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ABSTRACT

We synthesized virtual reality fire evacuation training drills in a
shared virtual space to explore people’s collaboration behavior. We
formulate the authoring process of the fire evacuation training drill
in a total cost function, which we later solve with a Markov Chain
Monte Carlo (MCMC) optimization-based method. The users’ as-
signed task in the synthesized training drill is to help virtual agents
evacuate the building as quickly as possible using predefined in-
teraction mechanisms. The users can join the training drill from
different physical locations and collaborate and communicate in a
shared virtual space to finish the task. We conducted a user study to
collect both in-game measurements and subjective ratings to eval-
uate whether the synthesized training drills would affect how the
participants collaborated.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Software
and its engineering—Contextual software domains—Virtual worlds
software—Virtual worlds training simulations

1 INTRODUCTION

Collaboration is usually characterized by shared goals, group activi-
ties, communication, and exchanging information [17]. Roschelle
and Teasley [26] defined collaboration on a joint problem space as
the “mutual engagement of people in a coordinated effort to solve a
problem together.” Various researchers [5, 8] regard collaboration
as an essential component of effective training and learning in com-
parison to individual tasks. In the age of fast-paced development
of globalization, which has a higher requirement for productivity,
especially during the COVID-19 pandemic when people have been
impeded from meeting in person, the importance of remote collabo-
ration systems has been emphasized, as they contribute to remote
team task success, reduce travel expenses, ensure safety, reduce
carbon emissions, increase efficiency, and save time and energy.

However, the concept of collaboration is abstract and difficult
to grasp [11], making it challenging to utilize in practical applica-
tions. When implementing collaborative training scenarios in virtual
environments, designers usually manually build the contents accord-
ing to their subjective experiences and intuition in order to trigger
the intended behavior in participants. This process is tedious and
time-consuming since it lacks a solid theory that supports the effec-
tiveness of the designed content. To better support collaboration on
common tasks among the involved group members, it is necessary
to obtain a more precise understanding of collaboration and how to
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conduct immersive collaboration remotely in a shared virtual space
using modern virtual reality (VR) technologies.

Figure 1: Two players in different locations, wearing a VR headset
on the VR treadmill. Their task is to guide the agents out of the
building where a simulated fire emergency occurs. The two players
are in the same virtual space even though their physical locations are
different. They can communicate, use voice commands to guide the
agents outside the building, and use a fire extinguisher to eliminate
the fire in the building. We illustrate users’ and agents’ positions
and the top view of the building in the minimap.

The project presented in this paper focused on synthesizing VR
fire evacuation training drills in a shared virtual space to explore
the participants’ collaboration behavior. Inspired by procedural
content generation approaches, we proposed an optimization-based
method that automatically generates fire evacuation training drills
with varying levels of difficulty. The users’ assigned task is to help
virtual agents evacuate the building as quickly as possible using
predefined interaction mechanisms (voice commands, trigger fire
extinguisher, physical locomotion, etc.). The participants can join
the training drill from different locations and collaborate and com-
municate in a shared virtual space to accomplish the task (see Fig.
1). We evaluated the proposed VR training drill authoring method
by conducting a user study among three training drills with different
difficulty levels: low difficulty (LD), medium difficulty (MD), and
high difficulty (HD). We collected both in-game measurements and
subjective ratings to explore how the participants collaborate in such
a VR setup.

2 RELATED WORK

Virtual reality (VR) and augmented reality (AR) are as effective
of a training mechanism as the commonly accepted methods [15].
VR can enhance the learning and training. Some work focused on
training for sports [20] and education [10]. Also, some research
was conducted for medical and rehabilitation purposes [27], and
for evacuation training and research purposes [19]. As for AR
training, research shows that AR, applied in education and training,
has positive potential for the future of education [18]. Moreover,
AR shows great potentials and can be applied in many other fields,
such as, medical education [3], corporate training [22], healthcare
simulation [30], maintenance skills [32], and vocational training [6].
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For more details about VR training, please refer to Xie et al. [34].
With network, VR and AR can be applied in remote training

and collaboration scenarios. Greenwald et al. [13] explored the
immense potential for collaborative VR applications for learning.
Some researchers proposed frameworks to support collaboration
in virtual environments. For example, MedicalVR [21] is a virtual
reality framework and assistive tool for medical environment. It
outlines real-time collaboration and human-centered design aspects
in modern tele-medicine. Kurillo et al. [16] presented a framework
for immersive virtual environment intended for remote collabora-
tion and training of physical activities. For example, Tea et al. [29]
developed a multi-user immersive virtual reality application for real-
time remote collaboration to enhance design review process. Snow
Dome [24], which is a mixed reality remote collaboration applica-
tion, was developed to support multi-scale interaction for a virtual
reality user. Elvezio et al. [9] demonstrated an approach to sup-
port remote collaboration in AR and VR by virtual replicas, which
allows the remote user to create and manipulate virtual replicas
of physical objects in the local environment. Besides from frame-
work, system, and application, some research focused on adaptive
avatar, Mini-Me [25], and toolkit, ColabAR [31], to promote remote
collaboration.

