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Abstract—In this article, we consider a system consist-
ing of multiple interdependent assets, and a set of defend-
ers, each responsible for securing a subset of the assets
against an attacker. The interdependencies between the
assets are captured by an attack graph, where an edge
from one asset to another indicates that if the former asset
is compromised, an attack can be launched on the latter
asset. Each edge has an associated probability of success-
ful attack, which can be reduced via security investments
by the defenders. In such scenarios, we investigate the
security investments that arise under certain features of
human decision making that have been identified in behav-
ioral economics. In particular, humans have been shown
to perceive probabilities in a nonlinear manner, typically
overweighting low probabilities and underweighting high
probabilities. We show that suboptimal investments can
arise under such weighting in certain network topologies.
We also show that pure strategy Nash equilibria exist in
settings with multiple (behavioral) defenders, and study the
inefficiency of the equilibrium investments by behavioral
defenders compared to a centralized socially optimal so-
lution.

Index Terms—Cyber-physical systems (CPS), game the-
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theory.

Manuscript received January 12, 2020; revised March 10, 2020; ac-
cepted March 24, 2020. Date of publication April 16, 2020; date of
current version December 16, 2020. This paper was presented in part
at the Proceedings of the American Control Conference 2019. Recom-
mended by Associate Editor L. Bushnell. This work was supported by
the National Science Foundation under Grant CNS-1718637. (Corre-
sponding author: Shreyas Sundaram.)

Mustafa Abdallah, Saurabh Bagchi, and Shreyas Sundaram are with
the School of Electrical and Computer Engineering at Purdue Uni-
versity, West Lafayette, IN 47907 USA (e-mail: abdalla0@purdue.edu;
sbagchi@purdue.edu; sundara2@purdue.edu).

Parinaz Naghizadeh is with the Integrated Systems Engineering
Department and the Electrical and Computer Engineering Depart-
ment, Ohio State University, Columbus, OH 43210 USA (e-mail:
naghizadeh.1@osu.edu).

Ashish R. Hota is with the Department of Electrical Engineering,
Indian Institute of Technology (IIT) Kharagpur, Kharagpur 721302, India
(e-mail: ashish1789hota@gmail.com).

Timothy Cason is with the Krannert School of Management at Purdue
University, West Lafayette, IN 47907 USA (e-mail: cason@purdue.edu).

Digital Object Identifier 10.1109/TCNS.2020.2988007

I. INTRODUCTION

MODERN cyber-physical systems (CPS) are increas-
ingly facing attacks by sophisticated adversaries. These

attackers are able to identify the susceptibility of different
targets in the system and strategically allocate their efforts to
compromise the security of the network. In response to such
intelligent adversaries, the operators (or defenders) of these
systems also need to allocate their often limited security budget
across many assets to best mitigate their vulnerabilities. This
has led to significant research in understanding how to better
secure these systems, with game-theoretical models receiv-
ing increasing attention due to their ability to systematically
capture the interactions of strategic attackers and defenders
[1]–[8].

In the context of large-scale interdependent systems, adver-
saries often use stepping-stone attacks to exploit vulnerabilities
within the network in order to compromise a particular target
[9]. Such threats can be captured via the notion of attack graphs
that represent all possible paths that attackers may have to
reach their targets within the CPS [10]. The defenders in such
systems are each responsible for defending some subset of the
assets [2], [11] with their limited resources. These settings have
been explored under various assumptions on the defenders and
attackers [11]–[13].

In much of the existing literature, the defenders and attackers
are modeled as fully rational decision makers who choose
their actions to maximize their expected utilities. However, a
large body of work in behavioral economics has shown that
humans consistently deviate from such classical models of
decision making [14]–[16]. A seminal model capturing such
deviations is prospect theory (introduced by Kahneman and
Tversky in [14]), which shows that humans perceive gains,
losses, and probabilities in a skewed (nonlinear) manner,
typically overweighting low probabilities and underweighting
high probabilities. Recent papers have studied the implications
of prospect theoretic preferences in the context of CPS security
and robustness [17], [18]; energy consumption decisions in the
smart grid [19]; pricing in communication networks [20]; and
network interdiction games [21].

In this article, we consider the scenario where each (human)
defender misperceives the probabilities of successful attack in
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the attack graph.1 We characterize the impacts of such misper-
ceptions on the security investments made by each defender. In
contrast with prior work on prospect theoretic preferences in the
context of CPS security [17], which assumed that each defender
is only responsible for the security of a single node, we consider
a more general case where each defender is responsible for a
subnetwork (i.e., set of assets). Furthermore, each defender can
also invest in protecting the assets of other defenders, which may
be beneficial in interdependent CPS where the attacker exploits
paths through the network to reach certain target nodes.

Specifically, we build upon the recent work [13] where the
authors studied a game-theoretic formulation involving attack
graph models of interdependent systems and multiple defenders.
The authors showed how to compute the optimal defense strate-
gies for each defender using a convex optimization problem.
However, they did not investigate the characteristics of optimal
investments and the impacts of behavioral biases of the defend-
ers, which are the focus of the present work.

We introduce the attack-graph-based security game frame-
work in Section II, followed by the behavioral security game
setting in Section III. Under appropriate assumptions on the
probabilities of successful attack on each edge, we establish
the convexity of the perceived expected cost of each defender
and prove the existence of a pure Nash equilibrium (PNE) in this
class of games.

We primarily investigate the security investments when users
with such behavioral biases act in isolation (see Section IV) as
well as in a game-theoretic setting (see Section V). As a result,
we find certain characteristics of the security investments under
behavioral decision making that could not have been predicted
under classical notions of decision making (i.e., expected cost
minimization) considered in prior work [13]. In particular, we
show that nonlinear probability weighting can cause defenders to
invest in a manner that increases the vulnerability of their assets
to attack. Furthermore, we illustrate the impacts of having a mix
of defenders (with heterogeneous levels of probability weighting
bias) in the system, and show that the presence of defenders
with skewed perceptions of probability can in fact benefit the
nonbehavioral defenders in the system.

We then propose a new metric, price of behavioral anarchy
(PoBA), to capture the inefficiency of the equilibrium invest-
ments made by behavioral decision makers compared to a cen-
tralized (nonbehavioral) socially optimal solution, and provide
tight bounds for the PoBA. We illustrate the applicability of
the proposed framework in a case study involving a distributed
energy resource failure scenario, DER.1, identified by the U.S.
National Electric Sector Cybersecurity Organization Resource
(NESCOR) [27] in Section VI.

This article extends the conference version of this study [28]
in the following manner.

