EAPS 59100, Spring 2020
 Lec 03: Equations of motion for rotating fluid

Reading: VallisE Ch2

1 Basic intro

Atmosphere / ocean: shallow layers of fluid on a sphere, strongly influenced by 1) rotation and 2) stratification

- fluid: a continuum of particles that flows and deforms
- shallow: $H \ll L$
- rotation: Ω
- stratification: $\frac{\partial \bar{\rho}}{\partial z} \gg \nabla_{h} \bar{\rho}$

2 Equations of motion for a rotating fluid

VallisE p27
Cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$):
Inviscid momentum equations in the rotating frame of reference (i.e. $\overrightarrow{\mathbf{v}}=(u, v, w)$
-3 D velocity for air parcels in rotating frame of reference - i.e. what we think of as the "wind"):
$\overrightarrow{\mathbf{v}}=(u, v, w)$
total (Lagrangian) derivative:

$$
\begin{equation*}
\frac{D A}{D t}=\frac{\partial A}{\partial t}+\overrightarrow{\mathbf{v}} \cdot \nabla A=\frac{\partial A}{\partial t}+u \frac{\partial A}{\partial x}+v \frac{\partial A}{\partial y}+w \frac{\partial A}{\partial z} \tag{1}
\end{equation*}
$$

Momentum equations:

$$
\begin{equation*}
\frac{D \overrightarrow{\mathbf{v}}}{D t}+2 \vec{\Omega} \times \overrightarrow{\mathbf{v}}=-\frac{1}{\rho} \nabla p-g \hat{\mathbf{k}} \quad\left[m s^{-2}\right] \tag{2}
\end{equation*}
$$

Coriolis acceleration: $\overrightarrow{\mathbf{a}}_{C o r}=-2 \vec{\Omega} \times \overrightarrow{\mathbf{v}}$

- Zero Coriolis force on body that is stationary in rotating frame
- Coriolis force deflects moving bodies at right angles to their direction of motion

3 Spherical coordinates

VallisE p28
Spherical coordinates (FIG 2.2):

- r : radius from planet center
- ϕ : latitude (differs from Vallis!)
- λ : longitude
- $\overrightarrow{\mathbf{v}}=u \hat{\mathbf{i}}+v \hat{\mathbf{j}}+w \hat{\mathbf{k}}=(u, v, w)=\left(r \cos \phi \frac{D \lambda}{D t}, r \frac{D \phi}{D t}, \frac{D r}{D t}\right)=$ (zonal, meridional, vertical) directions

Note: $\frac{D r}{D t}=\frac{D z}{D t}$
total (Lagrangian) derivative:

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+\frac{u}{r \cos \phi} \frac{\partial}{\partial \lambda}+\frac{v}{r} \frac{\partial}{\partial \phi}+w \frac{\partial}{\partial r} \tag{3}
\end{equation*}
$$

VallisE p32

$$
\begin{align*}
& \frac{D u}{D t}-\left(2 \Omega+\frac{u}{r \cos \phi}\right)(v \sin \phi-w \cos \phi)=-\frac{1}{\rho r \cos \phi} \frac{\partial p}{\partial \lambda} \quad\left[m s^{-2}\right] \tag{4}\\
& \frac{D v}{D t}+\frac{w v}{r}+\left(2 \Omega+\frac{u}{r \cos \phi}\right)(u \sin \phi)=-\frac{1}{\rho r} \frac{\partial p}{\partial \phi} \quad\left[m s^{-2}\right] \tag{5}\\
& \frac{D w}{D t}-\frac{u^{2}+v^{2}}{r}-2 \Omega u \cos \phi=-\frac{1}{\rho} \frac{\partial p}{\partial r}-g \quad\left[m s^{-2}\right] \tag{6}
\end{align*}
$$

Notes:

- "Coriolis" terms: terms with Ω
- "Metric" terms: LHS quadratic terms with $\frac{1}{r}$, associated with curvature of sphere (specifically that $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ directions aren't straight but curve around sphere)

4 Primitive equations

VallisE p32
Three approximations to spherical equations above:

- Hydrostatic: in vertical momentum equation, neglect 1) advection of $w, 2)$ Coriolis, and 3) metric terms
- Shallow fluid: 1) $r \approx a ; 2$) in derivatives $d r \approx d z$ (a is constant)
- Traditional: neglect terms involving w multiplied by u or $v(|w| \ll u$ or $v)$

