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a b s t r a c t

One of the most widely used motion capture (MoCap) methods depends on retroreflective markers
placed on an object. Through cameras, the MoCap system captures the moving prop’s (3D object)
motion. However, noise in MoCap data caused by the shape of the captured volume, motion between
frames, ghost points, and markers’ self-occlusion could impact the quality of the captured data. To
improve the quality of capturing the motion of props, we tackle the problem of finding an optimal
marker set configuration for a given input prop while considering various constraints. By ‘‘props,’’
we mean any objects or handheld items of different shapes and sizes on which markers can be
precisely placed to reduce MoCap errors. We propose an approach to optimize the placement of optical
(retroreflective) markers over props while encountering various constraints, such as the visibility of
markers, the number of makers used, the symmetry of the marker set, and markers’ overlapping. We
solve the marker set configuration problem using an optimization-based method, the reversible-jump
Markov chain Monte Carlo. We provide marker set configurations for various props and constraints
obtained through several simulations we ran to evaluate the performance of our method.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Capturing the movement of humans or objects has been a
ell-studied field in the computer graphics and animation litera-
ure. Motion capture (MoCap) describes the process of capturing
rames of movements of humans interacting with the environ-
ent, which are later mapped into 3D representations (e.g., vir-

ual character) [1,2]. Nowadays, MoCap setups are relevant for
pplications in multiple fields, such as films and visual effects,
ports, health, biomechanics, gaming, and immersive realities
3,4]. Among the optical MoCap solutions [5], one requires attach-
ng several retroreflective markers to a human body to capture
otion over time using a set of calibrated cameras [1]. These

etroreflective markers are usually small spheres or blobs. The
oCap system is then used to detect a marker in at least two im-
ges simultaneously from the cameras to reconstruct the three-
imensional position of the marker [6]. Subsequently, the system
ses the captured positions of the markers through sequences of
mages to represent the performer’s movements.

Raw optical MoCap data are often erroneous due to marker
cclusions or mislabeling from marker swapping during tracking,
nd require time-consuming manual post-processing [7]. Fix-
ng the mistakes in labeled markers through denoising could
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have implications and is a highly costly computational process
requiring sophisticated solutions, such as machine learning tech-
niques [8–10]. Such algorithms require reliable training data,
which can be complicated or expensive, considering the specific
motion task.

Marker placement for human MoCap can be considered an
easier task since: (1) all humans have the same structure, and
their skeleton follows the same hierarchy and (2) there is a lot of
documented knowledge resulting from years of work in human
MoCap literature [1,11,12]. However, placing markers on props
is challenging since each prop has its own unique shape, size,
topology, and topological constraints. Thus, optimizing marker set
placement is important to ensure efficient MoCap for any given
prop. The props on the scenes are one of the major causes of
missing markers during a MoCap session [13], making optimal
marker set placement an essential factor in the MoCap process. To
tackle this problem, we propose a method that finds an optimal
marker set configuration for any given prop (3D object). To our
knowledge, no prior work has focused on optimizing the marker
set layout in props. We formulate the problem of optimizing a
marker set configuration, considering various constraints as cost
terms, including the number of markers, markers’ visibility, mark-
ers’ overlapping, and marker set symmetry. We solve the total
cost function and provide optimal solutions using the reversible-
jump Markov chain Monte Carlo optimization method [14]. Our
method can provide multiple optimal marker set configurations
for different props and constraints.
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To understand the performance of our method in optimizing a
arker set for a user-defined prop, we measured its performance
ased on the total optimization time, and we evaluated our
ethod by comparing the following:

• variations in the number of markers used per object;
• variations in the resolution of the tested captured area; and
• props with and without constrained areas.

MoCap specialists could use our method to provide optimal
arker set configurations for any given prop. Thus, the specialist
ill not need to rely on empirical decisions and trial-and-error
oCap sessions to determine the performance and reliability of
defined marker set. Therefore, our method could save the time
nd effort required to prepare the props for a MoCap session.
The rest of the paper is structured as follows. In Section 2, we

rovide a review of related works on marker placement methods,
amera placement, and MoCap of objects. In Section 3, we present
n overview of the methods and the problem formulation. In
ection 4, we present the optimization algorithm in detail. Then,
e present the results from the different constraint comparisons

n Section 5. In Section 6, we discuss the advantages and dis-
dvantages of our proposed methods. Lastly, in Section 7, we
onclude and present potential directions for future work.

. Related work

In the following subsections we discuss related work to our
roject.