1While the existing literature on behavioral aspects of information secu-
rity, such as [22]–[24], rely on human subject experiments and more abstract
decision-making models, we consider the more concrete framework of attack
graphs in our analysis. This framework allows for a mapping from the existing
vulnerabilities to potential attack scenarios. Specifically, one model that is
captured by our formulation is to define vulnerabilities by CVE-IDs [25],
and assign attack probabilities using the common vulnerability scoring system
(CVSS) [26].

Fig. 1. Overview of the interdependent security game framework. This
CPS consists of three interdependent defenders. An attacker tries to
compromise critical assets starting from vs.

1) We rigorously prove the uniqueness of optimal investment
decisions for behavioral defenders, and show that behav-
ioral security games can have multiple PNEs in general.

2) We quantify the inefficiency of the Nash equilibria by
defining the notion of the PoBA, and provide (tight)
bounds on it.

3) We illustrate the theoretical findings via a case study.

II. SECURITY GAME FRAMEWORK

In this section, we describe our general security game frame-
work, including the attack graph and the characteristics of the
attacker and the defenders. An overview of our model is shown
in Fig. 1.

A. Attack Graph

We represent the assets in a CPS as nodes of a directed
graph G = (V, E) where each node vi ∈ V represents an asset.
A directed edge (vi, vj) ∈ E means that if vi is successfully
attacked, it can be used to launch an attack on vj .

The graph contains a designated source node vs (as shown in
Fig. 1), which is used by an attacker to begin her attack on the
network. Note that vs is not a part of the network under defense;
rather it is an entry point that is used by an attacker to begin her
attack on the network.2

For a general asset vt ∈ V , we define Pt to be the set of
directed paths from the source vs to vt on the graph, where a path
P ∈ Pt is a collection of edges{(vs, v1), (v1, v2), . . . , (vk, vt)}.
For instance, in Fig. 1, there are two attack paths from vs to vt.

Each edge (vi, vj) ∈ E has an associated weight p0i,j ∈ (0, 1],
which denotes the probability of successful attack on asset vj
starting from vi in the absence of any security investments.3

2If there are multiple nodes where the attacker can begin her attack, then we
can add a virtual node vs, and add edges from this virtual node to these other
nodes with attack success probability 1 without affecting our formulation.

3In practice, the CVSS [26] can be used for estimating initial probabilities
of attack (for each edge in our setting). For example, [10] takes the access
complexity submetric in the CVSS (which takes values in {low, medium, high},
representing the complexity of exploiting the vulnerability) and maps it to a
probability of exploit (attack) success. The more complex it is to exploit a
vulnerability, the less likely an attacker will succeed. Similarly, [29] provides
methods and tables to estimate the probability of successful attack from CVSS
metrics.
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We now describe the defender and adversary models in the
following two subsections.

B. Strategic Defenders

LetD be the set of all defenders of the network. Each defender
Dk ∈ D is responsible for defending a set Vk ⊆ V \ {vs} of
assets. For each compromised asset vm ∈ Vk, defender Dk will
incur a financial loss Lm ∈ [0,∞). For instance, in the example
shown in Fig. 1, there are three defenders with assets shown
in different shades, and the loss values of specific nodes are
indicated.

To reduce the attack success probabilities on edges intercon-
necting assets inside the network, a defender can allocate secu-
rity resources on these edges.4 We assume that each defenderDk

has a security budget Bk ∈ [0,∞). Let xk
i,j denote the security

investment of the defender Dk on the edge (vi, vj). We define

Xk := {xk ∈ R|E|
≥0|1Txk ≤ Bk} (1)

thus Xk is the set of feasible investments for the defender Dk

and it consists of all possible non-negative investments on the
edges of the graph such that the sum of these investments is upper
bounded by Bk. We denote any particular vector of investments
by the defender Dk as xk ∈ Xk. Each entry of xk denotes the
investment on an edge.

Let x = [x1, x2, . . . , x|D|] be a joint defense strategy of all

defenders, with xk ∈ Xk for the defender Dk; thus, x ∈ R|D||E|
≥0 .

Under a joint defense strategy x, the total investment on edge
(vi, vj) isxi,j �

∑
Dk∈D xk

i,j . Let pi,j : R≥0 → [0, 1] be a func-
tion mapping the total investment xi,j to an attack success
probability, with pi,j(0) = p0i,j . In particular, pi,j(xi,j) is the
conditional probability that an attack launched from vi to vj
succeeds, given that vi has been successfully compromised.

C. Adversary Model and Defender Cost Function

In networked CPS, there are a variety of adversaries with
different capabilities that are simultaneously trying to compro-
mise different assets. We consider an attacker model that uses
stepping-stone attacks [9]. In particular, for each asset in the
network, we consider an attacker that starts at the entry node
vs and attempts to compromise a sequence of nodes (moving
along the edges of the network) until it reaches its target asset.
If the attack at any intermediate node is not successful, the
attacker is detected and removed from the network. Note that
our formulation allows each asset to be targeted by a different
attacker, potentially starting from different points in the network.

In other words, after the defense investments have been made,
then for each asset in the network, the attacker chooses the path
with the highest probability of successful attack for that asset
(such a path is shown in red in Fig. 1). Such attack models
(where the attacker chooses one path to her target asset) have
previously been considered in the literature (e.g., [30] and[31]).

To capture this, for a given set of security investments by
the defenders, we define the vulnerability of a node vm ∈ V

4Note that vs does not have any incoming edges, and hence, it cannot be
defended.

as maxP∈Pm

∏
(vi,vj)∈P pi,j(xi,j), where Pm is the set of all

directed paths from the source vs to asset vm; note that for any
given path P ∈ Pm, the probability of the attacker successfully
compromising vm by taking the path P is

∏
(vi,vj)∈P pi,j(xi,j),

where pi,j(xi,j) is the conditional probability defined at the end
of Section II-B. In other words, the vulnerability of each asset
is defined as the maximum of the attack probabilities among all
available paths to that asset.

The goal of each defender Dk is to choose her investment
xk ∈ Xk in order to minimize the expected cost defined as

Ĉk(xk,x−k) =
∑

vm∈Vk

Lm

⎛
⎝ max

P∈Pm

∏
(vi,vj)∈P

pi,j(xi,j)

⎞
⎠ (2)

subject to xk ∈ Xk, and where x−k is the vector of investments
by defenders other than Dk. Thus, each defender chooses her
investments in order to minimize the vulnerability of her assets,
i.e., the highest probability of attack among all available paths
to each of her assets.5

In the next section, we review certain classes of probabil-
ity weighting functions that capture human misperception of
probabilities. Subsequently, we introduce such functions into
the aforementioned security game formulation, and study their
impact on the investment decisions and equilibria.