In this paper, we propose an optimization-based method to auto-
matically synthesize shared space VR fire evacuation training drills
with different difficulty levels. We also demonstrated how to employ
the synthesized training drills on a networked VR platform with
treadmills to enable remote, collaborative training.

3 PRELIMINARY REMARKS

3.1 System Overview

Fig. 1 shows our project’s system overview. Two users are in
different physical locations and join the developed training drill,
which takes place in a virtual space shared through the Internet.
Inside the shared virtual space we have synthesized fire evacuation
training drill that are generated by using our optimization-based
method. Participants are able to extinguish the fires by using an
integrated fire extinguisher that will show up on their hands when
they enable it. The users can communicate with each other inside
the virtual environment freely through Voice over Internet Protocol
(VoIP). We placed virtual agents who can respond to participants’
voice commands and need to be rescued. The participants’ common
task is to guide all the agents outside the building.

3.2 Environment Representation

We represent the input training environment as an M ×N in size
2D grid ([c1,1, ..., cM,N ] denotes the cells of the generated grid; the
resolution of the grid is defined by the designer/trainer). Then, we
represent each grid cell (cx,y) of the grid as either obstacle (Tobs),
fire (Tfire), or empty (Tempty) grid cell.

3.3 Virtual Training Environment

We designed a virtual school layout according to specific design and
safety regulations1 and standards in the US [2]. We have created
several types of classrooms (standard classroom, library, basketball
court, theater, restrooms, lockers, etc.) to convey a complete impres-
sion of a school. The average size of a classroom is 12×12 m with a
height of 3.75 m to ensure that participants can move around fast and
freely while avoiding virtual objects/obstacles (desk, chairs, etc.).
Finally, we have decided to add a significant number of exits (six in
total) to ensure that users can find accessible exits under different
conditions and effects that block some or most of them. Fig. 2 shows
screenshots of the designed virtual environment.

1https://www.aps.edu/facilities-design-and-construction/

design-standards-and-guidelines

(a) Basketball court (b) Biology lab (c) Amphitheatre (d) Library

(e) Corridor (f) Computer lab (g) Lecture room (h) Lockers & Exit

Figure 2: Different parts of the designed virtual environment we
used in our prototype application.

The virtual agents can respond to specific voice commands under
certain conditions (see Fig. 3). There are six usable commands
implemented in the system. Among them, we implemented four
commands to instruct the agents to move, including “come here,”
“follow me,” “run,” and “crawl.” We also included the “stop” and
“wait” commands to pause the movement of agents at any time.

Figure 3: A user commands a virtual agents to “come here” and the
agent moves toward the user.

3.4 Authoring Training Drill
We represent our training drill as a composition of several fires
F = [f1, ..., fK ] taking places in a static 3D environment. Their
position and size are determined based on our proposed optimization-
based method (see Section 4). There are also several trainer-defined
virtual agents A = [a1, ..., aB ] placed in different locations in the
virtual environment. The trainer instructs the users of our training
drill to rescue the virtual agents by helping them exit the building.

4 PROBLEM FORMULATION

The design of the evacuation drill d is evaluated by the total cost
function CTotal(d):

CTotal(d) = wlengthClength(d) + wturnsCturns(d)

+ wfireCfire(d) + wvisCvis(d),
(1)

where Clength encodes the length of the optimal path that the user
should follow to fulfil the necessary goals and exit the building; Cturns

encodes the number of turns in the optimal path; Cfire denotes the
number of fires that the user should extinguish to fulfil the necessary
goals (e.g., access the virtual agents, help virtual agents exit the
building); and Cvis denotes the visibility conditions of the virtual
environment. wlength, wturns, wfire, and wvis are the corresponding
weights of each cost term, prioritized by importance. We discuss the
details for each cost term as follows.

