A SSM-TRIZ METHODOLOGY FOR PROBLEM STRUCTURING AND BUSINESS MODEL MAPPING
Presentation Outline

• Background and Purpose
• Shortcomings of SSM: Opportunities for TRIZ
• The SSM-TRIZ Methodology
• Case study: A Professional Development Initiative for INCOSE
• Stages of Methodology application in Case study
• Conclusion and Limitations
The Purpose of the Present Study

• Address situations with conflicting interests and perspectives
• Present a new methodology (SSM-TRIZ)
• Apply methodology to Professional Development case study.
Existing Soft Problem Structuring Methods

Evolution of existing methods and a shortcoming to be addressed

- Specific attributes (Rosenhead & Mingers, 2001)
 - multiple stakeholders and perspectives
 - variety of uncertainties
 - conflicting interests
 - significant intangibles.

- Unstructured, complex and vague problem situations

- Soft Systems Methodology (SSM) emerges as one of most notable Problem Structuring Methods

- Action research methodologies

SSM does not address conflicting interests and perspectives (Jianmei, 2010).
SSM methodology overview

- Soft System Methodology process

Figure 1: Learning cycle of Soft Systems Methodology.
(Source: (Jackson, Michael C. 2003))
www.incose.org/glrc2018
Figure 2: TRIZ Problem solving model.
(Source: Zhai, Chang and Tan 2005)
Shortcomings of SSM: Opportunities for TRIZ

Table 1: Comparison of SSM and TRIZ approaches for resolving problems with conflicting-interests.

<table>
<thead>
<tr>
<th></th>
<th>SSM</th>
<th>TRIZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why problems occur</td>
<td>Not explicitly stated during problem expression.</td>
<td>Breaks problems down into discovering inherent contradictions that provide clues for solution.</td>
</tr>
<tr>
<td>Mechanism for resolving</td>
<td>None.</td>
<td>Possesses contradiction resolution techniques • 40 inventive principles • ARIZ • Separation techniques etc.</td>
</tr>
<tr>
<td>conflicting-interests’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>problems</td>
<td></td>
<td>Concept of ideality (Ideal Final Result) in an input-modification-output sequence.</td>
</tr>
<tr>
<td>Comparison to Ideality</td>
<td>None: stops with real-world which is what we need to improve upon.</td>
<td></td>
</tr>
<tr>
<td>Encouragement of further</td>
<td>None.</td>
<td>Encourages breaking out of 'soft solution' paradigm • System Identification techniques in heuristics, optimization, statistics, decision theory e.t.c. for seeking desirable changes to system in addition to soft methods.</td>
</tr>
<tr>
<td>hard-thinking approaches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.incose.org/glrc2018
The SSM-TRIZ Methodology

Figure 3. Phases of SSM-TRIZ Methodology
Stages in the SSM-TRIZ Methodology

1. Perception of Problem Situation
 - Rich Pictures, Root Cause Analysis diagram

2. Root definition and Conceptual model of relevant system
 - Conceptual model, Function analysis diagram, Contradiction analysis techniques, CATWOE

3. Comparison of models to Ideality
 - Ideal Final Result (IFR)

4. Seeking feasible and desirable changes
 - Evaluation, selection and implementation of solutions based on further enhanced cultural analysis, cost considerations etc.
Case study: A Professional Development Initiative for INCOSE

• INCOSE objective: create value for individuals and corporate bodies by increasing proficiency of the global systems engineering workforce.
• Vision: facilitate engagement between suppliers and consumers of SE professional development.
• Solution approach: provide a comprehensive professional development capability through an integrated web-based portal.
• Potential benefits
 – increased revenue for INCOSE
 – increased competency among SE practitioners
 – quantitative competency tracking,
 – service analytics and reviews
 – promotion of general interest in Systems Engineering.
Stage 1: Perception of Problem Situation

Figure 4: Rich Picture of INCOSE’s Current Professional Development Circle.

www.incose.org/glrc2018
Mapping of Rich Picture to Root Cause

Figure 5: Root Cause effect chain for profit generation.

www.incose.org/glrc2018
Figure 6: Conceptual model for purposeful activity system.
Mapping of Conceptual Model to Function Analysis Diagram

Figure 7: Function Analysis Diagram.