III. NONLINEAR PROBABILITY WEIGHTING AND THE

BEHAVIORAL SECURITY GAME

A. Nonlinear Probability Weighting

The behavioral economics and psychology literature has
shown that humans consistently misperceive probabilities by
overweighting low probabilities and underweighting high prob-
abilities [14], [32]. More specifically, humans perceive a “true”
probability p ∈ [0, 1] as w(p) ∈ [0, 1], where w(·) is a probabil-
ity weighting function. A commonly studied probability weight-
ing function was proposed by Prelec in [32], and is given by

w(p) = exp [−(− log(p))α ] , p ∈ [0, 1] (3)

where α ∈ (0, 1] is a parameter that controls the extent of
overweighting and underweighting. When α = 1, we have
w(p) = p for all p ∈ [0, 1], which corresponds to the situation
where probabilities are perceived correctly. Smaller values of α
lead to a greater amount of overweighting and underweighting,
as illustrated in Fig. 2. Next, we incorporate this probability
weighting function into the security game defined in the last
section and define the behavioral security game, which is the
focus of this article.

B. Behavioral Security Game

Recall that each defender seeks to protect a set of assets,
and the probability of each asset being successfully attacked
is determined by the corresponding probabilities on the edges
that constitute the paths from the source node to that asset. This

5This also models settings where the specific path taken by the attacker or
the attack plan is not known to the defender a priori, and the defender seeks to
make the most vulnerable path to each of her assets as secure as possible.
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Fig. 2. Prelec probability weighting function (3) that transforms true
probabilities p into perceived probabilities w(p). The parameter α con-
trols the extent of overweighting and underweighting.

motivates a broad class of games that incorporate probability
weighting, as defined in the following.

Definition 1: We define a behavioral security game as a
game between different defenders in an interdependent network,
where each defender misperceives the attack probability on each
edge according to the probability weighting function defined in
(3). Specifically, the perceived attack probability by a defender
Dk on an edge (vi, vj) is given by

wk(pi,j(xi,j)) = exp [−(− log(pi,j(xi,j)))
αk ] (4)

where pi,j(xi,j) ∈ [0, 1] and αk ∈ (0, 1].
Remark 1: The subscript k in αk and wk(·) allows each

defender in the behavioral security game to have a different level
of misperception. We will drop the subscript k when it is clear
from the context. �

Incorporating this into the cost function (2), each defender
Dk seeks to minimize her perceived expected cost

Ck(xk,x−k)=
∑

vm∈Vk

Lm

⎛
⎝max
P∈Pm

∏
(vi,vj)∈P

wk (pi,j(xi,j))

⎞
⎠.

(5)
Thus, our formulation complements the existing decision-
making models based on vulnerability and cost by incorporating
certain behavioral biases in the cost function.

Remark 2: In addition to misperceptions of probabilities,
empirical evidence shows that humans perceive costs differently
from their true values. In particular, humans compare uncertain
outcomes with a reference utility or cost, exhibit risk aversion in
gains and risk seeking behavior in losses, and overweight losses
compared to gains (loss aversion). A richer behavioral model,
referred to as cumulative prospect theory [10], incorporates all
these aspects in its cost function. However, in the setting of this
article, this richer model does not significantly change the cost
functions of the defenders. Specifically, the attack on an asset
is either successful or it is not. If the reference cost is zero for
each asset (i.e., the default state where the asset is not attacked
successfully), then successful attack constitutes a loss, and the

index of loss aversion only scales the constant Lm by a scalar
without changing the dependence of the cost function on the
investments. �

C. Assumptions on the Probabilities of Successful Attack

The shape of the probability weighting function (3) presents
several challenges for analysis. In order to maintain analytical
tractability, we make the following assumption on the probabil-
ities of successful attack on each edge.

Assumption 1: For every edge (vi, vj), the probability of
successful attack pi,j(xi,j) is log-convex,6 strictly decreasing,
and twice continuously differentiable for xi,j ∈ [0,∞).

One particular function satisfying the aforementioned condi-
tions is

pi,j(xi,j) = p0i,j exp(−xi,j). (6)

Such probability functions fall within the class commonly con-
sidered in security economics (e.g., [34]), and we will specialize
our analysis to this class for certain results in the article. For such
functions, the (true) attack success probability of any given path
P from the source to a target vt is given by∏

(vm,vn)∈P
pm,n(xm,n)

=

⎛
⎝ ∏

(vm,vn)∈P
p0m,n

⎞
⎠ exp

⎛
⎝−

∑
(vm,vn)∈P

xm,n

⎞
⎠ . (7)

Thus, the probability of successful attack on a given path de-
creases exponentially with the sum of the investments on all
edges on that path by all defenders.

Remark 3: The paper [13] studied this same class of security
games for the case of nonbehavioral defenders (i.e., with αk =
1∀Dk ∈ D). For that case, with probability functions given by
(6), [13] showed that the optimal investments for each defender
can be found by solving a convex optimization problem. Suitable
modifications of the same approach to account for the parameter
αk will also work for determining the optimal investments by
the behavioral defenders in this article. We omit the details in
the interest of space. �

IV. PROPERTIES OF THE OPTIMAL INVESTMENT DECISIONS

BY A SINGLE DEFENDER

We start our analysis of the impact of behavioral decision
making by considering settings with only a single defender
(i.e., |D| = 1). In particular, we will establish certain properties
of the defender’s cost function (5), and subsequently, identify
properties of the defender’s optimal investment decisions under
behavioral (i.e.,α < 1) and nonbehavioral (i.e.,α = 1) decision
making. This setting will help in understanding the actions
(i.e., best responses) of each player in multidefender behavioral
security games, which we will consider in the next section. In
this section, we will refer to the defender as Dk, and drop the
vector x−k from the arguments.

6This is a common assumption in the literature. In particular, [33] shows that
log convexity of the attack probability functions is a necessary and sufficient
condition for the optimal security investment result of [34] to hold.
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A. Convexity of the Cost Function

We first establish the convexity of the defender’s cost function.
To do so, we start with the following result.

Lemma 1: For αk ∈ (0, 1) and (vi, vj) ∈ E , let h(xi,j) �
(− log(pi,j(xi,j)))

αk . Then, h(xi,j) is strictly concave in xi,j

for xi,j ∈ [0,∞) under Assumption 1. Moreover, h(xi,j) is
concave in xi,j for αk ∈ (0, 1].

Using the aforementioned result, we now establish that the
defender’s cost function (5) is convex.

