EAPS 59100, Spring 2020
Lec 03: Equations of motion for rotating fluid

Reading: VallisE Ch2

1 Basic intro

Atmosphere / ocean: shallow layers of fluid on a sphere, strongly influenced by 1) rotation
and 2) stratification

e fluid: a continuum of particles that flows and deforms
e shallow: H < L
e rotation: {2

e stratification: g—f > Vip

2 Equations of motion for a rotating fluid
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Cartesian coordinates (x,y,z):

Inviscid momentum equations in the rotating frame of reference (i.e. v = (u,v,w)
— 3D velocity for air parcels in rotating frame of reference — i.e. what we think of as the
"wind”):

vV = (u,v,w)

total (Lagrangian) derivative:
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Momentum equations:

Dv - 1 ~
D_‘t/ +20 x vV = —;Vp — gk [ms? (2)
Coriolis acceleration: ac,, = 20 x ¥

e Zero Coriolis force on body that is stationary in rotating frame

e Coriolis force deflects moving bodies at right angles to their direction of motion



3 Spherical coordinates
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Spherical coordinates (FIG 2.2):

e r: radius from planet center
e ¢: latitude (differs from Vallis!)

e \: longitude

D2 rB2 Dr) — (zonal, meridional, vertical)

oV = ui—i—vj—i—wl; = (u,v,w) = (TCOS(bE? Dt Dt

directions
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Note: b = D

total (Lagrangian) derivative:
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Notes:
e "(Coriolis” terms: terms with 2

e "Metric” terms: LHS quadratic terms with %, associated with curvature of sphere
(specifically that i and j directions aren’t straight but curve around sphere)

4 Primitive equations
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Three approximations to spherical equations above:

e Hydrostatic: in vertical momentum equation, neglect 1) advection of w, 2) Coriolis,
and 3) metric terms

e Shallow fluid: 1) r ~ a; 2) in derivatives dr ~ dz (a is constant)



e Traditional: neglect terms involving w multiplied by u or v (Jw| < u or v)

Note: 2+3 = thin shell approx.
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with Coriolis parameter
f=2Qsing [s7]
and with total (Lagrangian) derivative (note: error in book VallisE p32)
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5.1 f-plane
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5 Cartesian approximations to the primitive equations

Consider motions for which I < a — layer of fluid approximated by tangent plane of

sphere (DRAW A DIAGRAM SPHERE + tangent plane))

Geometry:

Plane tangent to Earth’s surface at latitude ¢,

tangent plane (i.e. approximately West-East, South-North, vertical)

constant Coriolis parameter fy = 2Qsingg
e No curvature: ignore LHS quadratic terms in v and v

1) Horizontal momentum equations: (note dxr = acosgodX, dy = ado)

Du _10p 9
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Dv 10p 9
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small excursions: (z,y,2) & (aAcosdg, a(d — ¢o), z), Vv = (u,v,w) = velocity in the



(note: vertical momentum equation isn’t altered — can do hydrostatic or non-hydrostatic)
which may also be written in vector form as

Dv

=Y _ - )
D1 + fok x V = Vp gk [ms? (17)
where
D 8 (9 0 0 0

Identical to rotating cartesian system in which the rotation vector €2 is aligned with the
local vertical
fo represents the projection of the planetary vorticity onto the local vertical at latitude

Po-
Analog? ROTATING TANK!

5.2 Beta-plane
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f = 2Qsing varies with latitude.

On the tangent plane, mimic this variation in y. Taylor expansion of f about fy, i.e.
f%fo—i—%y, where f = fy at y =0:

fadot by [ (19)
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e Captures dynamical effect of sphericity — differential rotation

e Avoids complicating geometric effects (curvature of sphere)

Equations same as f-plane above, except with fy 4+ By in lieu of fj.

6 Mass continuity and thermodynamic equation
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General mass continuity equation (a density budget)

8p i,
g TV (V) = (21)

(Interpretation: density will be increased (8 ) if there is a convergence of flux of density
by the flow (=V - (pV)).

General thermodynamic equation: some thermodynamic quantity S (e.g. temperature,
potential temperature, entropy, buoyancy)



DS
Dt
The 'dot’ means sources/sinks

7 Boussinesq approximation
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Constant reference density, pg.

p(I, Y, Z) = Po _|7 pl(x7 Ys Z)

Assumes that p—o < 1 — more ocean-like.

Reference pressure distribution in hydrostatic balance with pg:

‘%’ = —pog (i.e. po varies linearly with height).

We only allow for variations of density to appear in buoyancy — gravity is large, so
buoyant vertical accelerations can be large even with only small dp!

p(l‘, Y Z) = p0<2) + p/<CC, Y, Z)

1) Momentum:

Dv

. 1 .
Ft + fkx v = —%Vp’ + bk [ms*2] (23)

with buoyancy

b=—g [ms? (24)

Po
po(z) is in hydrostatic balance with ¢ and thus are equal and opposite and subtract out.
2) Continuity: (now diagnostic, not prognostic; volume is constant)

V-v=0 [s7] (25)

This does not mean % = 0. Density of a parcel can absolutely change as it moves

— volume is constant (i.e. incompressible), but air parcels still experience buoyant
vertical accelerations. This is basically the simplest possible way to have a parcel whose
density is approximately constant but which can still be accelerated up/down by buoyancy.
It’s weird, but math allows it.

3) Thermodynamic:

Db .
Ft:b [ms™7| (26)

A parcel becomes buoyant if a source or sink or buoyancy acts on it.

8 Anelastic equations: a stratified fluid
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Exact same as Boussinesq, except now reference density p(z) (i.e. varies with height).
(" Weak Boussinesq”)

p(e,y,2) = p(2) + p'(z,y, 2)

Assumes that -7~ <1 (atmosphere-like).

End result: reference state is now 6y = constant (instead of py = constant)

Differences in equations:

buoyancy
o’ L
b=—go- [ms™] (27)
0o
Continuity:
L, 10 . 1
. - - 92
Vot o (pu) =0 [s7] (28)

Horizontal velocity d = (u, v, 0)
p varies with height and so cannot be pulled out from within the vertical derivative (and
thus cancel out).