SE — Systems Engineering
PDSG — Professional Development Steering Group
CAB — Corporate Advisory Board
CATWOE Elements

Customers
- Current INCOSE professional members
- Prospective SE practitioners
- Companies (Users)

Actors
- INCOSE PD Steering Group
- SE Educational providers
- CAB companies
- Academia
- INCOSE Working groups

Transformation
- Users with little or no SE knowledge and experience are transformed into proficient SE practitioners.

Weltanschaung
- Revenue generation and membership drive for INCOSE depend upon the provision of an educational online platform that is based on a SE role-based competency framework.

Owner
- INCOSE

Environmental Constraints
- Limited Funds, competition from renown academic SE certification programs, industry trends in general, market size
Contradiction Analysis

• Contradiction is the presence of conflicting elements, features or solutions and is the central theme of the TRIZ methodology.
• Contradictions with ‘+-’ signs from Figure 3 were reviewed and one of them selected for analysis in this study.
• Selected contradiction is:
 ‘INCOSE will incur high costs of delivery to offer an array of quality platform courses for users but does not want to incur high costs of course delivery’.
• Contradictions can be subdivided into element, settings and condition.
• For selected contradiction,
 – Element: offer an array of quality platform courses.
 – Setting A: will incur high cost of delivery.
 – Setting B: does not want to incur high cost of delivery.
 – Condition: online platform.
Contradiction Analysis

- Contradiction separation techniques and logical sequences from opensourcetriz.com were used in resolving this contradiction.
Contradiction Analysis

- Below is the resulting separating techniques evaluated to arrive at adequate separation technique.

<table>
<thead>
<tr>
<th>Separation Technique</th>
<th>Does Contradiction pass separation technique test?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓ (YES)</td>
</tr>
<tr>
<td>Time</td>
<td>✗</td>
</tr>
<tr>
<td>Gradually</td>
<td>✗</td>
</tr>
<tr>
<td>Space</td>
<td>✗</td>
</tr>
<tr>
<td>Parts and Whole</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 2: Separation technique tests for contradiction resolution
Stage 3: Comparison of models to Ideality

- Contradiction statement was resolved by the separation by parts and whole technique.
- Solution strategy from ‘parts and whole’ separation technique is the Merging method:

 INCOSE offering an array of quality courses accessible via an online platform while not incurring costs of course delivery by transferring aspects of delivery costs to interacting educational suppliers to incur.

- Ideal product is a catalogue of quality SE course lectures and materials.
- Ideal tool is the comprehensive web portal.
- Ideal Physical phenomena is the independent SE education suppliers administering SE courses and materials, vetted on INCOSE standards of quality.
Stage 4: Seeking feasible and desirable changes

• Important success criteria for adopted solutions are quality of educational content and revenue generation.

• Solution that satisfies quality constraint:

 INCOSE can decide to establish a vetting framework like PMI’s Registered Educational Providers (REP) initiative for these educational suppliers to ensure that lecture videos and materials found on the web platform are up to the organization’s rigorous SE standards.

• Solution that satisfies revenue generation constraint:

 INCOSE permits independent educational suppliers and academia develop and run their course and training lectures on INCOSE’s web platform. INCOSE can then earn a commission for hosting their courses on her platform.

• An example of enhanced cultural analysis for these solutions is the consideration of setting up a legal framework that takes advantage of different legal systems in different countries.
Conclusions and Limitations

• SSM-TRIZ methodology can be beneficial for technical and business applications.
• It can benefit business companies by helping them narrow down their unstructured business problems into structured soft solutions that can expose questions that can be easily solved quantitatively.

However, it does not
• provide definite solution implementations for technical and business problems as quantitative methods will be mostly relied on to supplement its soft solutions.
Disclaimer: The conclusions and recommendations expressed in this paper are those of the author and do not necessarily reflect the positions of the International Council on Systems Engineering (INCOSE).
QUESTIONS!!!
References