Lemma 2: For all αk ∈ (0, 1] and under Assumption 1, the
cost function (5) of the defender Dk is convex in the defense
investment xk.

The proofs of Lemmas 1 and 2 are omitted in the interest of
space and can be found in the extended version of this paper
[35].

B. Uniqueness of Investments

Having established the convexity of the defender’s cost func-
tion (5), we now observe the difference in the investment de-
cisions made by behavioral and nonbehavioral defenders. In
particular, we first show that the optimal investment decisions by
a behavioral defender are unique, and then, contrast that with the
(generally) nonunique optimal investments for nonbehavioral
defenders.

Proposition 1: Consider an attack graph G = (V, E) and
a defender Dk. Assume the probability of successful attack on
each edge satisfies Assumption 1 and αk ∈ (0, 1) in the proba-
bility weighting function (4). Then, the optimal investments by
the defender Dk to minimize (5) are unique.

Proof: Consider the defender’s optimization problem for
the cost function in (5). Denote a path (after investments) to be
a “critical path” of an asset if it has the highest probability of
successful attack from the source to that asset (note that multiple
paths can be critical). The “value” of a path is its probability of
successful attack (product of perceived probabilities on each
edge in the path).

We claim that in any optimal solution x∗
k, every edge that

has a nonzero investment must belong to some critical path. Let
(va, vb) be an edge that does not belong to any critical path and
suppose by contradiction that x∗

k is an optimal solution of (5) in
which the edge (va, vb) has a nonzero investment. Now, remove
a sufficiently small nonzero investment ε from the edge (va, vb)
and spread it equally among all of the edges of the critical paths.
This reduces the total attack probability on the critical paths, and
thereby, decreases the cost in (5), which yields a contradiction.
This shows that our claim is true.

Now, suppose that the defender’s cost function Ck(xk) does
not have a unique minimizer. Then, there exist two different
minimizers x1

k and x2
k. Let Ē ⊆ E be the set of edges where

the investments are different in the two solutions. For each
asset vm ∈ Vk, let P̄m ⊆ Pm be the set of all paths from the
source to vm that pass through at least one edge in Ē. Define
x3
k = 1

2 (x
1
k + x2

k), which must also be an optimal solution of
Ck(xk) (by convexity of Ck(xk), as established in Lemma 2).
Furthermore, a component of x3

k is nonzero whenever at least
one of the corresponding components in x1

k or x2
k is nonzero. In

particular, x3
k is nonzero on each edge in Ē.

For any investment vector xk, given a path P , we use xk,P

to denote the vector of investments on edges on the path P .
For each asset vm ∈ Vk and path P ∈ Pm, denote hP (xk,P ) �∑

(vi,vj)∈P (− log(pi,j(xi,j)))
αk . By Lemma 1, each term of

the form (− log(pi,j(xi,j)))
αk is strictly concave in xi,j when

αk ∈ (0, 1). Thus, hP (xk,P ) is strictly concave in xk,P forαk ∈
(0, 1).

Then, using (4), the value of the path P is given by

fP (xk,P ) �
∏

(vi,vj)∈P
wk(pi,j(xi,j)) = exp(−hP (xk,P )).

Note that by strict concavity of hP (xk,P ) in xk,P when αk ∈
(0, 1), fP (xk,P ) is strictly convex in xk,P when αk ∈ (0, 1).

For each asset vm ∈ Vk, the value of each critical path is

gm(xk) � max
P∈Pm

fP (xk,P )

= max

(
max
P∈P̄m

fP (xk,P ), max
P∈Pm\P̄m

fP (xk,P )

)
.

Now, returning to the optimal investment vector x3
k, define

M̂ � {vm ∈ Vk| max
P∈P̄m

fP (x
3
k,P ) ≥ max

P∈Pm\P̄m

fP (x
3
k,P )}.

In other words, M̂ is the set of assets for which there is a critical
path (under the investment vector x3

k) that passes through the set
Ē (where the optimal investments x1

k and x2
k differ). Now there

are two cases. The first case is when M̂ is nonempty. We have
[from (5)]

Ck(x
3
k) =

∑
vm/∈M̂

Lm gm(x3
k) +

∑
vm∈M̂

Lm gm(x3
k)

(a)
=

∑
vm/∈M̂

Lm max
P∈Pm\P̄m

fP (x
3
k,P )

+
∑

vm∈M̂
Lm max

P∈P̄m

fP (x
3
k,P )

(b)
<

∑
vm/∈M̂

Lm
1

2
max

P∈Pm\P̄m

(fP (x
1
k,P ) + fP (x

2
k,P ))

+
∑

vm∈M̂
Lm

1

2
max
P∈P̄m

(fP (x
1
k,P ) + fP (x

2
k,P ))

(c)

≤
∑

vm/∈M̂
Lm

1

2
max
P∈Pm

(fP (x
1
k,P ) + fP (x

2
k,P ))

+
∑

vm∈M̂
Lm

1

2
max
P∈Pm

(fP (x
1
k,P ) + fP (x

2
k,P ))

(d)

≤ 1

2

∑
vm/∈M̂

Lm

(
max
P∈Pm

fP (x
1
k,P ) + max

P∈Pm

fP (x
2
k,P )

)

+
1

2

∑
vm∈M̂

Lm

(
max
P∈Pm

fP (x
1
k,P )+ max

P∈Pm

fP (x
2
k,P )

)

=
1

2

( ∑
vm∈Vk

Lm gm(x1
k) +

∑
vm∈Vk

Lm gm(x2
k)

)
.
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Note that (a) holds from the definition of M̂ . Also, (b) holds
since for each P ∈ P̄m, fP (x

3
k,P ) <

1
2 (fP (x

1
k,P ) + fP (x

2
k,P ))

by strict convexity of fP in xk,P and since x3
k,P is a strict convex

combination of x1
k,P and x2

k,P (by definition of P̄m). Thus,

for vm ∈ M̂ , maxP∈P̄m
fP (x

3
k,P ) < maxP∈P̄m

1
2 (fP (x

1
k,P ) +

fP (x
2
k,P )). Further, (c) holds since the maximum over a subset

of the paths (P̄m orPm \ P̄m) is less than or equal the maximum
over the set of all paths Pm. Finally, (d) holds as the maximum
of a sum of elements is at most the sum of maxima. Thus,
Ck(x

3
k) <

1
2 (Ck(x

1
k) + Ck(x

2
k)) that yields a contradiction to

the optimality of x1
k and x2

k.
In the second case, suppose M̂ is empty. Thus, ∀vm ∈ Vk,

maxP∈P̄m
fP (x

3
k,P ) < maxP∈Pm\P̄m

fP (x
3
k,P ). In other words,

for all assets vm ∈ Vk, no critical paths go through the edge set
Ē (since P̄m contains all such paths). However, x3

k has nonzero
investments on edges in Ē. Thus, x3

k cannot be an optimal
solution (by the claim at the start of the proof). Thus, the second
case is also not possible. Hence, there cannot be two different
optimal solutions, and therefore, the optimal investments for the
defender Dk are unique. �

In contrast to the aforementioned result, the optimal invest-
ments by a nonbehavioral defender (i.e., α = 1) need not be
unique. To see this, consider an attack graph where the probabil-
ity of successful attack on each edge is given by the exponential
function (6). As argued in (7), the probability of the successful
attack on any given path is a function of the sum of the security
investments on all the edges in that path. Thus, given an optimal
set of investments by a nonbehavioral defender, any other set
of investments that maintains the same total investment on each
path of the graph is also optimal.