.1. Marker placements methods

For MoCap sessions, the layout of the markers is relevant for
he accurate reconstruction of motion. The placement of markers
ould cause multiple drawbacks, such as labeling problems, un-
atural animation, and pose inaccuracy. The labeling process de-
cribes how the computer interprets the marker set data through
imeframes to reconstruct the corresponding captured model,
uch as humans or objects [15]. This issue is investigated due
o the time-consuming labeling process for larger datasets and
ainly because of the costs of using the commercial software
nd licenses (e.g., Vicon Software [16]) required for this function-
lity [10]. To overcome the marker labeling problem, Ghorbani
nd Black [10] proposed a method for labeling raw MoCap point
loud sequences of the human body into markers called Solv-
ng Optical Marker-Based MoCap Automatically (SOMA). SOMA
ddresses the problem of robustly labeling human motion, con-
idering noise and variations across subjects, motions, marker
lacement, marker density, and MoCap quality. The authors gen-
rated synthetic MoCap point clouds with realistic noise and
rained a layout-specific network that could cope with realis-
ic variations across an entire MoCap dataset. The dataset used
or model selection and validation consisted of 215 sequences
cross four subjects, on average, using 40 markers. They used the
MD05 [17] database, which includes human MoCap data with
n average of 40–50 markers placed on the skeletal kinematic
hain model. As with any learning-based method, SOMA cannot
eneralize its results to new motions outside the training data.
Chatzitofis et al. [9] presented an approach employing ma-

hine learning and considering the costs of the equipment re-
uired for marker-based MoCap. The authors focused on a
arker-based, low-cost method called DeMoCap. Their model

earns the underlying structural relationships between the human
ody and marker set placement. The authors trained DeMoCap
n a unique dataset of human motion data using a marker
et composed of 53 markers. The retroreflective markers were
4 mm in size and attached to the performer’s suit. The authors
182
did not provide details about how they placed the markers on the
performers. The usage of a unique dataset implies that the model
needs to be trained for new configurations of markers.

Reconstructing human motion data could lack realism, life-
less results, and unnatural motions. To overcome this problem,
Loper et al. [18] proposed a method to capture the skeleton’s
movement and the human body’s shape. They defined motion
and shape capture (MoSh) to compute body shape and marker
locations to estimate body pose throughout a MoCap session.
Their method simulates markers during frames based on Powell’s
dogleg method with Gauss–Newton Hessian approximation. As
a contribution, the authors designed an optimization algorithm
using a greedy method to estimate the adequate number of
markers that need to be placed on the human body to capture soft
tissue deformation. They used a maximum number of markers
(144 markers) and compared them to a dataset of human models
(165 models in total). Their results showed the effectiveness of
the proposed method with an optimized subset of markers (67
markers).

Liu and McMillan [13] explored another marker layout prob-
lem: the missing marker problem. They proposed a linear mod-
eling approach to recover markers during frames for MoCap sys-
tems. Their implementation considers a global principal compo-
nent analysis of the training data from the motion sequences
of markers’ positions. Their method employs a random forest
classifier to determine the positions of the markers in incoming
scenes to provide accurate human motion reconstruction. In each
experiment, they randomly chose a fixed number of markers to
be missing for one second (120 frames) for every testing motion
sequence. Additionally, they considered a variety of motions for
the Carnegie Mellon University (CMU) MoCap database [19]. This
dataset is composed of 41 markers placed on actors’ bodies. Their
model focused on the marker’s positions, and the error mini-
mizations were calculated based on the millimeters of difference
between the prediction and the real data.

MoCap systems have been used to capture detailed human
motions, such as hands [20,21] or facial expressions [22,23],
with applications in emotion recognition, grabbing, facial ani-
mation, and others. Zell and McDonnell’s [23] proposed a novel
algorithm for computing minimalistic facial landmark layouts
specific to a blendshape model. Blendshape interpolation is the
dominant approach to facial animation and provides the model’s
degrees of freedom. The optimization method categorizes poten-
tial candidates for facial landmarks and computes their quality to
reconstruct captured facial motion. Despite the NP-hard nature
of the problem (such as the weighted set cover problem), the
authors computed a globally optimal solution using state-of-the-
art mixed integer solvers. Their method considers constraints
related to symmetry, distances between markers, and blendshape
displacement for their marker positioning. The authors recog-
nized the inaccuracies introduced by manual marker placement
and retargeting issues between different characters from previous
datasets, which they considered inappropriately placed over the
blendshape.