Note: $2+3=$ thin shell approx.

$$
\begin{array}{rr}
\frac{D u}{D t}-f v-\frac{u v}{a} \tan \phi=-\frac{1}{\rho a \cos \phi} \frac{\partial p}{\partial \lambda} & {\left[m s^{-2}\right]} \\
\frac{D v}{D t}+f u+\frac{u^{2}}{a} \tan \phi=-\frac{1}{\rho a} \frac{\partial p}{\partial \phi} & {\left[m s^{-2}\right]} \\
0=-\frac{1}{\rho} \frac{p}{\partial z}-g & {\left[m s^{-2}\right]} \tag{10}
\end{array}
$$

with Coriolis parameter

$$
\begin{equation*}
f=2 \Omega \sin \phi \quad\left[s^{-1}\right] \tag{12}
\end{equation*}
$$

and with total (Lagrangian) derivative (note: error in book VallisE p32)

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+\frac{u}{a \cos \phi} \frac{\partial}{\partial \lambda}+\frac{v}{a} \frac{\partial}{\partial \phi}+w \frac{\partial}{\partial z} \tag{13}
\end{equation*}
$$

5 Cartesian approximations to the primitive equations

5.1 f-plane

VallisE p32
Consider motions for which $L \ll a$ - layer of fluid approximated by tangent plane of sphere (DRAW A DIAGRAM SPHERE + tangent plane))

Geometry:

- Plane tangent to Earth's surface at latitude ϕ_{0}
- small excursions: $(x, y, z) \approx\left(a \lambda \cos \phi_{0}, a\left(\phi-\phi_{0}\right), z\right), \overrightarrow{\mathbf{v}}=(u, v, w)=$ velocity in the tangent plane (i.e. approximately West-East, South-North, vertical)
- constant Coriolis parameter $f_{0}=2 \Omega \sin \phi_{0}$
- No curvature: ignore LHS quadratic terms in u and v

1) Horizontal momentum equations: (note $\left.d x=a \cos \phi_{0} d \lambda, d y=a d \phi\right)$

$$
\begin{array}{ll}
\frac{D u}{D t}-f_{0} v=-\frac{1}{\rho} \frac{\partial p}{\partial x} & {\left[m s^{-2}\right]} \\
\frac{D v}{D t}+f_{0} u=-\frac{1}{\rho} \frac{\partial p}{\partial y} & {\left[m s^{-2}\right]} \tag{15}
\end{array}
$$

(note: vertical momentum equation isn't altered - can do hydrostatic or non-hydrostatic) which may also be written in vector form as

$$
\begin{equation*}
\frac{D \overrightarrow{\mathbf{v}}}{D t}+f_{0} \hat{\mathbf{k}} \times \overrightarrow{\mathbf{v}}=-\frac{1}{\rho} \nabla p-g \hat{\mathbf{k}} \quad\left[m s^{-2}\right] \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+\overrightarrow{\mathbf{v}} \cdot \nabla=\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z} \tag{18}
\end{equation*}
$$

Identical to rotating cartesian system in which the rotation vector Ω is aligned with the local vertical
f_{0} represents the projection of the planetary vorticity onto the local vertical at latitude ϕ_{0}.

Analog? ROTATING TANK!

5.2 Beta-plane

VallisE p33
$f=2 \Omega \sin \phi$ varies with latitude.
On the tangent plane, mimic this variation in y. Taylor expansion of f about f_{0}, i.e. $f \approx f_{0}+\frac{d f}{d y} y$, where $f=f_{0}$ at $y=0$:

$$
\begin{equation*}
f \approx f_{0}+\beta y \quad\left[s^{-1}\right] \tag{19}
\end{equation*}
$$

where $\beta=\frac{d f}{d y}=\frac{d f}{a d \phi}=\frac{1}{a} \frac{d f}{d \phi}$

$$
\begin{equation*}
\beta=\frac{2 \Omega \cos \phi_{0}}{a} \quad\left[m^{-1} s^{-1}\right] \tag{20}
\end{equation*}
$$

- Captures dynamical effect of sphericity - differential rotation
- Avoids complicating geometric effects (curvature of sphere)

Equations same as f-plane above, except with $f_{0}+\beta y$ in lieu of f_{0}.