C. Locations of Optimal Investments for Behavioral
and Nonbehavioral Defenders

We next study differences in the locations of the optimal
investments by behavioral and nonbehavioral defenders. In
particular, we first characterize the optimal investments by a
nonbehavioral defender who is protecting a single asset, and
subsequently, compare that to the investments made by a behav-
ioral defender. In the following result, we use the notion of a
min-cut in the graph. Specifically, given two nodes s and t in the
graph, an edge cut is a set of edges Ec ⊂ E such that removing
Ec from the graph also removes all paths from s to t. A min-cut
is an edge cut of smallest cardinality over all possible edge cuts
[36].

Proposition 2: Consider an attack graph G = (V, E). Let
the attack success probability under security investments be
given by pi,j(xi,j) = e−xi,j , where xi,j ∈ R≥0 is the invest-
ment on edge (vi, vj). Suppose there is a single target asset
vt (i.e., all other assets have loss 0). Let Ec ⊆ E be a min-
cut between the source node vs and the target vt. Then, it
is optimal for a nonbehavioral defender Dk to distribute all
her investments equally only on the edge set Ec in order to
minimize (2).

Proof: Let N = |Ec| represent the number of edges in the
min-cut set Ec. Let B be the defender’s budget.

Fig. 3. An attack graph where a behavioral defender makes subopti-
mal investment decisions.

Consider any optimal investment of that budget. Recall from
(7) that for probability functions of the form (6), the probability
of a successful attack of the target along a certain path P is a
decreasing function of the sum of the investments on the edges
on that path. Using Menger’s theorem [36], there are N edge-
disjoint paths between vs and vt inG. At least one of those paths
has total investment at most B

N . Therefore, the path with highest
probability of attack from vs to vt has total investment at most
B
N .

Now consider investing B
N on each edge in the min-cut. Since

every path from vs to vt goes through at least one edge in Ec,
every path has at least B

N in total investment. Thus, it is optimal
to only invest on edges in Ec.

Finally, consider investing nonequally on edges in Ec where
an edge (vi, vj) ∈ Ec has investment xi,j <

B
N . Under this in-

vestment, since there are N edge-disjoint paths from vs to vt in
G, there exists a path P from vs to vt that has total investment
less than B

N . Thus, the path with the highest probability of
attack has a probability of attack larger than exp(−B

N ) (which
would be obtained when investing B

N equally on each edge in
Ec). Therefore, the true expected cost in (2) is higher with this
nonequal investment. Thus, the optimal investment on Ec must
contain B

N investment on each edge in Ec. �
Remark 4: The aforementioned result will continue to

hold for more general probability functions pm,n(xm,n) =
p0m,ne

−xm,n with p0m,n �= 1 if
∏

(vm,vn)∈P p0m,n is the same for
every path P ∈ Pt. The baseline successful attack probability
is then the same along every path to vt, and thus, optimal
investments can be restricted to the edges in the min-cut set. �

The conclusion of Proposition 2 no longer holds when we
consider the investments by a behavioral defender (i.e., with
αk < 1), as illustrated by the following example.

Example 1: Consider the attack graph shown in Fig. 3, with
a single defender D (we will drop the subscript k for ease of
notation in this example) and a single target asset v5 with a loss of
L5 = 1 if successfully attacked. Let the defender’s budget be B,
and let the probability of successful attack on each edge (vi, vj)
be given by pi,j(xi,j) = e−xi,j , where xi,j is the investment on
that edge.

This graph has two possible min-cuts, both of size 1: the edge
(vs, v1), and the edge (v4, v5). Thus, by Proposition 2, it is
optimal for a nonbehavioral defender to put all of her budget
on either one of these edges.

Now consider a behavioral defender with α < 1. With the
aforementioned expression for pi,j(xi,j) and using the Prelec
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function (4), we have w(pi,j(xi,j)) = e−xα
i,j . Thus, the per-

ceived expected cost function (5) is given by

C(x) = max
(
e−xα

s,1−xα
1,2−xα

2,4−xα
4,5 , e−xα

s,1−xα
1,3−xα

3,4−xα
4,5
)

corresponding to the two paths from the source vs to the target
vt. One can verify (using the KKT conditions) that the optimal
investments are given by

x1,2 = x2,4 = x1,3 = x3,4 = 2
1

α−1xs,1

x4,5 = xs,1 =
B − 4x1,2

2
=

B

2 + 4(2
1

α−1 )
. (8)

Thus, for the true expected cost function (2), the optimal invest-
ments (corresponding to the nonbehavioral defender) yield a true
expected cost of e−B , whereas the investments of the behavioral

defender yield a true expected cost of e−2
α

α−1 e
− B

1+2
α

α−1 , which
is larger than that of the nonbehavioral defender.

The aforementioned example illustrates a key phenomenon:
as the defender’s perception of probabilities becomes increas-
ingly skewed (captured by α becoming smaller), she shifts more
of her investments from the min-cut edges to the edges on the
parallel paths between v1 and v4. This is in contrast to the
optimal investments (made by the nonbehavioral defender) that
lie entirely on the min-cut edges. Indeed, by taking the limit as
α ↑ 1, we have

xi,j = lim
α↑1

2
1

α−1 xs,1 = 2−∞ xs,1 = 0

for edges (vi, vj) on the two parallel portions of the graph.
We now use this insight to identify graphs where the behav-

ioral defender finds that investing only on the min-cut edges is
not optimal.