Schröder et al. [21] considered optimizing marker layouts to
capture the hand. They generated sparse marker configurations
that were optimal for solving the constrained inverse kinematics
problem. The optimization finds the minimum cost through the
particle swarm optimization scheme. The penalties they consid-
ered for the cost’s functions are related to the constrained areas
of the hand to generate well-conditioned marker sets for real
usage and sparse between markers, maximizing the minimum
distance between them. Their results show that the reduced
marker layouts (comparison between 17, 8, and 6 markers) can
reconstruct hand motions robustly and accurately from sparse

marker set input.
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.2. Camera placement

Camera placement for the tracking system is a widely studied
rea. The well-known art gallery problem establishes the problem
f finding the minimum number of cameras that can monitor
fixed number of paintings in a gallery [24]. Researchers have
lso explored the placement of cameras around the captured
rea or environment based on the position, angle, field view, and
ther properties of the camera’s configurations [25]. Rahimian
nd Kearney [26] proposed an automatic method for placing
ameras in cave automatic virtual environments (CAVE) [6]. The
uthors focused on two main errors in the camera layout: marker
isibility and triangulation accuracy. Their method maximizes
he visibility of points with minimal 3D reconstruction errors
n the presence of dynamic occlusion. The simulated annealing
lgorithm was employed to find a globally optimal solution. The
cclusion-based method was tested with synthetically generated
arget point sets and point sets from a MoCap session of a person
ith a body suit covered with reflective markers walking in their
AVE. According to the authors, for a setting with 17 cameras,
heir method would need 2–5 h to produce results.

Another approach exploring camera positioning was demon-
trated by Ercan et al. [27], who focused on multiple camera
lacement and performance over the sensor network approach
or tracking single objects. Instead of tracking all objects in the
nvironment, which is computationally very costly, the cameras
rack only the target object and treat others as occluders. The
amera network’s task is to track an object on the ground plane
n the presence of static occluders and other moving objects. The
uthors explored the trade-offs involving the occluders’ known
ositions, the number of occludes, the tracking accuracy, and the
umber of cameras. They focused on multiple simulations. One of
he simulations consisted of a captured area of 100 × 100 units
ith known occludes and eight cameras placed around its periph-
ry. They simulated moving occluders and found metrics related
o the sensors’ accuracy and energy consumption. The authors
alidated multiple algorithms, among which greedy selection per-
ormed close to the brute force method and outperformed the
ther selected heuristics. The authors did not provide details
bout the camera placement.
Aissaoui et al. [25] proposed another optimization approach to

btain an optimal camera placement. They used a guided genetic
lgorithm (GGA) to simulate the best camera configuration for
oCap applications. Their approach examined capturing markers
ttached to virtual humanoids performing movements similar to
hose in the real world. Regarding markers, they employed 54
arkers or ‘‘tags’’ for the model and did not provide details about

he chosen marker set and its placement. Their algorithm consid-
rs the camera’s positions, angles, rotations, and error metrics,
uch as occlusion, resolution, and field of view. The GGA approach
eaches a maximum rate of recovered tags (100%) by using only
our or six cameras with a runtime of 15 min. Their defined
amera placement influenced the final capture of the markers.
onsidering the previously discussed work, the cameras’ posi-
ions and the visibility of the markers are essential factors that
ould influence the MoCap process. Thus, in our implementation,
e decided to use an arrangement of eight cameras, which we
onsidered to be a usual MoCap setup [2].

.3. Motion capture on objects

Prior research relating to the manipulation of objects has fo-
used on how humans interact with objects applied to animation
nd robotic fields [28]. The grab interaction made during human–
bject interactions is useful for graphics and robotics to help 3D
haracters or robots interact with their surroundings [29]. On
183
objects, there are datasets focused on improving human–robot
interaction in household settings. Thus, Brahmbhatt et al. [29]
explored the phenomenon of thermally observable contact with
household objects. They proposed a novel dataset of contact maps
for household objects that captures the contact handled from a
thermal camera record. A contact map is a thermal representa-
tion of the area occupied by the human hand during grasping.
Furthermore, they used a generative adversarial network-based
image-to-image translation to predict contact maps from object
shapes. For the data collection, they used RGB-D and a ther-
mal camera calibrated rig. They defined an object representation
oriented to real-world robotics scenarios in which mobile manip-
ulators are often required to grasp objects after observing them
from a single view.

Considering object manipulation for human animations, Taheri
et al. [30] described the creation of a new dataset with full-body
motion for human–object interaction called GRAB. They used the
extended version of the MoSh++ algorithm to estimate the 3D
shape and motion of the body and hands from MoCap mark-
ers, including facial performance. For the MoCap setting, they
used small hemispherical markers on the objects and showed
that these did not affect grasping behavior. They attached 99
retroreflective markers per subject: 49 for the body, 14 for the
face, and 36 for the fingers. They used spherical 4.5 mm radius
markers for the body and hemispherical 1.5 mm radius markers
for the hands and face. Also, they attached 1.5 mm radius hemi-
spherical markers directly on the object surface to capture object
motion. Per objects, they considered place at least eight markers.
Additionally, the marker’s size and chosen placement made them
unobtrusive for the capturing task. The authors empirically dis-
tributed the markers on the object, considering that the cameras
could observe at least three of them. The authors could capture
the full-body motion during different grasping tasks with the
previously described configurations. The GRAB dataset could be
employed for learning human–object interaction models, robotic
grasping mimics, mapping MoCap markers to meshes, and other
applications.

