
EAPS 59100, Spring 2020

Lec 03: Equations of motion for rotating fluid

Reading: VallisE Ch2

1 Basic intro

Atmosphere / ocean: shallow layers of fluid on a sphere, strongly influenced by 1) rotation
and 2) stratification

• fluid: a continuum of particles that flows and deforms

• shallow: H � L

• rotation: Ω

• stratification: ∂ρ
∂z
� ∇hρ

2 Equations of motion for a rotating fluid

VallisE p27
Cartesian coordinates (x,y,z):
Inviscid momentum equations in the rotating frame of reference (i.e. ~v = (u, v, w)

– 3D velocity for air parcels in rotating frame of reference – i.e. what we think of as the
”wind”):

~v = (u, v, w)
total (Lagrangian) derivative:

DA

Dt
=
∂A

∂t
+ ~v · ∇A =

∂A

∂t
+ u

∂A

∂x
+ v

∂A

∂y
+ w

∂A

∂z
(1)

Momentum equations:

D~v

Dt
+ 2~Ω× ~v = −1

ρ
∇p− gk̂ [ms−2] (2)

Coriolis acceleration: ~aCor = −2~Ω× ~v

• Zero Coriolis force on body that is stationary in rotating frame

• Coriolis force deflects moving bodies at right angles to their direction of motion

1



3 Spherical coordinates

VallisE p28
Spherical coordinates (FIG 2.2):

• r: radius from planet center

• φ: latitude (differs from Vallis!)

• λ: longitude

• ~v = ûi + vĵ + wk̂ = (u, v, w) =
(
rcosφDλ

Dt
, rDφ

Dt
, Dr
Dt

)
= (zonal, meridional, vertical)

directions

Note: Dr
Dt

= Dz
Dt

total (Lagrangian) derivative:

D

Dt
=

∂

∂t
+

u

rcosφ

∂

∂λ
+
v

r

∂

∂φ
+ w

∂

∂r
(3)

VallisE p32

Du

Dt
−

(
2Ω +

u

rcosφ

)
(vsinφ− wcosφ) = − 1

ρrcosφ

∂p

∂λ
[ms−2] (4)

Dv

Dt
+
wv

r
+

(
2Ω +

u

rcosφ

)
(usinφ) = − 1

ρr

∂p

∂φ
[ms−2] (5)

Dw

Dt
− u2 + v2

r
− 2Ωucosφ = −1

ρ

∂p

∂r
− g [ms−2] (6)

(7)

Notes:

• ”Coriolis” terms: terms with Ω

• ”Metric” terms: LHS quadratic terms with 1
r
, associated with curvature of sphere

(specifically that î and ĵ directions aren’t straight but curve around sphere)

4 Primitive equations

VallisE p32
Three approximations to spherical equations above:

• Hydrostatic: in vertical momentum equation, neglect 1) advection of w, 2) Coriolis,
and 3) metric terms

• Shallow fluid: 1) r ≈ a; 2) in derivatives dr ≈ dz (a is constant)
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• Traditional: neglect terms involving w multiplied by u or v (|w| � u or v)

Note: 2+3 = thin shell approx.

Du

Dt
− fv − uv

a
tanφ = − 1

ρacosφ

∂p

∂λ
[ms−2] (8)

Dv

Dt
+ fu+

u2

a
tanφ = − 1

ρa

∂p

∂φ
[ms−2] (9)

0 = −1

ρ

∂p

∂z
− g [ms−2] (10)

(11)

with Coriolis parameter

f = 2Ωsinφ [s−1] (12)

and with total (Lagrangian) derivative (note: error in book VallisE p32)

D

Dt
=

∂

∂t
+

u

acosφ

∂

∂λ
+
v

a

∂

∂φ
+ w

∂

∂z
(13)

5 Cartesian approximations to the primitive equations

5.1 f-plane

VallisE p32
Consider motions for which L � a – layer of fluid approximated by tangent plane of

sphere (DRAW A DIAGRAM SPHERE + tangent plane))
Geometry:

• Plane tangent to Earth’s surface at latitude φ0

• small excursions: (x, y, z) ≈ (aλcosφ0, a(φ − φ0), z), ~v = (u, v, w) = velocity in the
tangent plane (i.e. approximately West-East, South-North, vertical)