Proposition 3: Consider an attack graph G with a source vs
and a target vt. Let Ec be a min-cut between vs and vt, with
size |Ec| = N . Suppose the graph contains another edge cut
E′
c such that E′

c ∩ Ec = ∅ and |E ′
c| > |Ec|. Let the probability

of successful attack on each edge (vi, vj) ∈ E be given by
pi,j(xi,j) = e−xi,j , wherexi,j is the investment on that edge. Let
B be the budget of the defender. Then, if 0 < αk < 1, investing
solely on the min-cut set Ec is not optimal from the perspective
of a behavioral defender.

Proof: Denote M = |E ′
c| > |Ec| = N . By Proposition 2, it

is optimal to invest the entire budget uniformly on edges in Ec
in order to minimize the cost function (2). We will show that
this investment is not optimal with respect to the behavioral
defender’s cost function (5); we will drop the subscript k in αk

for ease of notation.
Starting with the optimal investments on the min edge cut

Ec where each edge in Ec has nonzero investment (as given by
Proposition 2), remove a small investment ε from each of those
N edges, and add an investment of Nε

M to each of the edges in
E′
c. We show that when ε is sufficiently small, this will lead to

a net reduction in perceived probability of successful attack on
each path from vs to vt.

Consider any arbitrary path P from vs to vt. Starting with
the investments only on the minimum edge cut Ec, the perceived

probability of successful attack on the path P will be

f1(x) � exp

⎛
⎜⎜⎝−

∑
(vi,vj)∈Ec,
(vi,vj)∈P

xα
i,j

⎞
⎟⎟⎠ .

After removing ε investment from each of the N edges in Ec,
and adding an investment of Nε

M to each of the edges in E′
c, the

perceived probability on the path P will be

f2(x) � exp

⎛
⎜⎜⎜⎝−

∑
(vi,vj)∈E′

c,
(vi,vj)∈P

(
Nε

M

)α

−
∑

(vi,vj)∈Ec,
(vi,vj)∈P

(xi,j − ε)α

⎞
⎟⎟⎟⎠ .

The net reduction in perceived probability on the path P will be
positive if f2(x) < f1(x), i.e.,∑
(vi,vj)∈E′

c,
(vi,vj)∈P

(
Nε

M

)α

+
∑

(vi,vj)∈Ec,
(vi,vj)∈P

(xi,j − ε)α >
∑

(vi,vj)∈Ec,
(vi,vj)∈P

xα
i,j .

(9)
If we define

f(ε) �
∑

(vi,vj)∈E′
c,

(vi,vj)∈P

(
Nε

M

)α

+
∑

(vi,vj)∈Ec,
(vi,vj)∈P

(xi,j − ε)α

we see that inequality (9) is equivalent to showing that f(ε) >
f(0). We have

df

dε
=

αN

M

∑
(vi,vj)∈E′

c,
(vi,vj)∈P

(
Nε

M

)α−1

− α
∑

(vi,vj)∈Ec,
(vi,vj)∈P

(xi,j − ε)α−1.

Note that limε↓0 df
dε = ∞ that shows that f(ε) is increasing in

ε for sufficiently small ε. Therefore, f2(x) < f1(x) for suffi-
ciently small ε. Since this analysis holds for every path from vs
to vt, this investment profile outperforms investing purely on the
minimum edge cut. �

Note that the graph in Fig. 3 satisfies the conditions
in the aforementioned result, with Ec = (v4, v5), E′

c =
{(v1, v2), (v1, v3)}.

Having established properties of the optimal investment de-
cisions for behavioral and nonbehavioral defenders, we next
turn our attention to the behavioral security game with multiple
defenders, introduced in Section III.

V. ANALYSIS OF MULTIDEFENDER GAMES

A. Existence of a PNE

We first establish the existence of a pure strategy Nash equi-
librium (PNE) for the class of behavioral games defined in
Section III. Recall that a profile of security investments by the
defenders is said to be a PNE if no defender can decrease her
cost by unilaterally changing her security investment.

Proposition 4: Under Assumption 1, the behavioral security
game possesses a pure strategy Nash equilibrium (PNE) when
αk ∈ (0, 1] for each defender Dk.

Authorized licensed use limited to: Purdue University. Downloaded on September 13,2022 at 15:05:08 UTC from IEEE Xplore.  Restrictions apply. 



1592 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 4, DECEMBER 2020

Fig. 4. Instance of a behavioral security game with multiple PNE. Defenders D1 and D2 are behavioral decision makers with α1 = α2 = 0.5. The
numbers above/left and below/right of the edges represent investments by D1 and D2, respectively.

Proof: The feasible defense strategy space Xk in (1) is
nonempty, compact, and convex for each defender Dk. Fur-
thermore, for all Dk ∈ D and investment vectors x−k, the cost
function C(xk,x−k) in (5) is convex in xk ∈ Xk; this follows
from Lemma 2 and the fact that the investment xi,j on each
edge is a sum of the investments of all players on that edge. As a
result, the behavioral security game is an instance of a concave
game, which always has a PNE [37]. �

Note that in contrast to the best responses by each player
(which were unique when αk ∈ (0, 1), as shown in Proposi-
tion 1), the PNE of behavioral security games is not unique in
general. We illustrate this through the following example.

Example 2: Consider the attack graph of Fig. 4. There are
two defenders, D1 and D2, where the defender D1 wishes to
protect node v4, and the defender D2 wishes to protect node
v5. Suppose that D1 has a budget B1 = 16 and D2 has B2 =
12. Fig. 4(a) and (b) illustrates two distinct PNE for this game.
We obtained multiple Nash equilibria by varying the starting
investment decision of the defender D1, and then, following
best response dynamics until the investments converged to an
equilibrium.

It is interesting to note that these two Nash equilibria lead to
different costs for the defenders. First, for the Nash equilibrium
of Fig. 4(a), defenderD1’s perceived expected cost, given by (5),
is equal to exp(−4), while her true expected cost, given by (2),
is equal to exp(−8). Defender D2 has a perceived expected cost
of exp(−6), and a true expected cost of exp(−12). In contrast,
for the Nash equilibrium in Fig. 4(b), the defender D1 has a
perceived expected cost of exp(−2

√
5) and a true expected

cost of exp(−10). Defender D2 has a perceived expected cost
of exp(−5.78) and a true expected cost of exp(−11.28).

As a result, the equilibrium in Fig. 4(a) is preferred by the
defender D2, while the equilibrium in Fig. 4(b) has a lower
expected cost (both perceived and real) for the defenderD1. Note
also that the total expected cost (i.e., sum of the true expected
costs of defenders D1 and D2) is lower in the equilibrium in
Fig. 4(b); that is, the PNE of Fig. 4(b) would be preferred from
a social planner’s perspective.

