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Fig. 1: A user-created agent is optimized via evolution (top). The structure is fixed, but its attributes (body part length, width, mass,
initial pose, joint range, stiffness, and damping) can change. Even small changes in the attributes lead to significant improvement
in performance, as shown in the zoomed-in parts. The performance (see Sect. 5.3) of the baseline agent is 100%, and it improves
through the evolution to 27, 48, 61, and 92%. Agent’s performance can be improved without significantly altering the original design,
even with user constraints. The bottom row shows the optimization when structural changes are allowed, and the evolution will attempt
to add or delete body parts. The performance improves through the evolution to 97%, 78%, 78%, and 49% through four epochs of
optimization. Each epoch of change structure evolution contains 30 generations of fixed structure evolutions.

Abstract— We introduce a novel co-design method for autonomous moving agents’ shape attributes and locomotion by combining
deep reinforcement learning and evolution with user control. Our main inspiration comes from evolution, which has led to wide variability
and adaptation in Nature and has significantly improved design and behavior simultaneously. Our method takes an input agent with
optional user-defined constraints, such as leg parts that should not evolve or are only within the allowed ranges of changes. It uses
physics-based simulation to determine its locomotion and finds a behavior policy for the input design that is used as a baseline for
comparison. The agent is randomly modified within the allowed ranges, creating a new generation of several hundred agents. The
generation is trained by transferring the previous policy, which significantly speeds up the training. The best-performing agents are
selected, and a new generation is formed using their crossover and mutations. The next generations are then trained until satisfactory
results are reached. We show a wide variety of evolved agents, and our results show that even with only 10% of allowed changes,
the overall performance of the evolved agents improves by 50%. If more significant changes to the initial design are allowed, our
experiments’ performance will improve even more to 150%. Our method significantly improved motion tasks without changing body
structures, and it does not require considerable computation resources as it works on a single GPU and provides results by training
thousands of agents within 30 minutes.

Index Terms—Reinforcement learning, Evolutionary algorithms, Physics-based simulation

1 INTRODUCTION

Authoring autonomous moving agents is a significant open problem
with applications ranging from robotics to animation [50]. Their manual
creation and motion design offer a high level of control but do not scale
and are error-prone. Automatic generation does not always lead to the
desired morphology and topology. Moreover, having the agents react
to the environment requires the design of behavioral policies. Recent
approaches focused on the automatic design of behavior policies, and
advances have been achieved with the help of deep reinforcement
learning (DeepRL) combined with motion simulation and fine-designed
reward/objective function in physics-based environments [21, 44, 45].
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While a large body of related work has addressed virtual agent
behavior and control policy design, the co-design of a virtual agent
shape and its corresponding control policy is an open research prob-
lem. While structural and behavioral co-design is the natural way
for living forms, it is a challenging computational problem because
the search space is ample. The changes in the agent’s configuration
may cause the original control method to diverge from the expected
motion. Existing algorithms optimizing the agent and its controller
either use simple configurations (e.g., 2D space, voxels) [3] or often
lead to structures that deviate considerably from the initial design. It
is also essential to balance the optimized and the initial structure, as
uncontrolled optimization may lead to a significantly different shape
from the user’s expectations. At the same time, a good way would be
to allow body parts to be added or removed via evolution. Our work
shows that even subtle changes to the initial design can significantly
increase performance: “a slow agent with better legs will run faster".

Our first key observation comes from evolutionary algorithms that
address the wide variability of forms and their adaptation [40]. More-
over, recent progress in DeepRL has introduced ways to learn a single,
universal behavior policy for a wide range of physical structures result-
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ing in a smaller memory footprint and efficient behavior learning in
large-scale settings [15]. Therefore, using universal DeepRL frame-
works has the potential to provide an efficient way to explore the ample
solution space and design evolution-based methods simultaneously.
Our second key observation comes from the high variation the evolu-
tionary design often causes. This is undesirable, and user constraints
over how the agents evolve can significantly guide the agent’s shape
and prune the search space. Our third observation supports discrete
morphological changes potentially indicating the evolution preference
during the structure optimization. Suppose a body part becomes signifi-
cantly shorter during evolution. The algorithm will explore removing
the part entirely, as it may not be needed to aid the overall goal.

We introduce a novel evolution-based algorithm that co-designs the
3D physical parameters of an agent and its corresponding behavior
within a user-defined boundary. Our work aims to co-design various
agents with similar physics attributes within the range of user inputs
and a universal controller to walk in the given environment. The user
input defines the range of the body part’s length, radius, and range of
joints’ angles affecting the agents’ kinematic and physics attributes.
The evolution-based method creates new agents based on the user-given
template agent and optimizes their performance. For each generation,
we first train a policy net with Proximal Policy Optimization (PPO) to
control agents’ motion. Our method builds on the recent work of Gupta
et al. [15] that allows for learning a universal controller over a modular
robot design space with different structures. We designed a universal
policy based on Multiple Layer Perceptron (MLP) that controls all the
agents with the same topological structure with a single deep neural
network that trains faster on multiple agents in one generation and
has a strong generalization ability over generations. After the train-
ing phase, we create a new generation by selecting high-performing
agents and merging their attributes represented as genes. Through
this evolution, we produced agents with higher performance in several
generations. The user controls what and how much can be modified
through evolution, leading to agents that vary slightly from the original
design but achieve significantly better performance (tens to hundreds
of percent). An example in Fig. 1 shows the original design (a). When
the body modifications are not allowed, our algorithm evolves a new,
better-performing agent (b). Enabling the body modifications improves
the performance even more (c), and allowing mutations causes more
significant alterations to the original design, increasing the performance
to 228% (d). The same agent evolved while its body shape was fixed,
as shown in (g-k).