3. Method overview

3.1. Preliminaries

We developed a pipeline composed of several steps. We illus-
trate our pipeline in Fig. 1. In the initial step in our pipeline, we
asked users to provide a prop (3D mesh) of the desired object they
wanted to capture later during the MoCap process. We predefined
an experimentation setup by defining the number of cameras,
their positions in the room setting, and the expected capture area.
We preprocessed the 3D mesh by sampling it—to retrieve poten-
tial positions so that our method could place the markers—using
the constrained Poisson disk sampling method [31]. For all results
we present later in this paper, we sampled all meshes by request-
ing the Poisson disk sampling to generate 1000 sample vertices.
We considered this number to provide enough resolution for the
mesh for our experiments. However, a developer could request
a different sample size based on the size and complexity of the
input prop. Given the sampled vertices of the input 3D mesh and
an initial randommarker set, the proposed optimization approach
searches for the optimal marker set configuration by updating the
marker set configuration using one of the moves: add, remove,
or modify. The proposed marker set is then evaluated by the
total cost function taking into account the defined cost terms. Our
algorithm computes the score of the current marker set layout
and verifies if it is a better solution. If the current marker set is not
better than the previously proposed one, it rejects the proposed
configuration and proposes a new one by choosing one of the
defined moves. We provide more details about the optimization
procedure in Section 3.2. As an output, our algorithm provides an
optimal marker set configuration for the input 3D prop.
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Fig. 1. Our pipeline includes the following steps: (1) Input: the required inputs for our method that include room settings parameters, configured capture area, and
D object model; (2) Preprocessing: the sampling of the 3D mesh by user-specified number of vertices; (3) Initialization: configuration of an initial marker set over
he 3D mesh; (4) Optimization: we use the MCMC algorithm to optimize the marker set configuration according to three moves (add, remove, and modify), and
we evaluate the acceptance of the generated marker set based on cost terms (visibility, number of markers, overlap, and symmetry); and (5) Output: the optimal
arker set for the given input prop.
.2. Problem formulation

Let M = {m1,m2, . . . ,mD} denote a set of D retroreflective
arkers consisting of the markers placed around the object. Each
arker mi is placed in one of the sampled vertices of the input

prop, so a single marker mi is represented by a position P(mi) =

xi, yi, zi). Our method evaluates the quality of the marker set M
by a total cost function CTotal (M):

Total (M) = CLwT
L + CPwT

P , (1)

here CL = [Cv
L , Cn

L ] is a vector of the layout cost and wL =

wv
L , w

n
L ] is a vector of weights. Cv

L and Cn
L encode the marker

ayout configuration: the camera’s visibility of the marker ar-
angement and the number of markers placed on the object.
P = [Co

P , C
s
P ] is a vector of penalty decisions over the marker

lacement configuration, and wP = [wo
P , w

s
P ] is a vector for the

eights of those costs. Co
P and C s

P encode the penalties considered
n the optimization process, which are the overlapping cost and
he symmetry of the marker set respectively.

.2.1. Layout costs
Our method evaluates each marker set M over a camera con-

iguration. In a MoCap studio, the cameras should be placed in a
ay that ensures: (1) maximization of the captured volume and
2) overlap between pairs of cameras’ captured volumes to allow
econstruction of the marker’s position through triangulation.
onsider the set of camera pairs C = {cp1, cp2, . . . , cpcn} in which
pi = (cj, ck) represents a camera pair placed in the captured area,
c is a single camera, and cn the total number of camera pairs.
In this case, we consider cn = 4, so the configuration comprises
ight cameras. In our project, we arranged the camera pairs based
n the suggestion of Rahimian and Kearney [26] and the findings
f Olange and Mohr [32], which mentioned that placing camera
airs in angles with view vectors that are sufficiently non-parallel,
s illustrated in Fig. 2, avoids triangulation error propagation and
rovides a correct triangulation calculation.

isibility cost:. To reconstruct the position of the marker through
he cameras from world space coordinates, we considered the
isibility of the marker set M . The visibility of the marker set
efers to the average visibility of markers (obtained through
184
Fig. 2. The placement of cameras and the pairs between them in the examined
captured area.

triangulation) per camera pair in a user-defined sampled reso-
lution in the captured volume (see Fig. 3 for different resolutions
of the captured area). Specifically, we denote as P the set of
sampled points [p1, p2, . . . , pD] in the captured volume in which
an examined prop iterates over. For example, suppose the user
specifies four sample points per axis (4 × 4 × 4). In that case,
our method will sample the capture volume by D = 64 points.
We then used each of these points to evaluate the visibility of
the marker set by testing the props in different positions in the
3D room to approximate the object’s coverage from multiple
camera perspectives. We expressed this visibility coverage by the
following cost:

Cv
L =

⏐⏐⏐⏐ 1
|P|

∑ 1
|M|

∑ 1
|C |

∑
∆ (pi,mi, cpi) − ρv

⏐⏐⏐⏐, (2)

pi∈P mi∈M cpi∈C
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Fig. 3. Examples of different capture area volumes: (a) 4 × 4 × 4, (b) 8 × 8 × 8, and (c) 12 × 12 × 12 sampled resolutions.
here ρv is the target of the average visibility of the marker set,
nd ∆ (cpi,mi, pi) represents the computation of the triangula-
ion of each camera pair in C to locate a single marker mi in the
ranslated object position pi, which we defined by the following
tatement:

(cpi,mi, pi) =

⎧⎨⎩1 mi is visible at position pi from a
camera pair cpi

0 otherwise.