B. Measuring the Inefficiency of PNE: The PoBA

The notion of price of anarchy (PoA) is often used to quantify
the inefficiency of Nash equilibrium compared to the socially

optimal outcome [38]. Specifically, the PoA is defined as the
ratio of the highest total system cost at a PNE to the total system
cost at the social optimum. For our setting, we seek to define
a measure to capture the inefficiencies of the equilibrium due
to both the defenders’ individual strategic behavior and their
behavioral decision making. We thus define the PoBA as the
ratio of total system true expected cost of behavioral defenders
at the worst PNE (i.e., the PNE with the largest total true expected
cost over all PNE) to the total system true expected cost at the
social optimum (computed by a nonbehavioral social planner).7

Specifically, we define Ĉ(x) �
∑

Dk∈D Ĉk(x), where Ĉk

[defined in (2)] is the true expected cost faced by the defenderDk

under the investment vector x. Let XNE := {x̄ ∈ R|D||E|
≥0 |x̄k ∈

argminx∈Xk
Ck(x, x̄−k)∀Dk ∈ D}, i.e., XNE is the set of all

investments that constitute a PNE. We now define the PoBA as

PoBA =
supx̄∈XNE Ĉ(x̄)

Ĉ(x∗)
(10)

where x∗ denotes the investments at the social optimum (com-
puted by a nonbehavioral social planner with access to the sum
of all defenders’ budgets). Mathematically, let XSoc := {x∗ ∈
R|D||E|

≥0 |1Tx∗ ≤∑Dk∈D Bk}, i.e., XSoc is the set of all feasible

investments by the social planner, andx∗ ∈ argminx∈XSoc Ĉ(x).
When x̄ is any PNE, but not necessarily the one with the worst
social cost, we refer to the ratio of Ĉ(x̄) and Ĉ(x∗) as the
“inefficiency” of the equilibrium. We emphasize that the costs
in both the numerator and the denominator are the sum of the
true (rather than perceived) expected costs of the defenders.

We will establish upper and lower bounds on the PoBA. We
first show that the PoBA is bounded if the total budget is bounded
(regardless of the defenders’ behavioral levels).

Proposition 5: Let the sum of the budgets available to all
defenders be B, and let the probability of successful attack on
each edge (vi, vj) ∈ E be given by pi,j(xi,j) = e−xi,j . Then,
for any attack graph and any profile of behavioral levels {αk},
PoBA ≤ exp(B).

Proof: We start with the numerator of the PoBA in (10)
(the total true expected cost at the worst PNE). Recall that each

7One could also consider the impact of a behavioral social planner; since the
goal of this article is to quantify the (objective) inefficiencies due to behavioral
decision making, we leave the study of a behavioral social planner for future
work.
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Fig. 5. Attack graph where PoBA is lower bounded by (1− ε) exp(B).

defender Dk incurs a loss Lm for each compromised asset vm.
Thus, the worst case true expected cost under any PNE (includ-
ing the worst PNE) is upper bounded by

∑
Dk∈D

∑
vm∈Vk

Lm

(i.e., the sum of losses of all assets). On the other hand, the
denominator (the socially optimal true expected cost) is lower
bounded by (

∑
Dk∈D

∑
vm∈Vk

Lm) exp(−B) (which can only
be achieved if every asset has all of the budget B, invested by
a social planner, on its attack path). Substituting these bounds
into (10), we obtain PoBA ≤ exp(B). �

Next, we show that the upper bound on the PoBA obtained in
Proposition 5 is asymptotically tight.

Proposition 6: For all B > 0 and ε > 0, there exists an
instance of the behavioral security game with total budget B
such that the PoBA is lower bounded by (1− ε) exp(B).

Proof: Consider the attack graph in Fig. 5, where the prob-
ability of the successful attack on each edge (vi, vj) is given by
(6) with p0i,j = 1. This graph contains K defenders, and each
defender Dk is responsible for defending the target node vk.
Assume the total security budget B is divided equally between
the K defenders (i.e., each defender has security budget B

K ). Let
the first node have loss equal to L1 = K, and the other K − 1
nodes have loss 1

K−1 . Then, the socially optimal solution would
put all the budgetB on the first link (vs, v1) so that all nodes have
probability of successful attack given by exp(−B). Thus, the de-
nominator of (10) is

∑K
i=1 Li exp(−B) = (K + 1) exp(−B).

We now characterize a lower bound on the cost under a PNE
[i.e., the numerator of (10)]. Specifically, consider the investment
profile where each defender Dk puts their entire budget B

K on
the edge coming into their node vk. We claim that this is a PNE.
To show this, first consider defender D1. Since investments
on edges other than (vs, v1) do not affect the probability of
successful attack at the node v1, it is optimal for the defender
D1 to put all her investment on (vs, v1).

Now consider defender D2. Given D1’s investment on
(vs, v1), defender D2 has to decide how to optimally spread
her budget of B

K over the two edges (vs, v1) and (v1, v2) in
order to minimize her cost function (5). Thus,D2’s optimization
problem, given D1’s investment, is

minimize
x2
s,1+x2

1,2=
B
K

e−( B
K +x2

s,1)
α2−(x2

1,2)
α2

. (11)

The unique optimal solution of (11) (for all α2 ∈ (0, 1)) would
be to put all B

K into x2
1,2 and zero on x2

s,1. This is also optimal
(but not unique) when α2 = 1.

Continuing this analysis, we see that if defenders
D1, D2, . . . , Dk−1 have each invested B

K on the edges incoming
into their nodes, it is optimal for the defender Dk to also invest
their entire budget B

K on the incoming edge to vk. Thus, investing
B
K on each edge is a PNE.

The numerator of the PoBA under this PNE is lower bounded
by L1 exp(−B

K ) = K exp(−B
K ). Thus, the PoBA is lower

bounded by

PoBA ≥ K exp(−B
K )

(K + 1) exp(−B)
=

K exp(−B
K )

(K + 1)
exp(B).

As the length of the chain grows, we have limK→∞
K exp(−B

K )

(K+1) = 1. Thus, for every ε > 0, there exists K large
enough such that the PoBA in the line graph with K nodes is
lower bounded by (1− ε) exp(B). �

Remark 5: The upper bound obtained in Proposition 5 is
agnostic to the structure of the network, the number of defenders,
and their degree of misperception of probabilities. In Proposition
6, our result shows that the upper bound obtained in Proposition
5 is sharp (i.e., it cannot be reduced without additional assump-
tions on the game). For any particular instance of the problem,
however, we can compute the inefficiency directly, which will
depend on the network structure and other parameters of that
instance. �

Before considering the case study, we will conclude this
section with an example of an interesting phenomenon, where
the (objectively) suboptimal investment decisions made by a
behavioral defender with respect to their own assets can actually
benefit the other defenders in the network.