Contributions: 1) An evolution-based optimization that produces
agent attributes that hold the design requirement and fit the given task.
2) Inspired by Metamorph [15], we train various agents with a single
universal policy and expand it with the behavior inherited from the pre-
trained model. 3) User control over the allowable agent’s modifications
in terms of parameter ranges of allowed values. 4) A training pipeline
to allow the evolution of agents with different structures.

2 RELATED WORK

We related our work to procedural modeling, physics-based anima-
tion, (deep) reinforcement learning for agent motion synthesis, and
co-designing structure and behavior.

Early physics-based and procedural models. Procedural ap-
proaches generate a model by executing a code, and the procedural rules
and their parameters define a class of generated objects. Procedural
animation generates animation sequences that provide a diverse series
of actions that could otherwise be created using predefined motion
clips. A seminal example is the work of Reynolds [42], who introduced
a reactive control [22] of procedural agents that faithfully recreated
complex motion patterns of flocks of birds and schools of fish. Physics-
based animation represents the agents as interconnected rigid bodies
with mass and moment of inertia controlled by joint torques or muscle
models [55]. As the control mechanism of an agent significantly affects
the motion quality, the choice of control method is important depending
on the task. Peng and van de Panne [39] compared the difference across
torque control, PD controller, and muscle base control. Many methods
work on the control policy to synthesize realistic locomotion. One

approach utilizes motion equations or implicit constraints to optimize
the locomotion-generated physics-based gaits by numerically integrat-
ing equations of motion [41]. Van de Panne et al. [51] developed a
periodic control method with cyclic control graph [32] that applies a
contact-invariant optimization to produce symmetry and periodicity
fully automatically. Bi-pedal creatures were optimized by controlling
their muscles in [11]. The design of a physics-based controller remains
challenging as it relies on the appropriate design of the agent and the
task-specific objective functions assigned to it.

Annother approaches learn to synthesize motions from a motion
dataset or reference motion clips [6, 28, 29, 54, 55, 58]. For example,
the real-time interactive controller based on human motion data that
predicts the forces in a short window has been used in [8] and the simu-
lation of a 3D full-body biped locomotion by modulating continuously
and seamlessly trajectory in [27]. Wampler et al. [52] applied joint
inverse optimization to learn the motion style from the database.

Machine Learning: The seminal works of Sims [47–49] uses ge-
netic algorithms [23, 25] to evolve 3D creatures by using physics-
based simulation, neural networks, genetic algorithms, and competition.
These works were one of the key inspirations for our approach.

Probably the first works to apply machine learning to control loco-
motion were by Grzeszczuk et al., [13,14] who used neural networks to
learn the motion of fish. DeepRL provides an agent’s control policy au-
tomatically, and it has been proven effective in diverse and challenging
tasks, such as using a finite state machine (FSM) to guide the learning
target of RL and drive a 2D biped walking on different terrains [35].
Yu and Turk et al. [59] encouraged low-energy and symmetric motions
in loss functions, and Abdolhosseini and Ling et al. [1] address the
symmetry from the structure of policy network, data duplication, and
loss function and they also handle different types of robots or terrains.
One of the drawbacks is the loss of direct control of the target motion
because the reward function does not provide explicit motion features.

Combining DeepRL with motion data has the potential to address
this issue by giving an imitation target. With the assistance of motion
reference, the learning process can discard massive, meaningless mo-
tion and dramatically reduce the exploration of action space. Peng and
Abbeel el at. [34] enabled learning challenging motion tasks by imitat-
ing motion data or video frames directly [37]. Won and Lee [56] handle
shape variations of a virtual character. However, learning from the un-
structured motion database or motion reference with inaccuracies can
make learning the policy difficult. A fully automated approach based
on adversarial imitation learning to address this problem by generating
new motion clips was introduced in [38]. Peng et al. [36] combined ad-
versarial imitation learning and unsupervised RL techniques to develop
skill embeddings that produce life-like behaviors for virtual characters.
The characters learn versatile and reusable physically simulated skills.

Co-optimizing design and behavior attempts to find behavior pol-
icy and shape simultaneously. Evolution has been used to design the
shape of robots [4, 17, 18, 30], and neural graph evolution has been
applied to their design [53]. Our work is inspired by the recent work
(RoboGrammar) [60] that uses graph search to optimize procedural
robots for locomotion on various terrains. RoboGrammar uses a set of
well-tuned fixed body attributes (length, density, control parameters),
while our method evolves the body attributes of the virtual agents. Lee
et al. [26] combined body structures from different candidate agents to
keep the motion style. Others focused on motion style transfer from
different morphologies [2]. Ha et al. [19] focused on the co-design
of the shape and the function of robotics limbs, and the same authors
used implicit function theorem to co-design the shape and function
of robots [20]. Digumarti et al. [9] designed legged robots optimized
for locomotion, and others focus on hand grasping [33], search on ter-
rains [57], or agent construction [43]. Close to our work is [3], which
uses co-design via evolution to co-optimize the design and control of
2D grid-based soft robots. This method works in 2D on a fixed set of
agent parts and trains each agent individually, while our approach uses
group training that significantly shortens training. This is inspired by
the works [15, 24], which controls different agents with one universal
controller. We designed our universal controller with an MLP network
instead of the self-attention layer as it is faster than a Transformer or
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Fig. 2: Overview: The input agent is either generated randomly or by the user, and the user can also define constraints (yellow arrows) (a). The
initial Proximal Policy Optimization (PPO) trains the input agent to provide baseline agent policy (b). The algorithm then creates variants of the initial
model (c) and trains them with the universal PPO (d). Selection (e), crossover, and mutation (f) create a new generation trained again. The system
outputs the best(s) co-designed agents and their policies (g).

GNN to train and provides results in minutes on a single GPU but
the same performance. Our controller handles agents with the same
topology but different body attributes. Gupta et al. [16] evolve the
agent’s structure by mutations and sampling without merging the par-
ents’ genes to reproduce the children. It does not provide control over
the agent’s design during evolution.