Specifically, our method computes this triangulation by pro-
ecting a camera ray cj and ck from a camera pair with j ̸= k and
, k ≤ |C | to the current marker mi. We expect that a marker mi
hould be located in the 2D projection of the captured area for a
air of cameras cj and ck.

umber of markers cost:. We allow the user to specify the
aximum number of markers placed on a prop. Thus, we defined

he number of makers’ costs as follows:

n
L = 1 − exp

(
−

1
2σ 2 (|M| − ρn)

2
)

, (3)

here ρn is the target number of markers to be placed on the
rop, |M| denotes the total number of markers currently placed
n the prop, and σ controls the spread of the Gaussian penalty
unction, which we empirically set as σ = 1.0.

.2.2. Penalty costs
Failures during marker labeling could happen due to marker

wapping in mid-sequence or introducing new misplaced mark-
rs. These errors could occur when markers pass within a small
istance from each other and, as a result, swap paths due to
umerical inaccuracies in the system. For the penalty costs, we
rimarily focus on markers’ placement to avoid overlapping (pos-
ible marker swapping) and the occurrence of symmetry between
he resulting marker set positions (MoCap system errors).

verlap cost:. The optical markers attached to the object must
ot overlap. To avoid the placement of markers in the same or
djacent vertices of the mesh, we defined the overlapping penalty
s follows:

o
P =

⏐⏐⏐⏐⏐⏐ 1
N

|M|∑
i=1

|M|∑
j=1

OVL(mi, mj) − ρo

⏐⏐⏐⏐⏐⏐ , (4)

here N represents the total number of evaluated marker com-
arisons without considering the case i = j; so, in this case,
=

|M|!

(|M|−2)! . ρo is the target overlap between the markers, where
o = 0 means that we expect no overlapping between markers,
hereas a higher value means that we have less restriction on the
verlap between markers. Moreover, the OVL operation detects
185
whether there is an overlap between pairs of markers in the
marker set M as follows:

OVL(mi,mj) =

⎧⎨⎩1 overlapping between a pair of
markers mi and mj

0 otherwise.

For the OVL operation, we used a sphere–sphere intersection algo-
rithm1 to evaluate whether the markers mi and mj intersect. For
the intersection algorithm calculation, a marker is represented as
a sphere of a 2 mm radius.

Symmetry cost:. As we stated before, the set of markers M con-
tains the marker set configuration on the 3D mesh. Suppose there
is evidence of symmetry in the marker set configuration. We con-
sider this a drawback due to possible ambiguities [33], since the
MoCap system, in these cases, is not able to accurately understand
the direction of the captured object (might consider by mistake
the symmetrical representation of the object).2 Therefore, we
defined a penalty cost for the set of P (mi) points resulting from
marker set M as:

C s
P = | SMC (M) − ρs| , (5)

where ρs is the target symmetry for the marker set, and SMC
(Symmetry Marker Calculator) is an operation that determines if
there is a symmetry in the evaluated marker set M and it defines
the following condition:

SMC(M) =

{
1 symmetry found ∀P(mi) points
0 otherwise.

The mentioned operation detects the symmetry of the current
marker set configuration by rotational transformations per 3D
axis. For symmetry detection, we used the theory of rotational
symmetry [34]. For a marker set (set of 3D points), we determined
a symmetry expressed by k rotations, named the ‘‘k-fold line
of rotational symmetry’’ [35]. This method considers a k-fold
rotation if there is a way to rotate the marker set (360/k) degrees
around an axis where we can match the exact positions of the
markers. To find this property, we defined a k constant that
establishes the number of rotations to evaluate over x, y, and z
axis to look for possible symmetries between the markers.