Example 3: We consider the attack graph of Fig. 6 (a) and
(b) with two defenders, D1 and D2. The defender D1 wishes to
protect the node v3, and the defender D2 wishes to protect the
node v4. Note thatD1’s asset (v3) is directly on the attack path to
D2’s asset (v4). Suppose that the defenderD1 has a budgetB1 =
5, while the defender D2 has a budget B2 = 20. The optimal
investments in the following scenarios were calculated using
CVX [39].

Suppose both defenders are nonbehavioral. In this case,
Proposition 2 suggests that it is optimal for D2 to put her
entire budget on the min-cut, given by the edge (v3, v4). The
corresponding PNE is shown in Fig. 6(a). On the other hand,
as indicated by Proposition 3, investing solely on the min-cut is
no longer optimal for a behavioral defender. Indeed, Fig. 6(b)
shows a PNE for the case whereD2 is behavioral withα2 = 0.6,
and has spread some of her investment to the other edges in the
attack graph. Therefore, D1’s subnetwork will benefit due to the
behavioral decision making by D2.

It is also worth considering the total system true expected cost
of the game at equilibrium, given by Ĉ(x̄) = Ĉ1(x̄) + Ĉ2(x̄)
where x̄ is the investment at the PNE. For this example, when
both defenders are nonbehavioral (i.e., α1 = α2 = 1), Ĉ(x̄) =
16.42, while Ĉ(x̄) = 1.13 if defender D2 is behavioral (with
α1 = 1, α2 = 0.6). This considerable drop in the total true ex-
pected cost shows that the behavioral defender’s contributions to
the nonbehavioral defender’s subnetwork may also be beneficial
to the overall welfare of the network, especially under budget
asymmetries or if defender D1’s asset is more valuable.

VI. CASE STUDY

Here, we examine the outcomes of behavioral decision mak-
ing in a case study involving a distributed energy resource failure
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Fig. 6. Numbers above (below) each edge represent investments by defender D1 (D2). (a) Nonbehavioral defender D1 does not receive any
investment contributions from the nonbehavioral defender D2. (b) Nonbehavioral defender D1 benefits from the investment contributions of the
behavioral defender D2.

Fig. 7. Attack graph of a DER.1 failure scenario adapted from [27]. It
shows stepping-stone attack steps that can lead to the compromise of
a photovoltaic generator (PV) (i.e., G0) or an electric vehicle charging
station (EV) (i.e., G1).

scenario, DER.1, identified by the U.S. National Electric Sector
Cybersecurity Organization Resource (NESCOR) [27]. Fig. 7
is replicated from the attack graph for the DER.1 (see[27, Fig.
4]). Suppose the probability of successful attack on each edge
is pi,j(xi,j) = e−xi,j . There are two defenders, D1 and D2. De-
fenderD1’s critical assets areG0 andG, with losses ofL0 = 200
and L = 100, respectively. Defender D2’s critical assets are G1

and G, also with losses of L1 = 200 and L = 100, respectively.
Note that G is a shared asset among the two defenders.

We assume that each defender has a security budget of B
2 (i.e.,

the budget distribution is symmetric between the two defenders).
For a fair comparison, the social planner has total budget B.
In our experiments, we use best response dynamics to find
a Nash equilibrium x̄. We then compute the socially optimal
investment x∗, and calculate the ratio given by (10) to measure
the inefficiency of the corresponding equilibrium.

Fig. 8 shows the value of this ratio as we sweep α (taken to
be the same for both defenders) from 0 (most behavioral) to 1
(nonbehavioral), for different values of the total budget B. As
the figure shows, the inefficiency of the equilibrium decreases to
1 as α increases, reflecting the fact that the investment decisions
become better as the defenders become less behavioral; see
Section IV. Furthermore, Fig. 8 shows that the inefficiency
due to behavioral decision making becomes exacerbated as the
total budget B increases. This happens as behavioral defenders
shift higher amounts of their budget to the parallel edges in
the networks (i.e., not in the min-cut edge set), as suggested
by Proposition 3. On the other hand, the social planner can

Fig. 8. The inefficiency for different behavioral levels of the defend-
ers. We observe that the inefficiency increases as the security budget
increases, and as the defenders become more behavioral.8

significantly lower the total cost when the budget increases, as
she puts all the budget only on the min-cut edges, as suggested
by Proposition 2; this reduces the total cost faster toward zero
as the budget increases.

Our results may be applicable to other practical scenarios
(such as deploying moving-target defense) [13]. While the inef-
ficiency strictly increased with the budget in the aforementioned
case study, this phenomenon may not occur in all networks. We
omit further discussions about these aspects in the interest of
space.

VII. SUMMARY OF FINDINGS

In this article, we presented an analysis of the impacts of
behavioral decision making on the security of interdependent
systems. First, we showed that the optimal investments by a be-
havioral decision maker will be unique, whereas nonbehavioral
decision makers may have multiple optimal solutions. Second,
nonbehavioral decision makers find it optimal to concentrate
their security investments on minimum edge-cuts in the network

8Recall that the inefficiency of a particular PNE is the ratio of the total system
true expected cost at that PNE to the total system true expected cost at the
(nonbehavioral) social optimum.
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in order to protect their assets, whereas behavioral decision
makers will choose to spread their investments over other edges
in the network, potentially making their assets more vulnerable.
Third, we showed that multidefender games possess a PNE
(under appropriate conditions on the game), and introduced a
metric that we termed the ‘PoBA” to quantify the inefficiency
of the (behavioral) PNE as compared to the security outcomes
under socially optimal investments. We provided a tight bound
on the PoBA, which depended only on the total budget across
all defenders. However, we also showed that the tendency of
behavioral defenders to spread their investments over the edges
of the network can potentially benefit the other defenders in
the network. Finally, we presented a case study where the inef-
ficiency of the equilibrium increased as the defenders became
more behavioral.

Overall, our analysis shows that human decision making (as
captured by behavioral probability weighting) can have sub-
stantial impacts on the security of interdependent systems, and
must be accounted for when designing and operating distributed,
interdependent systems. In other words, the insights that are
provided by our work (e.g., that behavioral decision makers
may move some of their security investments away from critical
portions of the network) can be used by system planners to
identify portions of their network that may be left vulnerable by
the human security personnel who are responsible for managing
those parts of the network. A future avenue for research is to
perform human experiments to test our predictions. Moreover,
studying the properties of security investments when different
edges have different degrees of misperception of attack proba-
bilities is another avenue for future research.
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