3 OVERVIEW

The input to our method (see Fig. 2a) is an agent that was either pro-
vided by the user or generated randomly. The agent has its body parts
with mass and connections with defined motion. The user can also
define constraints that guide the changes in the agent form. Examples of
the constraints (marked schematically as yellow arrows) are the ranges
of the allowed changes in the length of the body, the width of the legs,
etc. Our method improves the performance of the physically simulated
agent within the constraints via evolution and ensures the result does
not deviate from users’ expectations. The constraints do not need to
be tuned carefully, and their ranges could be small to ensure the visual
similarity between the original and optimized designs.

The input agent is trained (Fig. 2b) by the PPO in a physics-based
environment as a simulated robot with a rigid body, collision detection,
shape, and motors to perform a task. The output of this training is used
as a baseline for evaluating the performance of the following stages
of the algorithm. The learned policy is transferred into the agent’s
generation (Fig. 2d) as a start policy that accelerates the following
generations’ training with encoded motion prior.

The algorithm then enters into the co-design phase of evolution
(Fig. 2c-f). It creates several hundreds of variants by randomly sampling
the allowed ranges of the parameters of the input agent (Fig. 2c). This
new generation of agents is trained with the universal PPO, which
significantly accelerates the training time and allows training on a
single GPU. The trained agents are sorted according to their fitness,
and the top-performing agents are selected (Fig. 2e). The selected
agents undergo crossover and mutation to generate a new generation
(Fig. 2f), and the new generation is trained by bootstrapping with the
policy from the parent generation. During the evolution, the agent keeps
improving its attributes, and the algorithm stops when the improvement
is insignificant, or the user decides the output is satisfactory.

4 AGENT DESCRIPTION

Our agent description can be used in DeepRL frameworks, supports
physics-based simulation, and allows for a fast definition or user con-
straints.

4.1 Shape
The agent (see Fig. 3) is a directed acyclic graph G = {V,E} with
vertices vi ∈V and edges ei, j : vi → v j . Each v j corresponds to a node
that connects different parts of the agents and ei j is a joint that connects
two parts (nodes vi and v j) of the agent’s body.

Each agent consists of two building blocks: body parts are denoted
by the upper index B, and legs with the foot are denoted by LL and RL
for the left and right leg, respectively. The acyclic graph is a tree with
the root always being the node vB

0 . An example in Fig. 3 shows an agent
with two pairs of legs and a body with four body parts. An additional
index distinguishes each leg, e.g., the third vertex on the second left leg
from the torso has index vLL2

1 (indexed from zero).
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Fig. 3: An example of an agent, its corresponding topological graph, and
the coordinate systems of the joints (inset).
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Fig. 4: User-defined constraints.

While the topology of
the agent is described by
the graph G , the geom-
etry is captured by addi-
tional data stored in each
graph vertex v that is
called agent’s attributes.
Each body part is repre-
sented as a generalized
cylinder (a capsule), and
we store its local coordi-
nate system, orientation, radius, and length. The edges also store the
rotation axis and rotation range. The user constraints (see Fig. 4b) are
defined as the ranges of motion, length, radius, etc. Note that the ranges
may be asymmetrical (see Fig. 4a). A global constraint defines how
much evolution can change the attributes as a whole.

4.2 Physics Simulation and Movement
The physics of the motion of each agent is simulated with rigid body
dynamics. In addition to the geometric attributes, each edge e also
stores physics attributes: stiffness, damping, friction, and mass density.
Each body part also stores its mass, derived from the density and
volume. The movement simulation uses the Isaac Gym [31], which
runs parallel physics simulation with multiple environments on GPU.
The agent’s topology, geometry, and attributes are stored as an MJCF
file interpreted by the Isaac Gym. The simulation engine has various
parameters, of which the most notable is the agent’s collision with the
environment and self-collision that were enabled in our experiments.
Enabling self-collision detection slows the simulation significantly.
We perform a self-collision check for all initial designs and discard
self-colliding agents. The range of changes our simulation allows is
relatively small (shown in Sect. 7.2). Although minor collisions can
occur, we do not check for them to keep the simulation fast.

The agent’s movement is given by the torque τ applied to each joint
over time. There are two methods to control the joint of an agent. The
first option (direct control) applies the torque directly to each joint, and
the actual torque value is provided by the policy network described
in Sect. 5. The torque control is fast but can be noisy and unstable as
the torque is sampled from a policy-given distribution. The second
option uses Proportional Derivative (PD) controller that works as an
intermediate between the control policy and the torque. The control
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Fig. 5: The Control Policy Network (Actor in PPO) of a single agent consisting of multiple body parts. The body part properties and the global
description are processed by a deep neural network that generates the corresponding action.

policy specifies the target position for the joint, and the PD provides the
torque. This control method provides stable motion as the PD controller
can reduce the motion jittering. We use both options in our method and
refer to them as direct torque control and PD.

4.3 Generation

We generate the agents either manually or randomly. The manual
description is performed by writing the agent description into a text
file that is then visualized, and the motion is displayed. This is a
tedious trial-and-error process. The random generation creates the
description automatically in a two-step process that starts by generating
body parts and then attaching legs. The random generation may lead to
non-realistic configurations, such as legs inside the body. We test each
agent by detecting these configurations before training and visually
verifying them for consistency.

5 DEEPRL MODEL REPRESENTATION

The DeepRL generates a control policy that produces the agent’s loco-
motion. The learned control policy should be robust across the entire
generation. Moreover, we need to train a large number of agents, so the
control policy should be able to train rapidly.