To validate symmetry, we used the Knuth Morris Pratt (KMP)
string-searching algorithm [36]. Specifically, we considered L =

l1l2ln, with li as a string representation of a 3D coordinate and ck
as a rotation operation. We then affirmed that L′ is the rotation of
L by k through L′

= ck(L). Given both L and L′, we found a rotation
k ∈ {1, 2, . . . , 360} such that L′

= ck (L ). To find the rotation, we
constructed the string LL by concatenating L with itself and then
reporting all occurrences of L′ in LL. If we find an L′ in LL, we find

1 https://mathworld.wolfram.com/Sphere-SphereIntersection.html.
2 https://docs.optitrack.com/motive/markers#marker-placement.

https://mathworld.wolfram.com/Sphere-SphereIntersection.html
https://docs.optitrack.com/motive/markers#marker-placement
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k-fold rotational symmetry. To represent the marker set M as a
string, we transformed the 3D coordinates of a marker P(mi) to a
cylindrical coordinate (r, ϕ, z). Each marker’s new representation
was then sorted by the radial distance r and concatenated in a
long string L. Each k rotation generates an L′, rotating the original
marker set positions P (mi) and then transforming them into the
string. If we find one of those transformations’ strings with the
KMP algorithm in LL, then the SMC output will be set as stated in
the condition mentioned previously (SMC (M) = 1).

4. Optimization

We found an optimal configuration of marker set for a given
prop by optimizing the total cost function CTotal(M). We
mployed a Markov chain Monte Carlo (MCMC) method called
imulated annealing (SA) with a Metropolis–Hastings state search-
ng step. As an input object could be composed of an arbitrary
umber of markers in the arbitrary mesh vertices position, our
ptimization searches in a trans-dimensional solution space to
ind the optimal solution. To effectively sample the solution
pace of marker configurations, we employed the reversible-jump
CMC method [14]. Thus, we defined a Boltzmann-like objective

unction:

(M) = exp
(

−
1
t
CTotal(M)

)
, (6)

where t is the temperature parameter of SA. SA randomly selects
a move at each algorithm step to refine the current marker set
M . The movements used by the SA algorithms are as follows:

• Add a Marker: A marker is placed on a randomly chosen
vertex of the sampled prop and added to the proposed
marker set M .

• Remove a Marker: A marker is randomly selected and re-
moved from the proposed marker set M .

• Modify a Marker: A marker is randomly selected from the
current marker set M and placed in a randomly chosen
vertex of the prop to create a new proposed marker set M .

We defined the add, remove, and modify moves selection
robabilities as pa, pr , and pm respectively. For this implemen-
ation, we set pa = .30, pr = .30, and pm = .40. This means
that the modified move is more likely to be selected as the
next step during the optimization process. The new configuration
M ′ is evaluated using the proposed cost function, CTotal

(
M ′
)
. If

the total cost CTotal
(
M ′
)
of the new configuration is better than

the best configuration found so far CTotal (M), then the algorithm
proceeds to use it as a new configuration. Further, if the proposed
configuration M ′ has a higher total cost than the best configura-
tion M , SA accepts the new configuration with some probability,
depending on the current temperature. In this solution space
exploration, considering the trans-dimensionality of the problem,
our approach accepts the proposed marker set M ′ with the fol-
lowing acceptance probability Pr

(
M ′
⏐⏐M) specified based on the

Metropolis criterion: for the Add a Marker move:

pa
(
M ′
⏐⏐M) = min

(
1,

pr
pa

Z − |M|

|M ′|

f
(
M ′
)

f (M)

)
; (7)

or the Remove a Marker move:

r
(
M ′
⏐⏐M) = min

(
1,

pa
pr

|M|

Z − |M ′|

f
(
M ′
)

f (M)

)
; (8)

for the Modify a Marker move:

pm
(
M ′
⏐⏐M) = min

(
1,

f
(
M ′
)

f (M)

)
. (9)
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Table 1
The default configurations for the optimization.
Parameters Default values

Target average visibility of marker set (ρv) 1
Target number of markers (ρn) 7
Target overlap between markers (ρo) 0
Target symmetry of the marker set (ρs) 0
Marker interval [4, 20]
Evaluated positions 64
Captured area dimensions 2 × 2 × 2 m
k-fold symmetry 8
Camera field of view 60◦

Marker size 2 mm

We assumed that we could only use Z markers rather than an
nfinite number so that the dimensionality of the solution space
as an upper limit. Thus, we restricted the current marker set
onfiguration M by a maximum number of elements by Z . We set
a maximum number of markers as Z = 20 for our experiments’
possible marker set.

We used this Markov chain-based algorithm to explore the
solution space to find a minimum efficiently. The temperature
parameter t of the simulated annealing helps our algorithm over-
come local minima and find an optimal solution. At the beginning
of the optimization, we set t to be high, so the optimizer ag-
gressively explores the solution space, accepting multiple config-
urations that do not necessarily meet the requested constraints.
Throughout the optimization, the temperature t is lowered until
it reaches zero. We initialized the temperature t = 1.00 at the
beginning of the optimization process and then reduced every
50 interactions by .25. When the algorithm reaches 200 itera-
tions, the temperature value is restricted to zero, constraining the
algorithm from accepting less optimal solutions. The algorithm
terminates after the cost difference of the last 50 iterations is less
than 3%.