Length Cost. The path synthesized by our system represents
how far the user must walk in the training environment to execute
the required task. The length cost is used to compare the length of
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the synthesized path against the user-defined target path length. We
present this cost as:

Clength(d) =
1

Ldiag

∣∣∣∣∣
∑
Gi(A)

L(Pi)− ρlength

∣∣∣∣∣, (2)

where Ldiag is used as a normalization term representing the diagonal
length of the entire virtual environment; ρlength denotes the user-
defined path length; Pi is the path between each Gi(A) sub-group
of agents that are in a specific location (e.g., in the basketball court)
in the virtual environment requiring rescue, where Gi(A) � A; and
L(Pi) is the distance between the i− th sub-group of agents Gi(A)
and the closest exit in the training environment. To compute the
length of the chosen optimal path, we use an improved version of the
A* algorithm [35]. For each returned pair of adjacent cells (cj , cj+1)
belonging to the Pi path in the grid, we compute path length L(Pi)
by summing the length of each pair of adjacent cells L(cj , cj+1)
from the optimal path as:

L(Pi) =

|Pi|−1∑
cj ,cj+1

L(cj , cj+1), (3)

where |Pi| denotes the total number of grid cells from the optimal
path. Note that the obstacle Tobs and fire Tfire grid cells are blocked,
and the empty grid cell Tempty is unblocked. However, during the
optimization process, if there is no optimal path, we label the fire
grid cell as unblocked, and therefore it can be considered part of the
optimal path. Thus, the synthesized path length comes closer to the
target path length and makes the training drill more difficult since
the user needs to extinguish a fire to access that path properly.

Turn Cost. The turn cost is used to compare the number of turns
in the path against a user-defined target number of total turns ρturns:

Cturns(d) =

∣∣∣∣∣
∑
|P | T (Pi)− ρturns

ρturns

∣∣∣∣∣, (4)

where T (Pi) returns the number of turns in the optimal path Pi,
and |P | denotes the total number of optimal paths the users should
follow to accomplish the task. To calculate T (Pi), we consider all
triads of adjacent grid cells. If these three grid cells do not form
a straight line, they are regarded as a turn and, therefore, T (Pi)
returns 1; otherwise, it returns 0.

Fire Cost. Users must extinguish fires to reach virtual agents,
access parts of the virtual building, or exit the virtual building. The
fire cost compares the number of fires that the user should extinguish
against the designer-specified target number of fires ρfire:

Cfire(d) =
1

U

∣∣∣∣∣
∑
|F |

Γ(fi)− ρfire

∣∣∣∣∣, (5)

where Γ(fi) returns 1 if fi is found to be in the optimal path; other-
wise, it returns 0. U is used as a normalization factor representing
the upper limit of the number of fires. We set U = 40 as the upper
limit value for all examples presented in this paper.

Visibility Cost. The user’s visibility in the virtual environment is
computed by considering the ratio between the area occupied by the
fires over the total area of the virtual environment. We compare it
against a user-defined target value:

Cvis(d) =

∣∣∣∣∣
∑
|F |A(fi)
A(e) − ρvis

∣∣∣∣∣, (6)

where
∑
|F |A(fi) represents the total area occupied by the fires;

A(e) represents the total area of the entire virtual environment;
and ρvis is user-defined target visibility. Note that a high value of
ρvis ∈ [0, 1] denotes low visibility and vice versa.

5 OPTIMIZATION

To assess all possible training outcomes during the optimization pro-
cess, our system optimizes total cost functions through the reversible-
jump Markov chain Monte Carlo (RJMCMC) method [12]. We
apply simulated annealing using a Metropolis-Hastings state-search
step [7]. We start by defining a Boltzmann-like objective function:

f(d) = exp

(
− 1

t
CTotal(d)

)
, (7)

where t encodes the temperature parameter of simulated annealing.
During the optimization process, the system proposes a new config-
uration of the training drill d′ by altering the current training drill d
using one of the following moves:

• Adding a fire: Our system places a randomly sized fire in a
randomly chosen position in the virtual environment.

• Removing an existing fire: Our system randomly chooses a
fire from the virtual environment to remove.

• Modifying an existing fire: Our system randomly chooses
a fire from the virtual environment and modifies its size and
position.

We set the probability of adding a fire as padd = .40, the prob-
ability of removing a fire as premove = .20, and the probability of
modifying a fire as pmodify = .40. Through these probabilities, our
system chooses to add and modify a fire more often than choosing
to remove a fire. By applying one of these moves, our system pro-
poses a training drill d′ and compares the total cost of the proposed
training drill CTotal(d

′) with the total cost of the current training
drill CTotal(d) to determine whether the system accepts the proposed
training drill d′ or keeps the current training drill d.