The agent’s description and attribute values become the DeepRL
framework states optimized towards the desired behavior. We use
Proximal Policy Optimization (PPO), an Actor-Critic-based RL algo-
rithm [46]. The Critic estimates the value function and acts as a baseline
for the computation of advantages, while the Actor updates the policy
distribution in the suggested direction. The controller is trained with
PPO with advantages computed with Generalized Advantage Estima-
tion (λ ) [45]. The controller receives the state of an agent s(t) at the
time t, and it outputs an action a(t) for each joint that leads to the state
s(t +∆t). The action a(t) is either the torque τ applied directly to each
joint or a position of a PD controller that then computes the required
torque (Sect. 4.2).

5.1 States and Actions

The state of the agent st at time t is (see also Fig. 5):

st = (sm
t ,s

p
t ,s

g
t ), (1)

where sm
t is the agent’s morphology, sp

t denotes the perceptive repre-
sentation, and the global representation is denoted by sg

t . We will not
specify the time t unless needed in the following text.

The morphology representation sm consists of

sm
t =

(
srigidbody,sspatial ,s joint

)
,

where srigidbody includes the physics attributes of a body: length, ra-
dius, and density. The spatial data sspatial includes the initial heading
direction of the body computed from f romto attributes in an MJCF file
and the initial local position. The values of s joint contain the attributes
of the joints attached to the body, such as the rotation axis and the
rotation range of the joint. The morphology representation sm does not
change during the simulation and training, and it changes only after
evolution when the new generation is generated (Sect. 6). The network
can decide on different agents based on their morphology attributes
because this part is a constant input to the policy network.

The perceptive representation sp
t stores the dynamics information

that changes at each time step t

sp
t = (strans f orm,sphysics,sact),

where the transform attributes strans f orm include the local position,
local rotation represented as a quaternion, and the joint position. The
physics attributes sphysics include linear, angular, and joint velocity.
Actions from the previous time step of each joint are also used. The last
parameter is the action sact that specifies the target position of the PD
controller or direct torques for each joint. The actual value of actions
is sampled from Gaussian distributions given by a control policy. We
use hinge joints for each agent, specified as the 1D rotation angle q,
normalized based on their joint rotation ranges.

Finally, the global description sg contains information that indicates
the overall behavior of the agent, i.e., distance to the target point,
heading direction, and the up vector of the torso.

5.2 Network Architecture
The Actor and the Critic in the PPO algorithm are modeled with a deep
neural network (see Fig 5). The Actor-network is a control policy π

that maps the given state s to the Gaussian distributions over actions
π(a|s) = N (µ(s),Σ), which takes a mean µ(s) from the output of the
deep neural network and a diagonal covariance matrix Σ specified by
a vector of learnable parameters #»

σ . The mean is specified by a fully
connected network with three hidden layers with sizes [256,128,64]
and the Exponential Linear Unit (ELU) [7] as the activation function,
followed by a linear layer as the output. The covariance matrix val-
ues Σ = diag(σ0,σ1, ...,σn) are learnable parameters and are updated
as part of the deep neural network with gradient descent. The Critic
network V (s(t)) is modeled as a separate network with the same archi-
tecture as the Actor-network, except that its output size is one providing
the given state value. A fully connected network is beneficial as it pro-
vides faster learning and easier transfer learning than transformer-based
networks. We implemented both solutions, and the transformer takes
around 120 minutes to converge to the optimal policy. In comparison,
the fully connected actor policy takes 20 minutes to converge at the
initial stage and 2 minutes from a pre-trained model from the ancestors.

5.3 Rewards
The reward function is designed to produce natural motion that reflects
the motion of real animals, e.g., for the agent in Fig. 10, we attempted
to set the parameters to resemble a caterpillar’s motion. We use the
same values of reward terms from [5,10,60] to create a fair and standard
reward signal for experiments while considering motion aesthetics. The
reward r evaluates an agent’s performance, e.g., encouraging the agent
to walk forward over flat terrain. It attempts to maintain a constant
moving speed towards a target distance, and the agent should be able
to keep stable locomotion without flipping or deviating from the target
direction. It also minimizes energy consumption. The rewards function
is a sum of multiple task objectives

r = rp + rv + re + ra, (2)

where rp is the pose reward that encourages the agent to maintain
a stable initial pose during the movement, rv is the velocity reward,
re denotes the efficiency reward, and ra is the alive reward.
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Fig. 6: The grouped agent training pipeline where sm is the morphology state, sp the receptive state, a are the actions and r rewards.

The pose reward rp maintains the heading direction of the agent’s
body aligned with the target direction (0,1,0) as the agent walks along
the y-axis. The up direction of the head should point to the up-axis
(0,0,1) to prevent the agent from swinging its body or flipping:

rp = wheading · rheading +wup · rup, (3)

and the weights wheading = 0.5 and wup = 0.1. The heading re-
ward rheading is computed as

pheading =
#              »
heading ·

#            »

(0,1,0)

rheading = min(
pheading

theading ,1) (4)

where pheading is the projection of the heading vector of the head
to the target direction, theading = 0.8 is the threshold of getting the
maximum heading reward. We apply the same equation to the up stable
reward rup, except that the aligning vector points up, and we use a
different threshold of 0.9 that has been established experimentally.

The velocity reward rv encourages the agent to move forward along
the y-axis

rv = (Py(t)−Py(t −1))/dt , (5)

where Py(t) is the walking distance along y-axis at the time step t and
dt = 1/60s.

The efficient reward re encourages the agent to perform energy-
efficient actions each time by penalizing high torques of joints close to
extreme positions to have smoother locomotion.

re = wact · ract +wpower · rpower +w jointlimit · r jointlimit , (6)

where the weights are wact = wpower = −0.05 and w jointlimit = −0.1.
The action cost

ract = ∑
∀ joint

a2

penalizes high torque action given by the control policy or joint position
closer to the range limitation in the PD control. The energy cost

rpower = ∑
∀ joints

|a · v|

prevents the agent from taking high-energy consumption actions by
avoiding high joint velocity v.