6 Mass continuity and thermodynamic equation

VallisE p35 (and p9)
General mass continuity equation (a density budget)

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \overrightarrow{\mathbf{v}})=0 \tag{21}
\end{equation*}
$$

(Interpretation: density will be increased $\left(\frac{\partial \rho}{\partial t}\right)$ if there is a convergence of flux of density by the flow $(-\nabla \cdot(\rho \overrightarrow{\mathbf{v}}))$.

General thermodynamic equation: some thermodynamic quantity S (e.g. temperature, potential temperature, entropy, buoyancy)

$$
\begin{equation*}
\frac{D S}{D t}=\dot{S} \tag{22}
\end{equation*}
$$

The 'dot' means sources/sinks

7 Boussinesq approximation

VallisE p36
Constant reference density, ρ_{0}.
$\rho(x, y, z)=\rho_{0}+\rho^{\prime}(x, y, z)$
Assumes that $\frac{\rho^{\prime}}{\rho_{0}} \ll 1$ - more ocean-like.
Reference pressure distribution in hydrostatic balance with ρ_{0} :
$\frac{d p_{0}}{d z}=-\rho_{0} g$ (i.e. p_{0} varies linearly with height).
We only allow for variations of density to appear in buoyancy - gravity is large, so buoyant vertical accelerations can be large even with only small $\delta \rho$!

$$
p(x, y, z)=p_{0}(z)+p^{\prime}(x, y, z)
$$

1) Momentum:

$$
\begin{equation*}
\frac{D \overrightarrow{\mathbf{v}}}{D t}+f \hat{\mathbf{k}} \times \overrightarrow{\mathbf{v}}=-\frac{1}{\rho_{0}} \nabla p^{\prime}+b \hat{\mathbf{k}} \quad\left[m s^{-2}\right] \tag{23}
\end{equation*}
$$

with buoyancy

$$
\begin{equation*}
b=-g \frac{\rho^{\prime}}{\rho_{0}} \quad\left[m s^{-2}\right] \tag{24}
\end{equation*}
$$

$p_{0}(z)$ is in hydrostatic balance with g and thus are equal and opposite and subtract out.
2) Continuity: (now diagnostic, not prognostic; volume is constant)

$$
\begin{equation*}
\nabla \cdot \overrightarrow{\mathbf{v}}=0 \quad\left[s^{-1}\right] \tag{25}
\end{equation*}
$$

This does not mean $\frac{D \rho}{D t}=0$. Density of a parcel can absolutely change as it moves - volume is constant (i.e. incompressible), but air parcels still experience buoyant vertical accelerations. This is basically the simplest possible way to have a parcel whose density is approximately constant but which can still be accelerated up/down by buoyancy. It's weird, but math allows it.
3) Thermodynamic:

$$
\begin{equation*}
\frac{D b}{D t}=\dot{b} \quad\left[\mathrm{~ms}^{-3}\right] \tag{26}
\end{equation*}
$$

A parcel becomes buoyant if a source or sink or buoyancy acts on it.

8 Anelastic equations: a stratified fluid

VallisE p39

Exact same as Boussinesq, except now reference density $\tilde{\rho}(z)$ (i.e. varies with height). ("Weak Boussinesq")
$\rho(x, y, z)=\tilde{\rho}(z)+\rho^{\prime}(x, y, z)$
Assumes that $\frac{\rho^{\prime}}{\tilde{\rho}(z)} \ll 1$ (atmosphere-like).
End result: reference state is now $\theta_{0}=$ constant (instead of $\rho_{0}=$ constant)
Differences in equations:
buoyancy

$$
\begin{equation*}
b=-g \frac{\theta^{\prime}}{\theta_{0}} \quad\left[m s^{-2}\right] \tag{27}
\end{equation*}
$$

Continuity:

$$
\begin{equation*}
\nabla \cdot \overrightarrow{\mathbf{u}}+\frac{1}{\tilde{\rho}} \frac{\partial}{\partial z}(\tilde{\rho} w)=0 \quad\left[s^{-1}\right] \tag{28}
\end{equation*}
$$

Horizontal velocity $\overrightarrow{\mathbf{u}}=(u, v, 0)$
$\tilde{\rho}$ varies with height and so cannot be pulled out from within the vertical derivative (and thus cancel out).

