Shared 
data

1. Automated program
instrumentation

Offline stage Online stages

Chancel 
compiler

2. Enclave creation
and program loading

3. Secure client 
bootstrapping

4. Multi-client SFI 
enforcement

Code

Shared 
data

RO RW



1. Automated program instrumentation

12

Compiler reserves 
registers R14 and R15

Registers = {RAX, … , R12, R13}

Compiler bounds writes relative to R14 
and reads relative to R14 or R15

Before: 
write at X

After: 
if X < R14 + thread size, 

write at X



2. Enclave creation and program loading 

13

Thanks to validation, 
Chancel even supports 

proprietary code!

Create enclave installed with 
Chancel’s trusted runtime

Chancel 
runtime

Code

Shared 
data

Validate instrumentation 
using a binary disassembler



3. Secure client bootstrapping

14

Clients attest Chancel and transmit 
their data through encrypted channels

Store each client’s data in a 
different enclave thread

Chancel 
runtime

Code

Shared 
data



4. Multi-client SFI enforcement

15

Chancel 
runtime

Code

Shared 
data

R15
RO

R14
RW

Chancel 
runtime

Code

Shared 
data

R15
RO

R14
RW

When runs

When runs



Overhead over native SGX

16

0
5

10
15
20
25
30

Pe
rf

or
m

an
ce

 r
ed

uc
ti

on
 (%

)

Ran all applications in Nbench, a popular SGX CPU and memory benchmark

Maximum overhead 
is 24.9 %

Minimum 
overhead is 0.6 %

Despite high security guarantees, 
Chancel’s overhead is modest!



Benefit over Native Client

17

1.0E+04

1.0E+05

1.0E+06

1.0E+07

16 64 256 384

Native SGX NaCl Chancel

Ex
ec

ut
io

n 
ti

m
e 

(m
s)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

16 64 256 384

Pa
ge

 fa
ul

ts

Key-value store size (MB)

100,000 “GET” requests to ShieldStore key-value store from 8 clients

Chancel’s overhead is 
1.1 – 8.4% over native SGX

Across diverse applications, Chancel outperforms 
multi-process Native Client (NaCl) by up to 21 times!



Summary and conclusion

18

SGX does not secure remote 
data from untrusted code

Multi-process SFI is slow in 
multi-client enclaves

Chancel’s SFI is up to 21 times 
faster than multi-process SFI

RO RW

Thank you!


