EAPS 53600, Spring 2020

Lec 04c: Geostrophic adjustment

1 Intro

VallisE p74 (note: book uses a different type of example for this concept!)
If you impose a perturbation (bump) in a shallow layer of fluid, how does it evolve?
Top-hat IC: rotating slab of finite width $2 L$ in x -direction and constant height H (FIG DRC3)

Fig. DRC3. 1D rotating top-hat perturbation

Initial state $(t=0)$:
Initial height:

$$
h_{0}(x)= \begin{cases}H & \text { if }|x|<L \\ 0 & \text { if }|x|>L\end{cases}
$$

Initial velocity: zero motion: $u_{0}(x)=v_{0}(x)=0$
Notes:

- an unbalanced perturbation - height perturbations without winds (and Coriolis force) to balance pressure gradient force.
- fourier decomposition $=$ superposition of many waves of different wavelengths

Analog: Tank lab \#2!

2 Shallow water potential vorticity

Rotating shallow water potential vorticity:

$$
\begin{equation*}
Q=\frac{\zeta+f}{h} \tag{1}
\end{equation*}
$$

with relative vorticity $\zeta=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$
A material invariant (i.e. conserved):

$$
\begin{equation*}
\frac{D Q}{D t}=0 \tag{2}
\end{equation*}
$$

3 Analytic solution

Perturbation $h(x)=H+\eta(x)$ (i.e. $\eta \leq 0$ in this problem)
What is the final shape of $h(x)$?
Final state $(t \rightarrow \infty)$:

- geostrophic balance $f v_{g}=g \frac{\partial \eta}{\partial x}$
- $\mathrm{u}=0$ (zero outward motion)

How to solve?

- geostrophic balance
- PV conservation
- total mass conservation

PV (full):

- $t=0: Q_{0}=\frac{f}{H}$ (i.e. constant everywhere)
- $t \rightarrow \infty: Q_{f}=\frac{\zeta+f}{H+\eta}$

Geostrophic relative vorticity: $\zeta=\frac{\partial v_{g}}{\partial x}=\frac{g}{f} \frac{\partial^{2} \eta}{\partial x^{2}}$
PV conservation (lagrangian): $Q_{f}=Q_{0}$ (fluid parcels in top hat conserve their PV as they move)

$$
\begin{equation*}
\frac{\frac{g}{f} \frac{\partial^{2} \eta}{\partial x^{2}}+f}{H+\eta}=\frac{f}{H} \quad\left[m^{-1} s^{-1}\right] \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{g}{f} \frac{\partial^{2} \eta}{\partial x^{2}}+f=\frac{f}{H}(H+\eta)=f+\frac{f}{H} \eta \\
& \frac{\partial^{2} \eta}{\partial x^{2}}-\frac{f^{2}}{g H} \eta=0
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial^{2} \eta}{\partial x^{2}}-\frac{1}{L_{d}^{2}} \eta=0 \quad\left[m^{-1}\right] \tag{4}
\end{equation*}
$$

Rossby deformation radius:

$$
\begin{equation*}
L_{d}=\frac{\sqrt{g H}}{f} \quad[m] \tag{5}
\end{equation*}
$$

2nd-order ODE: need 2 BCs

1) Symmetry about $x=0$

Valid solution:

$$
\begin{equation*}
\eta=\eta_{0} \cosh \left(\frac{x}{L_{d}}\right) \quad[m] \tag{6}
\end{equation*}
$$

$\left(\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right), \sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)\right)$
2) Total mass conservation ($M_{f}=M_{0}$) to solve for η_{0}

$$
\begin{equation*}
\rho_{0} \int_{0}^{L}(H+\eta) d x=\rho_{0} H L_{0} \quad\left[\mathrm{~kg} \mathrm{~m}^{-1}\right] \tag{7}
\end{equation*}
$$

where L is some large radius
$\int_{0}^{L}\left(H+\eta_{0} \cosh \left(\frac{x}{L_{d}}\right)\right) d x=H L_{0}$
$H L+\eta_{0} L_{d} \sinh \left(\frac{L}{L_{d}}\right)=H L_{0}$

$$
\begin{equation*}
\eta_{0}=-H \frac{\left(L-L_{0}\right)}{L_{d}} \frac{1}{\sinh \left(\frac{L}{L_{d}}\right)} \quad[m] \tag{8}
\end{equation*}
$$

Plug into solution:

$$
\begin{equation*}
\eta(x)=-H \frac{\left(L-L_{0}\right)}{L_{d}} \operatorname{coth}\left(\frac{x}{L_{d}}\right) \quad[m] \tag{9}
\end{equation*}
$$

Suppose $\eta=-H$ at $x=L$ (i.e. outer edge of final perturbation, i.e. $h=0$)

$$
\begin{equation*}
z-\tanh (z)=z_{0} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
z=\frac{L}{L_{d}} \tag{11}
\end{equation*}
$$

Note: $\tanh (z)$ bounded from $[-1,1]$ from $z=(-\infty, \infty)$.
Solution? Consider two limits

(FIG DRC5)

1) Case 1: $L_{0} \gg L_{d}$ (i.e. $z_{0} \gg 1$)

Then $z \gg 1$ too (because $|\tanh (z)| \leq 1$)
Thus, $z \rightarrow z_{0}+1$ i.e.

$$
\begin{equation*}
L \rightarrow L_{0}+L_{d} \quad\left(L_{0} \gg L_{d}\right) \tag{12}
\end{equation*}
$$

Fluid spreads out by one deformation radius then stops. Since $L_{0} \gg L_{d}$: fluid barely spreads out.