The joint-at-limit reward r jointlimit prevents the agent from not uti-
lizing all joints by penalizing the joint stuck at the limit position

r jointlimit = w jointlimit
∑

∀ joint

{
1, if p joint > t jointlimit

0, otherwise

where p joint is the normalized joint position, t jointlimit = 0.99 is the
threshold to receive the penalty and w jointlimit = −0.1 is the weight.
The alive reward ra is set to zero when the agent walks out of the
scene’s boundaries; otherwise, it is set to one.

R2Q1We measure the performance of an agent based on the reward
function in Eqn (2), which is a weighted linear combination of sub-
rewards designed for the desired locomotion of the agent. It has the
following targets: 1) keeping a stable pose and heading direction
without flipping or rolling (Eqn. (3)), 2) walking with a target velocity
(Eqn (5)), and 3) walking efficiently with fewer energy consumption
(Eqn (6)). A higher reward indicates a better performance on these
targets. Tab. ?? in the Appendix shows the effect of these reward
designs.

5.4 Training
Our control policy is trained with the PPO [46] on GPU-based parallel
environment Isaac Gym [31]. The training is performed first for the
template input agent (Fig. 2 a) and then for each generation during the
evolution (Fig. 2 d). Both training stages proceed episodically, starting
at an initial state s0 of each agent, which is randomly sampled from a
given range to enhance the generalization of the policy network. The
experience tuples (s(t),a(t),r(t),s(t + 1)) are sampled in parallel at
each time step t by sampling actions a from control policy π with a
given state s(t). The experience tuples are stored in the replay buffer
for the training iteration later. Each episode is simulated within a
maximum number of steps, or some specific conditions like flipping
or walking in the wrong direction can terminate it. After the replay
buffer is filled with experience tuples, several training iterations are
performed to update the Actor-network (policy network) and the Critic
network (value network). The learning rate lr is dynamically adapted
to the KL-divergence kl between the new and old policy

lr =

{
max(lr/1.5, lrmin), if kl > desired 2 · kl
min(lr ·1.5, lrmax), if kl > desired 2 · kl

(7)

where lrmin = 1e−4 is the minimum and lrmax = 1e−3 is the maximum
learning rate allowed during the training, and desired kl is a hyper-
parameter that controls the update of learning rate based on the distance
between old policy and the new policy during policy update iteration.
Single-agent training: We train the initial (template) agent (Fig. 2 b)
to complete the task until the reward Eqn(2) reaches maximum or does
not change significantly. The result provides the baseline policy, reward
value, and initial locomotion.
Generation Training: The input to the generation training is the
template agent policy, which attempts to optimize a whole generation
of agents for evolution. Since each generation of agents shares the same
structure, the control policy of the template agent is reused via transfer
learning. Then, the descendants could quickly inherit the locomotion
experience from the previous generation, which, in effect, increases the
speed of training (to 20% in our experiments).

The generation includes n variants trained in parallel (Fig 6) each in
its environment. At each time step t, the universal control policy takes
the states s of an agent vi and outputs its actions a. The experiences
are sampled and stored in the replay buffer. The experience tuples
sampled from different variants are randomly sampled for the policy
update phase. This training part is inspired by metamorph [15] that
trains a universal controller with a transformer base structure for robots
with different morphology. We use a fully connected network in the
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policy net instead of an attention-base structure because MLP provides
the same performance and trains around 8-10× faster. We tested the
transformer [15] that provided similar results, but the training took
about two hours instead of 10 minutes by using MLP.

6 EVOLUTION

6.1 Fixed Structure Evolution
Each trained group of agents (Fig. 6) produces a set of variants of agents
with different body attributes altogether with their reward function. The
goal is to choose the best variants of agents and create a new generation
while ensuring that their most beneficial traits propagate and possibly
improve in the next generation.

Let V g = {vg
1,v

g
2, . . . ,v

g
n} denote the g−th generation with variants

of agents vi. Each agent has a list of attributes atti that we call its gene.
The next generation g+ 1 is produced via selection, crossover, and
mutation [12, 25].
Selection: We sort all variants V g in the actual generation g according
to their reward and select the top p% (p = 20) agent variants. This
initial set becomes the seed of the generation V g+1.
Crossover: The seed of the new generation is expanded to the number
of variants n by crossover. We take the genes atti and att j of two
randomly chosen agent variants vi and v j, from the seed set. We use a
random crossover that takes an attribute atti[k] and swaps it with att j[k]
with the 50% probability, where k denotes the k−th value in a binary
gene. This process is repeated until a new generation V g+1 with n
variants has been created. The attributes that can be evolved during the
evolution include radius, length, density, initial position, body rotation,
stiffness, damping, max effort, and joint rotation range.
Mutation: Each attribute can be mutated by altering its value by a
random value ±r. The overall probability of mutation is set to 1% [12].
The user-defined constraints: The user controls the evolution
(Sect. 4.1) by setting some attributes fixed. These attributes will not be
affected by the mutation and crossover. Moreover, the user can also
specify the range of values as user-defined constraint limits. Values
that would mutate out of these ranges are clipped.

Some attributes can be linked (for example, a pair of symmetric
legs or body parts belonging to the same group (torso body)) and will
always be treated as a fixed group. When one of them is swapped, the
other will be as well. If one value changes, the others will be changed
by the same value.

6.2 Changing Body Structure Evolution
Here, we explore the option of changing the body structure during
evolution. The previous section described optimized agents with a
fixed structure, and the evolution modified their body attributes. By
measuring the difference between the original and the optimized design,
we observed that the changes in the length of the different bodies
indicate the preference of the evolution path of different agents. These
changes imply the agent’s convergence to longer or shorter body parts
to accomplish the task.