Unless otherwise specified, we set the weights as wv
L = 1.00

and wn
L = .80 in our optimization. We set the weights of all

penalty terms as wo
P = 1.00 and ws

P = 1.00. Moreover, we
established the interval limits for the markers used in our method
and defined an interval between 4–20 markers for optimal place-
ment. In addition, we set the radius of the marker to 2 mm. The
designer can modify these parameters to emphasize confident
design choices or constraints by adjusting the weight values.

5. Evaluations and results

We implemented our approach on an Alienware PC with an
Intel Core i7-8700K CPU and 32 GB of memory. We implemented
the optimization framework in C# through the Unity game en-
gine. Our interest in the algorithm implementation is to place
the optical markers optimally over the input props. We tested
10 props with different configurations and constraints defined for
the optimization process. We used these props as inputs in our
method, and we ran 10 optimization tests per prop to collect data
related to the algorithm’s performance. We describe the results
in the following subsections. The default configurations of our
method is provided in Table 1.

In the default setting, the algorithm performed a single itera-
tion in 2.17 s, and to provide an optimal marker set configuration,
it required 585.44 s on average. The optimization required time
to compute the costs due to the per iteration validation of the
resolution of the capture area used to calculate the visibility
costs. We evaluated the number of markers used, the capture
area resolution, and the constraints over the meshes. For the 3D
meshes used in the analysis, we focused on props that humans
could manipulate during a MoCap session (e.g., umbrella, box). In
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Fig. 4. The input props, the props with constrained areas, and an optimal marker
set configuration proposed by our method.

Fig. 4, we provide a list of the input props with the corresponding
constraint mesh layout and the optimal marker placement in the
constrained props (props with areas where markers cannot be
placed).

5.1. Evaluating the number of markers

For this evaluation, we considered the number of markers tar-
eted for optimization. We used three marker targets (5, 10, and
5 markers) based on the defined interval limits (see Table 1) for
ptimal marker placement. We summarize the obtained marker
ets for different numbers of marker targets in Fig. 5, and Fig. 6
rovides the average cost for each object in the evaluated marker
umber.
We used a one-way repeated measures analysis of variance

ANOVA) to explore potential differences among the targeted
nput variants. The analysis indicated a significant effect of the
umber of markers used on the total cost achieved by the op-
imization algorithm (Wilks’ Λ = .248, F [2, 8] = 12.135, p =

004, η2
p = .752). The post hoc comparison showed that the

erformance of the 10 markers (M = .09, SD = .03) was
187
Fig. 5. Output props with the optimal marker placement by a different number
of targeted markers.

statistically significantly lower than the 15 markers (M = .03,
SD = .22) at p = .003. There was no statistically significant
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Fig. 6. Average cost per prop for a different target number of markers and the overall average of all props.
Fig. 7. Average cost per prop for different volume areas and the overall average of all props.
Fig. 8. Average cost per both constrained and unconstrained prop, and the overall average of all props.
difference between the performance of 5 markers (M = .18, SD =

14) and 10 markers (p = .255) or between the performance of
the 5 markers and 15 markers (p = .067).

5.2. Captured area resolution

In this evaluation, we considered the resolution of the cap-
tured volume (see Fig. 3) used to calculate the visibility cost. The
selected targeted resolutions of the area are 4 × 4 × 4, 8× 8 × 8,
and 12 × 12 × 12 sampled resolutions. In Fig. 7, we provide the
results of this evaluation for each object.

We ran a one-way repeated-measures analysis of variance
(ANOVA) to explore potential differences in the optimal total
cost across the three examined volume areas. The analysis re-
vealed statistically significant results across the three examined
volumes (Wilks’ Λ = .097, F [3, 7] = 37.362, p < .001, η2

p =

903). The post hoc comparison showed that the average cost for
2 × 12 × 12 (M = .05, SD = .02) was significantly lower than
hat for 8 × 8 × 8 (M = .06, SD = .03) at p = .036 and 4 × 4 × 4
(M = .08, SD = .03) at p = .000. Moreover, the average cost
for 8 × 8 × 8 was statistically significantly lower than that for
4 × 4 × 4 at p = .000.

5.3. Constrained meshes

We also evaluated the performance of our algorithm to find
an optimal marker set when we used a constrained and an
unconstrained prop as input (see Fig. 4 for the constrained and
188
unconstrained props we used in this experiment). We present the
results for this comparison in Fig. 8.

We used a paired sample t-test to explore a potential differ-
ence in optimizing constraints and unconstrained props. We did
not find a significant difference (t[9] = 1.33, p = .216) between
the constrained (M = .09, SD = .04) and the unconstrained
(M = .08, SD = .04) props.

