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Lec 04c: Geostrophic adjustment

1 Intro

VallisE p74 (note: book uses a different type of example for this concept!)
If you impose a perturbation (bump) in a shallow layer of fluid, how does it evolve?
Top-hat IC: rotating slab of finite width 2L in x-direction and constant height H (FIG

DRC3)

Initial state (t = 0):
Initial height:

h0(x) =

{
H if |x| < L

0 if |x| > L

Initial velocity: zero motion: u0(x) = v0(x) = 0
Notes:

• an unbalanced perturbation – height perturbations without winds (and Coriolis force)
to balance pressure gradient force.

• fourier decomposition = superposition of many waves of different wavelengths

Analog: Tank lab #2!
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2 Shallow water potential vorticity

Rotating shallow water potential vorticity:

Q =
ζ + f

h
(1)

with relative vorticity ζ = ∂v
∂x
− ∂u

∂y

A material invariant (i.e. conserved):

DQ

Dt
= 0 (2)

3 Analytic solution

Perturbation h(x) = H + η(x) (i.e. η ≤ 0 in this problem)
What is the final shape of h(x)?
Final state (t→∞):

• geostrophic balance fvg = g ∂η
∂x

• u = 0 (zero outward motion)

How to solve?

• geostrophic balance

• PV conservation

• total mass conservation

PV (full):

• t = 0: Q0 = f
H

(i.e. constant everywhere)

• t→∞: Qf = ζ+f
H+η

Geostrophic relative vorticity: ζ = ∂vg
∂x

= g
f
∂2η
∂x2

PV conservation (lagrangian): Qf = Q0 (fluid parcels in top hat conserve their PV as
they move)

g
f
∂2η
∂x2

+ f

H + η
=

f

H
[m−1s−1] (3)

g
f
∂2η
∂x2

+ f = f
H

(H + η) = f + f
H
η

∂2η
∂x2
− f2

gH
η = 0

∂2η

∂x2
− 1

L2
d

η = 0 [m−1] (4)
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Rossby deformation radius:

Ld =

√
gH

f
[m] (5)

2nd-order ODE: need 2 BCs
1) Symmetry about x = 0
Valid solution:

η = η0cosh

(
x

Ld

)
[m] (6)

(cosh(x) = 1
2
(ex + e−x), sinh(x) = 1

2
(ex − e−x))

2) Total mass conservation (Mf = M0) to solve for η0

ρ0

∫ L

0

(H + η)dx = ρ0HL0 [kg m−1] (7)

where L is some large radius∫ L
0

(H + η0cosh
(
x
Ld

)
)dx = HL0

HL+ η0Ldsinh
(
L
Ld

)
= HL0

η0 = −H (L− L0)

Ld

1

sinh
(
L
Ld

) [m] (8)

Plug into solution:

η(x) = −H (L− L0)

Ld
coth

(
x

Ld

)
[m] (9)

Suppose η = −H at x = L (i.e. outer edge of final perturbation, i.e. h = 0)

z − tanh(z) = z0 (10)

where

z =
L

Ld
(11)

Note: tanh(z) bounded from [−1, 1] from z = (−∞,∞).
Solution? Consider two limits
(FIG DRC5)
1) Case 1: L0 � Ld (i.e. z0 � 1)
Then z � 1 too (because |tanh(z)| ≤ 1)
Thus, z → z0 + 1 i.e.

L→ L0 + Ld (L0 � Ld) (12)

Fluid spreads out by one deformation radius then stops. Since L0 � Ld: fluid barely
spreads out.
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Meanwhile, geostrophic wind response is strong: vg
g
f
∂η
∂x

– for f > 0: on the negative-x

side, ∂η
∂x
> 0 → vg > 0 (i.e. into page); on the positive-x side, ∂η

∂x
< 0 → vg < 0 (i.e. out of

page).
2) Case 2: L0 � Ld (i.e. z0 � 1)
limz→0tanh(z) ≈ z − 1

3
z3 + . . .

Thus, 1
3
z3 → z0

z → (3z0)
1
3

L
Ld
→ (3L0

Ld
)
1
3

L→ 3
1
3L

1
3
0L

2
3
d (L0 � Ld) (13)

Geometric average of L0 and Ld, weighted towards Ld
This time, geostrophic wind response is weak since ∂η

∂x
is relatively small.

Full solution: FIG DRC4
Thus, two limits = two classes of systems

• L� Ld: strongly constrained by rotation – mass (i.e. height) field adjusts weakly, flow
(i.e. velocity) field adjusts strongly to geostrophic flow (”quasi-balanced”). (”winds
adjust to the mass”)

• L� Ld: weakly constrained by rotation – mass (i.e. height) field adjusts strongly, flow
(i.e. velocity) field adjusts weakly to geostrophic flow. (”mass adjusts to the wind”)

What is Ld =
√
gH
f

?

L = U
τ

U =
√
gH = cGW

τCor = 1
f

– timescale of Coriolis acceleration (i.e. ”feeling the Earth’s rotation”, |aCor| =
fU)
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(= 1
2Ωsinφ

= 1
2( 2π

1 siderealday
)sinφ

=
1
4π

siderealday

sinφ
– proportional to a ”pendulum day” 1 siderealday

sin(φ)
)

Thus Ld = cGW τCor – Ld is the distance a shallow water gravity wave travels
outward before being turned appreciably by the Coriolis acceleration.

Note: the non-rotating case is simply f = 0 (and thus Ld = ∞), i.e. no
rotation, only gravity waves radiating out to ∞!

Note: what about conservation of energy? It turns out that Ef < E0. Where
does the extra energy go? (Homework.)

Example – waves in a tank of water
Rotating at 15 rpm, H = 0.1 m, g′ ≈ 0.05 ∗ 10 ms−2 = 0.5 ms−2, f0 = 2Ω = 2 ∗ (15 rev

1 min
∗

1 min
60 s
∗ 2π rad

1rev
) = π s−1 gives

cGW =
√
gH = 0.22 ms−1 (recall the tank is small)

Ld = cGW
f0

= 0.22 ms−1

pi s−1 = 0.07 m = 7 cm
How does this compare with L0 in the tank experiment?

Example – atmosphere
What is Ld at the equator? ∞
What is Ld at the poles? Take H = 10 km, g ≈ 10 ms−2, f = 1.46 ∗ 10−4 s−1

cGW =
√
gH = 316 ms−1 Ld = 316 ms−1

1.46∗10−4 s−1 ≈ 2000 km
Here at Purdue: Ld ≈ 3000 km – length scale of pair of extratropical cyclone + anti-

cyclone (think one United States)
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4 Why are we talking about this?

POWERPOINT Maps
Extratropics: larger f = smaller Ld – extratropical cyclones, significant pressure gradients

can exist in balance with Coriolis acceleration
Tropics: small f = large Ld – significant pressure gradients cannot be balanced with

Coriolis acceleration (”weak temperature gradient approximation”)
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