We perform informed structure evolution by adding or deleting some
body parts to reach a better structure. Our approach is similar to [16],
but we use the information from the previous generation to guide the
changes. We then evolve the modified agent using the fixed structure
evolution. However, allowing the evolutionary algorithm to modify the
structure arbitrarily precludes us from using transfer learning between
generations, and the optimization must be run from scratch.
Structure Optimization of an agent is modified by either adding
(splitting) or removing parts. During the evolution, we evaluate the
ratio of length changes of each body part, and we split the part with
the greatest positive body change in two. The length of each body will
be half of the original length, and the total length will be constant to
maintain the appearance of the agent. We delete the body part with the
largest negative body change ratio (shrinking). When deleting the part,
we maintain the agent topology by correctly reattaching the parts.
Selection: At the first epoch, we perform the fixed structure evolution
to produce N optimized agents and select the agent that achieved the
highest reward as the candidate for structure optimization. We then

split and removed several parts of the winner and trained each from
scratch, no matter whether the performance was better or not compared
to the previous generation. The best candidate is then used for structure
optimization.
Optimization Termination: We stop the optimization if performance
decreases or the ratio of changes is lower than a threshold to prevent
performance collapse. Since the change of structure will lead to a
different performance easily, e.g., missing one leg could lead to an
agent’s inability to move, it is easy for the agent to fall into a bad
scenario for the un-smoothness of the problem.

7 IMPLEMENTATION AND RESULTS

7.1 Implementation
We use Python to develop the agent generator and all the components
in our evolution system. Isaac Gym [31] was used for the physics
simulation of the agent, and we implemented the PPO optimization
in Python. The neural network is based on Pytorch version 1.8.1.
The computation, including deep neural network training, physics
simulation, and rendering, runs on a single Nvidia GeForce RTX 3090.

7.2 Results
7.2.1 Fixed Structure Evolution
We test the effect of the evolution on the agent co-design on several
manually designed agents (Fig. 7, 10, 11), randomly generated agents
(Fig. 8) and on an optimized design (Fig. 9). All results are summarized
in Tab. 1, and details of each body part are in the Appendix. Please
note this paper has an accompanying video that shows its results.

Constrained Reward New Reward (%) Change (%)
Fix Evo

Fig. 1 (a) - 20% 960 100% (Baseline) N/A
Fig. 1 (b) No 20% 1,274 132% 0.39%
Fig. 1 (c) No 20% 1,594 166% 5.82%
Fig. 1 (d) No 20% 1,775 184% 5.84%
Fig. 1 (e) No 20% 1,913 199% 5.63%
Fig. 1 (f) No 20% 2,169 228% 5.72%
Fig. 1 (g) Body 20% 1,160 121% 0.56%
Fig. 1 (h) Body 20% 1,842 192% 8.93%
Fig. 1 (i) Body 20% 2,174 226% 9.40%
Fig. 1 (j) Body 20% 2,355 245% 9.45%
Fig. 1 (k) Body 20% 2,428 253% 9.71%
Fig. 7 (a) - 0% 470 100% (Baseline) N/A
Fig. 7 (b) No 10% 621 132% 3.24%
Fig. 7 (c) No 20% 710 151% 8.75%
Fig. 8 (base) - 0% 489 100% (Baseline) N/A
Fig. 8 (evo) No 20% 566 116% 10.83%
Fig. 9 (base) - 0% 572 100% (Baseline) N/A
Fig. 9 (evo) No 20% 921 161% 8.02%
Fig. 10 (base) - 0% 683 100% (Baseline) N/A
Fig. 10 (evo) No 20% 1,108 155% 2.47%
Fig. 11 (a) - 0% 683 100% (Baseline) N/A
Fig. 11 (b) Torso 40% 1,108 162% 5.24%
Fig. 11 (c) Leg 40% 870 127 6.44%

Table 1: Quantitative results of all experiments.

The first example in Fig. 1 shows the effect of the evolution on the
changes and reward function of an agent. The baseline agent is trained
to walk with the state-of-the-art PPO training (a), and we then use the
evolutionary algorithm to improve its performance while changing its
attributes to complete the same task. The reward function value for
the baseline agent is 473, and it improves through the evolution after
the first generation by 132% (b), the fifth generation 166% (c), 15-th
generation 184% (d), 25-th generation 199% (e), and 35-th generation
to 228% (f). We then take the same agent and fix its body shape so it
cannot change through evolution. The agent is trained from the baseline
leading to the new reward after the first generation by 121% (g), the
fifth generation 192% (h), 15-th generation 226% (i), 25-th generation
245% (j), and 35-th generation to 253% (k).

The experiment in Fig. 7 studies the effect of globally increasing
the range of allowed changes. The baseline input agent was trained,
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a) b) c)

Fig. 7: A baseline agent (a) is evolved by allowing ±10% (b), and ±20%
(c) of variance of all its parameters. The reward function value 470 of the
baseline agent (a) improves to 132% (b), and 151% (c).

leading to a reward function value 470. We then run the evolutionary
co-design, allowing the global change attributes by ±10% and ±20%.
While the reward is increasing by 132%, and 151% of the baseline
design, the structure of the agent has also changed significantly.

Figures 8-10 show three agents with increasing complexity evolved
by allowing ±20% of global attributes changes. The motion snapshots
are taken after the same time spent, showing the traveled distance for
comparison. The simple agent improved to 153%

Baseline

Evolved

Fig. 8: A simple baseline agent (top) evolved by allowing ±20% of vari-
ance of all its parameters. The evolved agents travel a larger distance at
the same allotted time, and the evolved reward functions are improved
by 489→566 (116%).

Baseline

Evolved

Fig. 9: A medium complex baseline agent (top) evolved by allowing
±20% of variance of its parameters. The evolved reward functions are
572→921 (161%). The original design of this agent is from [60].

Another example in Fig. 11 shows the effect of the restricted control
of the evolution. We fixed the torso (Fig. 11 a) during the evolution
by not allowing any changes in the agent. While the body remains
the same, the legs and their control were allowed to change by 40%,
leading to an improvement of 162%. Fig. 11 b) shows the same agent
where only the torso can evolve, and the legs remain fixed. This limits
the motion, and the improvement was only 127% of the baseline.