5.4. Ablation test

We conducted an ablation test to evaluate and understand
how the proposed cost terms contribute to the final result. The
test consists of removing cost terms from Eq. (1) and running
simulations with the remaining ones. Fig. 9 shows the method’s
performance without the visibility, overlapping, and symmetry
cost terms. The figure shows an optimal marker set in each of
the props, although some issues are highlighted in the optimized
results. Specifically, inconsistencies in the marker set include
visibility problems, such as the position of the marker inside the
umbrella or on the bottom of the box, overlapping markers on the
backpack and sword, and symmetry problems on the table tennis
racket and sword. We argue that such issues could cause errors
during the motion capture process.

5.5. Expert evaluation

We evaluated our method against a MoCap expert to show
how our optimization-based method could outperform an empir-
ical method of placing markers on the props. We considered all



P. Acevedo, B. Rekabdar and C. Mousas Computers & Graphics 115 (2023) 181–190

g
p

Fig. 9. Marker set configuration for different ablation tests (a) without visibility
term, (b) without overlapping term, and (c) without symmetry term.

Fig. 10. Total cost comparison between expert marker set layout and optimal
marker set.

10 meshes and asked a MoCap expert (38 years old; 12 years of
MoCap experience) to place markers on each prop empirically.
For each prop, we asked the expert to place 10 markers and
then we evaluated the suggested layout with a layout resulted
from our optimization method. To do so, the expert’s marker set
was scored based on our cost terms. Fig. 10 shows the results of
this test. Our method outperforms the expert’s marker set in all
cases. In some cases, the expert’s configuration is reasonably close
to the optimal solution (e.g., the table tennis rack and shield),
implying that an expert can find a good enough, but not optimal,
configuration, as our algorithm does.

6. Discussion

Our method provides optimal marker set configurations for a
iven prop and user-specified constraints. We validated the pro-
osed method through multiple comparisons, such as the number
189
of markers, different capture area resolutions, and props with and
without constraints. According to the results obtained from our
first evaluation, in most cases, better results were provided when
we requested that our optimizer find optimal configurations for
10 markers. The results showed low performance (higher total
costs) when a user requested a 15-marker set. When requesting
a lower number of markers (5 markers in our case), we found
that the total cost values were generally the lowest, but for some
props, the total cost was higher than the other cases (e.g., the
average for the bike or box props). These results suggest that
larger meshes require more markers to obtain an optimal marker
set with lower costs. Our results also confirmed that our method
can determine which marker set could work better for a given
prop.

The results also suggest that a higher resolution of the cap-
tured area provides better performance on the algorithm. How-
ever, we should note that a higher resolution of the captured
volume increases the total time our system requires to find the
optimal marker set configuration. On average, our system re-
quires 1.5 h to provide the optimal solution for the 8 × 8 × 8
resolution. However, keep in mind that the method of Rahimian
and Kearney [26], who also considered the visibility of the mark-
ers, requires nearly the same time (approx. 2 h) to provide an
optimal camera placement based on the possible points around
the CAVE.

Moreover, according to our results, our method can efficiently
compute optimal marker sets for both unconstrained and con-
strained meshes. Furthermore, the results of a MoCap session
depend on the camera placement. Thus, an optimal camera con-
figuration must also be considered as an initial step to ensure the
scene is covered appropriately.

Lastly, we would like to mention a couple of limitations of
our method. First, our method requires a lot of time to find the
optimal solutions, which mainly depends on the initial param-
eters (e.g., the resolution of the captured volume area). Second,
the procedure of marker placement only considers the props’ self-
occlusion; therefore, in more complex scenarios (e.g., considering
occupied spaces in the room, problems during the triangulation
process), the accuracy of our method in obtaining a reliable
marker set might be decreased. In addition, due to limited ac-
cess to MoCap equipment, we did not conduct an experiment
to compare our results in real-world MoCap sessions to support
the validity of our proposed marker set layout. Thus, we argue
that we need more experimentation to show and support the
proposed method’s reliability in real-world MoCap testing rather
than in a simulation environment.

7. Conclusions

In this paper, we proposed a novel method to find an optimal
marker set configuration for a given prop (3D object) through the
reversible-jump Markov chain Monte Carlo optimization method.
We obtained multiple marker set layouts by testing different
props. We tested our approach by comparing the performance
through several simulations with variations in the number of
markers used per prop, the resolution of the captured volume,
and constrained areas over the props. The results suggest the
feasible average performance of our method between the tested
variations, especially when examining the number of markers. In
this case, our method recommended that the optimal marker set
of 10 markers should be placed on the examined objects. Our
method could provide an optimal marker set configuration even
when we used meshes with constrained areas. Moreover, our
method performs better than a MoCap expert; however, we note
that a MoCap expert could also provide good enough results. Our
future work will address the limitations of this study and expand
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ur method to include captured areas with occluders, which can
e considered more realistic MoCap setups. We will also explore
ow to optimize marker sets for non-rigid props such as garments
nd flexible props.
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