To ensure balanced trans-dimensional optimization, we define the
probability of each move. Our system computes the probability of
adding a fire as:

padd(d
′|d) = min

(
1,

premove

padd

U − |d|
|d′|

f(d′)
f(d)

)
; (8)

computes the probability of removing an existing fire as:

premove(d
′|d) = min

(
1,

padd

premove

|d|
U − |d′|

f(d′)
f(d)

)
; (9)

and computes the probability of modifying an existing fire as:

pmodify(d
′|d) = min

(
1,

f(d′)
f(d)

)
. (10)

Based on the above formulation, we set an upper limit on the
number of fires during optimization using the variable U = 40.
Thus, our system synthesizes a virtual environment with fires equal
to or less than U .

We also applied simulated annealing to explore our solution space
effectively. Simulated annealing allows us to use a temperature
parameter t to control the acceptance probability of the proposed
training drill d′. If the temperature parameter is high, the system will
aggressively explore the whole solution space. If the temperature
parameter is low, the optimizer will become more selective. We
initialize the temperature parameter as t = 1.00 at the beginning
of optimization. In each iteration, we multiply the temperature
parameter by 0.998. The optimization process terminates when the
change in CTotal(d) is less than 5% of the previous 50 iterations.

Unless specified otherwise, we set the weight of the length cost to
wlength = 1.00, the weight of the turn cost to wturns = .40, the weight
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of the fire cost to wfire = .60, and the weight of the visibility cost to
wvis = .40. Via those weights, our system prioritizes the length of
the path and the number of fires the user must extinguish. However,
the designer may change the priority by changing the weights.

6 USER STUDY

The user study was conducted between two universities (Purdue
and GMU) across states in the US. The two universities were not
in the same physical spaces. The intent of our project is to evaluate
whether our proposed method can synthesize training drills with
different targeted difficulty levels, thus triggering any difference in
the collaboration behavior among participants. The methodology of
the study is described in the following subsections. Fig. 4 shows
example scenes from the synthesized training drill.

Figure 4: Example scenes from the synthesized training drill.

6.1 Participants
We recruited participants in both universities via class announce-
ments and emails. Participants from each university were randomly
assigned to a group. Each group was scheduled to attend the study
simultaneously at each location. Participants in the same group re-
motely joined the shared virtual space to experience the synthesized
training drills. We collected data from 27 groups (54 volunteers; 34
male and 20 female). The age of the participants were between 17-30
years (M = 19.96, SD = 2.88). All participants have experienced
virtual reality before.

6.2 Conditions
We developed three experimental conditions to determine whether
the optimized training drills with differently targeted difficulty would
influence the collaboration behaviors among the participants. The
experiment followed a within-group study design. We used the Latin
squares [33] ordering method to balance the conditions and minimize
the carryover effects. Fig. 5 shows the three synthesized training
drills used in our experiment. The conditions were as follows:

• Low Difficulty (LD): We set the target cost terms as: ρlength =
280, ρturns = 30, ρfire = 3, and ρvis = .20.

• Medium Difficulty (MD): We set the cost terms as: ρlength =
300, ρturns = 35, ρfire = 5, and ρvis = .50.

• High Difficulty (HD): We set the cost terms as: ρlength = 320,
ρturns = 40, ρfire = 7, and ρvis = .80.

(a) Low Difficulty (b) Medium Difficulty (c) High Difficulty

Figure 5: The three experimental conditions we used for our user
study. Top: The position and size of fires (orange cells), the optimal
paths (blue cells), and the position of the virtual agents. Bottom:
The visibility of each training drill.

6.3 Measurements

We collected participants’ perceived mutual awareness, mutual assis-
tance, and dependent actions based on the questionnaire developed
by Biocca et al. [4]. For each question, we used a 7-point Likert
scale. In addition, we collected several in-game measurements to
record participants’ collaborative behavior. These in-game measure-
ments include the completion time, completion time offset, trajectory
length, distance between participants, extinguisher counts, and num-
ber of commands.

6.4 Procedure

After we grouped the volunteers, we scheduled each group a specific
time slot to attend the study at their corresponding university cam-
pus. Once both participants arrived, we first asked them to sign the
consent form, which was approved by each university’s Institutional
Review Board (IRB), if they agreed to participate. Next, the research
team collected the demographic information from the participants by
asking them to fill out a questionnaire. Then, our research team in-
troduced and helped the participants with the experiment procedures
and virtual reality equipment.