Baseline

Evolved

Fig. 10: A complex asymmetric baseline agent (top) evolved by allowing
±20% of variance. The evolved reward functions are 1,118→1,737
(155%).

(a)

(b)

(c)

Fig. 11: An agent (a) is evolved with a restricted torso and the allowed
changes of 40% to the rest of the body. (b) The legs improved, and the
reward function changed 683→1,108 (162%). (c) The last row shows
the agent evolved only with allowed modifications to the torso (legs are
fixed). The reward function changed 683→870 (127%).

Our experiments show that small changes in the existing structure
parameters can substantially improve the agent’s performance. The
related work [60] shows 50% improvement on the original design (from
4 to 6 on flat terrain) in their reward functions while optimizing the
structure to fit the environment. Our work shows that evolution can
achieve up to 100% improvements without changing the structure. We
also attempted a wider range of changes, as shown in Fig. 12 where
90% of changes were allowed. Using such large modifications does
not allow for efficient sampling of the shape space and quickly leads to
degenerated configurations. Allowing modifications of 100% and more
led to agents that did not move at all.

Baseline

Evolved

Fig. 12: Allowing ±90% variations produced bad-performing shapes.

While the examples mentioned above were generated with the PD
control, the accompanying video shows that our evolutionary algorithm
handles the direct torque control from the PPO.

We tested the effect of the mutation on the convergence of the reward
function. We trained the baseline agent from Fig. 1 with and without
the mutation. The progress of both reward functions in Fig. 13 shows
that the mutation positively affects the reward function, leading to faster
convergence and about 9% higher reward (2,091 vs. 1,856).
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Fig. 13: The agent from Fig. 1 is evolved with and without the mutation,
showing that the mutations positively affect the reward function. The line
is the mean of multiple tests, and the error bar indicates the standard
deviation. Note that the standard deviation is small, and the error quickly
becomes negligible.

The reward functions of results from this paper through the 30
generations of the evolution are shown in Fig. 14. The reward function
increases most if no constraints are imposed on the model or if the
model has high complexity, allowing for more changes. The error bar
indicates the standard deviation.
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Fig. 14: Reward function evolution for the examples from this paper
(mean and standard deviation).

We attempted to provide insight into the traits affecting the agents’
overall performance. We analyzed the data from the Appendix showing
all numbers of the agent changes from Figs. 8-11. The tendency to
allow the agents to perform better is diminishing their weight. The
control parameters are important in the locomotion as its global changes
are relatively higher than the others. The statistics show that increasing
the body’s average length also helps improve performance. This is
especially true for the legs, indicating that longer legs are beneficial.
Moreover, stiffness and the max effort tend to increase through the
evolution as they provide a faster response to the target joint position
and increase the maximum torque. An exception is an agent in Fig. 11
that could not evolve its legs, leading to decreased damping and max
effort. If the agent is high and unstable, the evolution reduces the
torque, which decreases the risk of falling. We also notice that the
middle and tail torso often becomes heavier to help maintain stability.
If the user-defined constraints fix the torso, the evolution attempts to
find different ways to improve efficiency.

The agent generation training with the universal controller is trained
for 30 epochs and 150 variants. Each variant runs on six parallel envi-
ronments. The training for each generation takes around 30 seconds.
The overall evolution of the 30 generations takes around 22 minutes, de-
pending on the complexity of the agent and the environment. The main
limitation is the size of the GPU memory. An agent takes 5 minutes
to be trained, and the total time needed for the optimization without
the universal controller and transfer learning used for the optimization
would be 375 hours for 30 generations with 150 agents per generation.
However, using the universal controller and the transfer learning cuts
the time to around 22 minutes (1,125× faster).

To show the upper bound of our method, we performed two ex-
periments on the agent from Fig. 1 to explore the performance of
the universal policy compared to a single agent policy training from
scratch. We selected the best design from every five generations (gen-
eration 1-35). We performed two experiments for a single controller
with equivalent training epochs in our evolution method 1) training
without a pre-trained policy with the same iteration 50, where the

agent achieved rewards 481,289, 273, 361, 347, 314, 300, 284 and
2) training with the pre-trained policy, and get rewards 1,310, 1,576,
1,732, 1,733, 1,841, 1,883, 1,973, and 2,141. These designs trained
with shared controller and pre-trained models achieved 1,274, 1,595,
1,722, 1,776, 1,866, 1,913, 1,992, and 2,190 rewards which are -2.75%,
1.21%, -0.58%,2.48%,1.36%,1.59%,0.96%,2.49% than the single con-
troller showing that our method achieves similar results with smaller
performance loss.

7.2.2 Changing Structure Evolution

We experiment with agents that changed their structure during evolution.
It is not feasible to allow changes for all agents as this requires training
them individually from scratch, thus losing the main advantage of the
universal controller that allows training hundreds of agents of the same
structure with different parameters. We experimented with the changing
structure evolution on two agents: 1) a complex asymmetric agent from
Fig. 10 and 2) a simple symmetric agent in Fig. 12. After the parameter
training, we split the most quickly growing part in two or deleted the
most quickly shrinking part. We then optimized the agent from scratch.

The first result in Fig. 15 top shows the evolution preference of an
agent with a long torso and multiple legs whose motion is driven by
the body’s swinging and the movement of the legs. The results show
that evolution tends to grow more torso parts to extend flexibility and
move faster. The selection decision of the five epochs are split (torso),
split (torso), split (torso), split (torso), delete (leg), and the rewards
of the selected agents are 1,118 (baseline), 1,737 (fixed evolution),
2,211, 1,996, 2,001, and 1,676. We stopped the experiment when the
performance decreased. The performance of the agent increased 27%
after the first epoch. It kept a similar performance in the following
epochs, which indicates the fixed structure evolution already provides a
good design without changing the structure.