• constant Coriolis parameter f0 = 2Ωsinφ0

• No curvature: ignore LHS quadratic terms in u and v

1) Horizontal momentum equations: (note dx = acosφ0dλ, dy = adφ)

Du

Dt
− f0v = −1

ρ

∂p

∂x
[ms−2] (14)

Dv

Dt
+ f0u = −1

ρ

∂p

∂y
[ms−2] (15)

(16)
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(note: vertical momentum equation isn’t altered – can do hydrostatic or non-hydrostatic)
which may also be written in vector form as

D~v

Dt
+ f0k̂× ~v = −1

ρ
∇p− gk̂ [ms−2] (17)

where

D

Dt
=

∂

∂t
+ ~v · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(18)

Identical to rotating cartesian system in which the rotation vector Ω is aligned with the
local vertical

f0 represents the projection of the planetary vorticity onto the local vertical at latitude
φ0.

Analog? ROTATING TANK!

5.2 Beta-plane

VallisE p33
f = 2Ωsinφ varies with latitude.
On the tangent plane, mimic this variation in y. Taylor expansion of f about f0, i.e.

f ≈ f0 + df
dy
y, where f = f0 at y = 0:

f ≈ f0 + βy [s−1] (19)

where β = df
dy

= df
adφ

= 1
a
df
dφ

β =
2Ωcosφ0

a
[m−1s−1] (20)

• Captures dynamical effect of sphericity – differential rotation

• Avoids complicating geometric effects (curvature of sphere)

Equations same as f-plane above, except with f0 + βy in lieu of f0.

6 Mass continuity and thermodynamic equation

VallisE p35 (and p9)
General mass continuity equation (a density budget)

∂ρ

∂t
+∇ · (ρ~v) = 0 (21)

(Interpretation: density will be increased (∂ρ
∂t

) if there is a convergence of flux of density
by the flow (−∇ · (ρ~v)).

General thermodynamic equation: some thermodynamic quantity S (e.g. temperature,
potential temperature, entropy, buoyancy)
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DS

Dt
= Ṡ (22)

The ’dot’ means sources/sinks

7 Boussinesq approximation

VallisE p36
Constant reference density, ρ0.
ρ(x, y, z) = ρ0 + ρ′(x, y, z)
Assumes that ρ′

ρ0
� 1 – more ocean-like.

Reference pressure distribution in hydrostatic balance with ρ0:
dp0
dz

= −ρ0g (i.e. p0 varies linearly with height).
We only allow for variations of density to appear in buoyancy – gravity is large, so

buoyant vertical accelerations can be large even with only small δρ!
p(x, y, z) = p0(z) + p′(x, y, z)
1) Momentum:

D~v

Dt
+ f k̂× ~v = − 1

ρ0
∇p′ + bk̂ [ms−2] (23)

with buoyancy

b = −g ρ
′

ρ0
[ms−2] (24)

p0(z) is in hydrostatic balance with g and thus are equal and opposite and subtract out.
2) Continuity: (now diagnostic, not prognostic; volume is constant)

∇ · ~v = 0 [s−1] (25)

This does not mean Dρ
Dt

= 0. Density of a parcel can absolutely change as it moves
– volume is constant (i.e. incompressible), but air parcels still experience buoyant
vertical accelerations. This is basically the simplest possible way to have a parcel whose
density is approximately constant but which can still be accelerated up/down by buoyancy.
It’s weird, but math allows it.

3) Thermodynamic:

Db

Dt
= ḃ [ms−3] (26)

A parcel becomes buoyant if a source or sink or buoyancy acts on it.

8 Anelastic equations: a stratified fluid

VallisE p39
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Exact same as Boussinesq, except now reference density ρ̃(z) (i.e. varies with height).
(”Weak Boussinesq”)

ρ(x, y, z) = ρ̃(z) + ρ′(x, y, z)
Assumes that ρ′

ρ̃(z)
� 1 (atmosphere-like).

End result: reference state is now θ0 = constant (instead of ρ0 = constant)
Differences in equations:
buoyancy

b = −g θ
′

θ0
[ms−2] (27)

Continuity:

∇ · ~u +
1

ρ̃

∂

∂z
(ρ̃w) = 0 [s−1] (28)

Horizontal velocity ~u = (u, v, 0)
ρ̃ varies with height and so cannot be pulled out from within the vertical derivative (and

thus cancel out).
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