Participants first joined the warm-up session to meet in the warm-
up scene; integrating a tutorial session improves participants’ perfor-
mance and experience [14]. The warm-up scene was different from
the experiment scenes, but all the interaction mechanisms were the
same. We instructed them to familiarize themselves with the voice
commands and their functionality. Next, the research team informed
them how to use the fire extinguisher and enable the minimap (see
Fig. 6a), and at the same time, they became familiar with the Virtuix
Omni treadmill. Once participants finished the warm-up session and
agreed to start the experiment, the research team helped them join
the experiment’s scene. In Fig. 6b, we show two users trying to
open a path using the fire extinguisher. The warm-up session took
no more than five minutes, and each experiment session lasted about
10 minutes (no participant spent more than one hour to complete the
entire study). We informed participants they were allowed to give
up the study; however, no participant quit.

(a) (b)

Figure 6: (a) Users can enable a minimap. The minimap provided
information on players’ position, the position of the virtual agents,
the exits, and the commands they could use. (b) Two users collabo-
rate in the shared virtual environment to open a path to escape the
building.

6.5 Setup and Implementation Details

We used Unity Game Engine 2020.3.20f1 to develop the applica-
tion. We also used a Dell Alienware Aurora R7 desktop computer
(Intel Core i7, NVIDIA GeForce RTX 2080, 32GB RAM) in each
university to run the application. We used Unity’s Photon asset to
implement the network frame to allow participants to communicate
and collaborate in a shared virtual space. The optimization process
for authoring each training drill did not exceed 30 seconds. We used
the Virtuix Omni treadmill to allow participants to move around in
the virtual environment and Occulus Quest 2 as a VR headset. Lastly,
we used the KeywordRecognizer class provided by Microsoft and
integrated it into the UnityEngine library for voice recognition.
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6.6 Results
We used one-way repeated measures analysis of variance (ANOVA)
to analyze the data collected from three experimental conditions (LD,
MD, and HD). We assessed the individual differences using post-
hoc Bonferroni corrected estimates if the ANOVA was statistically
significant. We provide the descriptive statistics in the supplementary
materials file.

6.6.1 Objective Data
The analysis revealed a statistically significant result for the com-
pletion time measurement across the three examined conditions
(Λ = .413, F [2, 25] = 17.791, p = .000, η2

p = .587). The
post-hoc pairwise comparison showed that the completion time dur-
ing the LD condition was significantly lower than that for the MD
(p = .030) and HD (p = .000) conditions. Moreover, the com-
pletion time was significantly lower for the MD condition than the
HD condition (p = .012). We also found a statistically signifi-
cant result for the extinguisher count measurement (Λ = .381,
F [2, 52] = 42.179, p = .000, η2

p = .619). The post-hoc pairwise
comparison revealed that our participants used the virtual extin-
guisher less often in the LD condition than the MD (p = .000)
and HD (p = .000) conditions; moreover, the participants used
the virtual extinguisher less often during the MD condition than
the HD condition (p = .019). However, the statistical analysis
did not reveal significant results for the completion time offset
(Λ = .966, F [2, 25] = .441, p = .649, η2

p = .034), trajectory
length (Λ = .942, F [2, 52] = 1.592, p = .213, η2

p = .058),
distance between participants (Λ = .883, F [2, 25] = 1.663,
p = .210, η2

p = .117), and number of commands (Λ = .962,

F [2, 52] = 1.033, p = .363, η2
p = .038). We provide the descrip-

tive statistics in the supplementary materials file.

6.6.2 Subjective Self-reported Data
The mutual awareness measurement was statistically significant
(Λ = .618, F [2, 52] = 16.062, p = .000, η2

p = .382) across
the three examined conditions. The post-hoc pairwise comparison
showed that mutual awareness was significantly lower during the LD
condition than the MD (p = .000) and HD (p = .000) conditions.
Similarly, mutual assistance was statistically significant (Λ = .593,
F [2, 52] = 17.877, p = .000, η2

p = .407). The post-hoc pairwise
comparison revealed that mutual assistance was significantly lower
during the LD condition than the MD (p = .034) and HD (p = .000)
conditions, and the MD condition was significantly lower than the
HD condition (p = .001). The dependent actions measurement was
also statistically significant across the three conditions (Λ = .286,
F [2, 52] = 64.943, p = .000, η2

p = .717). The post-hoc pairwise
comparison showed that dependent actions were rated significantly
lower during the LD condition than the MD (p = .000) and HD
(p = .000) conditions, and the MD condition was rated significantly
lower than the HD condition (p = .000).