The second example in Fig. 15 bottom shows an agent with three
body parts and two legs. The results show that the evolution method
reduces the total weight by deleting legs to achieve faster movement
speed. The agent learns to jump with high swing frequency with an
unbalanced pose. The selection decisions of the seven epochs were
delete (leg), split (leg), delete (leg), split (leg), split (leg), split (leg),
and delete(leg). The rewards of the selected agents are 1,364 (baseline),
2,191 (fixed evolution), 2,140, 2,575, 2,737, 2,717, 2,576, and 1,937.
We also stopped the evolution when the performance decreased. The
performance of the agent increased 25% at the fourth epoch with shorter
front legs, high leg swinging frequency, and an unbalanced body.

The runtime of the changing structure evolution depends on the
epochs it runs,s; the first experiment took 30 minutes per epoch and
five epochs (150 minutes total), and the second experiment took around
20 minutes and seven epochs (140 minutes total).
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Fig. 15: Changing structure evolution of two agents and the correspond-
ing reward function.

7.2.3 User Study on Perceived Realism

R2Q1 Study Design: We performed a user study to evaluate the per-
ceived realism of the generated motion. We have shown a video of a
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moving agent and asked, "How realistic is the motion of the 3D struc-
ture compared to living creatures? ". The options were "Not realistic
at all (1)", "Not realistic (2)", "Realistic (3)", and "Very Realistic (4)".
The participants selected the answer after the video ended.
Ethical approval: The study was approved by Purdue University’s
Institutional Review Board IRB-2023-1439.
Setting All videos were represented online, and the participants used
their own computers and web browsers.
Participants: We have recruited 21 participants ages 18-55 from under-
graduate and graduate students, as well as faculty members population.
The user study included 15 males, three females, three self-described,
and three prefer not to say. Three participants self-reported having
no experience with character animation, three had a low, eight had
medium, and four had high experience.
Procedure: The participants were shown nine videos: three from the
Embodied Intelligence [16], three from RoboGrammar [60], and three
from our results (Figs. 7, 9, and 10). The play time of each video was
around 10 seconds, and the sequence of the videos was randomized.
Data collection: All collected were stored in a coma-separated-value
file, and the participants were anonymized.
Data Analysis & Result: We ran Wilcoxon tests for the data that vio-
lated the normality assumption. Normality was investigated with the
Shapiro-Wilk test. The p-values of the Wilcoxon tests between em-
bodied intelligence and our work are 5.217−13 < 0.001, Embodied
Intelligence and Robogrammar is 3.2935e−8 < 0.001, our work and
Robogrammar is 0.6152 > 0.05. The results show significant differ-
ences (p < 0.05) between Embodied Intelligence and our work, as
well as Embodied Intelligence and RoboGrammar. It shows no sig-
nificant differences between our work and Robogrammar. The study
suggests that the motion generated by our algorithm is perceived as
realistic compared to living creatures, it is on par with RoboGrammar
and outperforms Embodied Intelligence.

Fig. 16: Statistical comparison of pairs of detection thresholds analyzed
with Wilcoxon test.

8 CONCLUSIONS

We have introduced a novel approach that improves state-of-the-art
DeepRL training by adding evolutionary changes to the agent’s pa-
rameters. While the agent’s topology remains the same, the genetic
algorithm explores the space of the agent’s attributes and attempts to
improve its performance to complete the given task. Our approach has
two main advantages. First, it allows for user control of the evolving
parts. Second, it uses a universal policy and transfer learning that en-
ables us to train a whole generation of agents on a single GPU. This
significantly shortens the training time of the evolutionary algorithm
to less than one minute per generation during the evolution. We have
shown various examples of agents trained with varying shapes and
parameters, showing that the performance improved by tens of percent
even after just a few generations.

Our approach has several limitations. First, we used Isaac Gym and
PPO as our simulation and RL training baseline. While this is a suitable
choice for comparison, the RL algorithms and physics engine include
parameters that need to be tuned, and they may have a negative effect
on the training. We have carefully used the same parameters when
comparing the results, but we noted, for example, that self-collision
detection for complex agents changes the results significantly. The
second limitation comes from the choice of the initial agent. If the
template agent fails the task, the descendants will not benefit from the

pre-trained policy. We use a universal policy for controlling all agents
instead of training separate policies per agent. While this speeds up the
computation significantly, it likely leads to a sub-optimal policy at the
first several generations.

There are many possible avenues for future work. First, studying
how many and what parameters suit the user would be interesting. We
showed several ways of controlling the shape and its evolution, but the
actual user intent and feedback would be a worthy research project.
Second, the space that needs to be explored during the evolution is
vast, and it is evident that our approach is leading only to a limited
set of solutions. Future work could use several solutions and see what
makes them different. Another important problem is to answer the
question of what makes the design perform better. It could be achieved
by tracking the values of attributes and seeing how they relate to the
performance. However, the relation is very unlikely straightforward,
and the parameters may affect each other. Also, when adding a new
part, the actual location of the new part is fixed (based on its previous
location). It would be interesting to evaluate different positions and
their effect on the overall performance. Meanwhile, studying how to
transfer the pre-trained model from the ancestors is challenging. As the
input and output dimensions change, the policy cannot be fine-tuned
based on the pre-trained model. Exploring the transfer learning on
different structures can speed up the optimization. An evident future
work is studying more complex tasks and environments and allowing
topology changes to the body. It would also be interesting to compare
it to previous work. However, our approach does not require significant
computing resources, while most of the related work would require
significant computing power to generate results for comparison. We
could also experience multi-objective scenarios by applying the multi-
objective evolutionary algorithm. Our work focuses on the chained
multi-legged agents. It would be interesting to show how the same
approach works for different configurations of agents.
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