6.7 Discussion
The collected objective data, and more specifically the comple-
tion time and extinguisher count measurements, revealed that our
method can automatically synthesize training drills that have differ-
ent difficulty levels for executing them. These findings prove that
it is possible to synthesize fire evacuation training drills in which
the trainer/designer can specify the parameters, such as the path
length, number of turns in the optimal paths, number of fires, envi-
ronment visibility, and the system can synthesize variations of the
training drill without impacting the overall objective of that drill.
However, the trajectory length measurement was not statistically
significant across the three examined conditions. Considering that
our participants walked the same trajectory lengths across the three
conditions, the completion time proves that they needed more time
to complete a more difficult training drill in comparison to the MD

or LD training drills, in which they extinguish fewer fires and had
higher visibility. If we also consider the number of commands
measurement we could say that our participants tried to instruct the
virtual agents in roughly the same way across the three conditions.
Thus, we can say that the virtual fires (due to completion time and
extinguisher count) impacted our participants’ behavior in execut-
ing the tasks, but not the virtual agents. Consequently, we argue
that our method can synthesize training drills based on the difficulty
entailed in executing them.

In contrast, the other measurements did not differ across the three
experimental conditions. Specifically, an interesting observation
was made for the completion time offset and the distance between
participants measurements. In both measurements, although the
completion time offset and the distance between participants de-
creased from the LD condition to the MD condition and from the
MD condition to the HD condition, the decreases were not statisti-
cally significant. However, by looking at the mean values for the
completion time offset measurement, it is evident that the time offset
is close to 30 seconds for all three conditions. A similar observation
can be made for the distance between the participants: their mean
distance is sufficient across the three conditions, which indicates that
they were in different locations in the building during the training
drills. These findings suggest that although the participants were in
the same shared space, they chose their strategies and acted inde-
pendently. Such independent activity has been identified by Tang
et al. [28] as the “same problem, different area” style of coupling
between two people. Therefore, we think that our two participants
preferred to utilize a collaborative behavior that could help them
execute the given task in a way that was more optimal for them.

The mutual awareness measurement indicated that the partici-
pants were aware of each other during the training drill. It seems that
the difficulty of the training drill impacted their awareness of one
another. Therefore, the participants felt they were not alone while
executing the given task in the virtual environment The mutual
assistance and dependent actions measurements revealed that, as
the difficulty level of the training drill increased, the mutual assis-
tant of each participant (the degree to which each person needed to
help the other person) and their perceived dependence on the other
participant increased. These findings indicate that the participants
felt the pressure of the training drill, and they tried to assist the other
participant by creating a strategy that would help them execute the
given task and assist the other person.

Overall, by combining both the objective and self-reported mea-
surements, we can say that, though our participants planned their
strategy independently of each other, they were always aware of the
other individual in the shared virtual environment, and given their
awareness, they planned their strategy to help not only themselves
but also the other participant. It looks as if this kind of planning is
common in games [1] where players on the same team work together
to accomplish a given task. Our results showed that, though the two
participants were in separate locations, being in a shared virtual
space and sharing the same goals and tasks made them choose indi-
vidual strategies that benefited themselves and the team; therefore,
establishing a collaborative culture.

6.8 Limitations

Our study had some limitations. First, our participants were not
exposed to real-world evaluations. Therefore, we cannot firmly con-
clude that the training platform and its performance are effective
in real-world emergency evacuation scenarios. Second, due to the
hardware limitations (we used an Omni treadmill), long-time loco-
motive tasks will result in the users needing to exert physical effort
and experience fatigue [23], which could potentially decrease their
motivation. Third, our optimization-based approach only consid-
ered four design decisions to synthesize the training drill. We think
additional cost terms could be considered, such as those related to
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specific training objectives.

7 CONCLUSION

In this paper, we introduced a method to synthesize training drills for
fire evacuation scenarios. Due to the proposed optimization-based
formulation, a designer/trainer can easily define the target objectives
for each cost term. Our system automatically synthesizes the training
scenario where participants encounter the specified difficulty of
executing a task. Thus a designer/trainer could easily generate
several variations of a training drill, allowing trainees to experience
them and get prepared for potential real-world situations.
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