Fig. DRC5. Schematic of initial + final states for top-hat perturbation of different length scales ($f>0$)

Meanwhile, geostrophic wind response is strong: $v_{g} \frac{g}{f} \frac{\partial \eta}{\partial x}$ - for $f>0$: on the negative-x side, $\frac{\partial \eta}{\partial x}>0 \rightarrow v_{g}>0$ (i.e. into page); on the positive-x side, $\frac{\partial \eta}{\partial x}<0 \rightarrow v_{g}<0$ (i.e. out of page).
2) Case $2: L_{0} \ll L_{d}$ (i.e. $z_{0} \ll 1$)
$\lim _{z \rightarrow 0} \tanh (z) \approx z-\frac{1}{3} z^{3}+\ldots$
Thus, $\frac{1}{3} z^{3} \rightarrow z_{0}$
$z \rightarrow\left(3 z_{0}\right)^{\frac{1}{3}}$
$\frac{L}{L_{d}} \rightarrow\left(3 \frac{L_{0}}{L_{d}}\right)^{\frac{1}{3}}$

$$
\begin{equation*}
L \rightarrow 3^{\frac{1}{3}} L_{0}^{\frac{1}{3}} L_{d}^{\frac{2}{3}} \quad\left(L_{0} \ll L_{d}\right) \tag{13}
\end{equation*}
$$

Geometric average of L_{0} and L_{d}, weighted towards L_{d}
This time, geostrophic wind response is weak since $\frac{\partial \eta}{\partial x}$ is relatively small.
Full solution: FIG DRC4
Thus, two limits $=$ two classes of systems

- $L \gg L_{d}$: strongly constrained by rotation - mass (i.e. height) field adjusts weakly, flow (i.e. velocity) field adjusts strongly to geostrophic flow ("quasi-balanced"). ("winds adjust to the mass")
- $L \ll L_{d}$: weakly constrained by rotation - mass (i.e. height) field adjusts strongly, flow (i.e. velocity) field adjusts weakly to geostrophic flow. ("mass adjusts to the wind")

What is $L_{d}=\frac{\sqrt{g H}}{f}$?
$L=\frac{U}{\tau}$
$U=\sqrt{g H}=c_{G W}$
$\tau_{C o r}=\frac{1}{f}$ - timescale of Coriolis acceleration (i.e. "feeling the Earth's rotation", $\left|a_{C o r}\right|=$ fU)

Fig. DRC4. z solution for final state 1D rotating top-hat perturbation
$\left(=\frac{1}{2 \Omega \sin \phi}=\frac{1}{2\left(\frac{2 \pi}{1 \text { siderealday })}\right) \sin \phi}=\frac{\frac{1}{4 \pi} \operatorname{siderealday}}{\sin \phi}-\right.$ proportional to a "pendulum day" $\left.\frac{1 \text { siderealday }}{\sin (\phi)}\right)$
Thus $L_{d}=c_{G W} \tau_{C o r}-L_{d}$ is the distance a shallow water gravity wave travels outward before being turned appreciably by the Coriolis acceleration.

Note: the non-rotating case is simply $f=0$ (and thus $L_{d}=\infty$), i.e. no rotation, only gravity waves radiating out to ∞ !

Note: what about conservation of energy? It turns out that $E_{f}<E_{0}$. Where does the extra energy go? (Homework.)

Example - waves in a tank of water
Rotating at $15 \mathrm{rpm}, H=0.1 \mathrm{~m}, \mathrm{~g}^{\prime} \approx 0.05 * 10 \mathrm{~ms}^{-2}=0.5 \mathrm{~ms}^{-2}, f_{0}=2 \Omega=2 *\left(\frac{15 \mathrm{rev}}{1 \mathrm{~min}} *\right.$ $\left.\frac{1 \min }{60 s} * \frac{2 \pi \text { rad }}{1 r e v}\right)=\pi s^{-1}$ gives
$c_{G W}=\sqrt{g H}=0.22 \mathrm{~ms}^{-1}$ (recall the tank is small)
$L_{d}=\frac{c_{G W}}{f_{0}}=\frac{0.22 \mathrm{~ms}^{-1}}{p i s^{-1}}=0.07 \mathrm{~m}=7 \mathrm{~cm}$
How does this compare with L_{0} in the tank experiment?

Example - atmosphere

What is L_{d} at the equator? ∞
What is L_{d} at the poles? Take $H=10 \mathrm{~km}, g \approx 10 \mathrm{~ms}^{-2}, f=1.46 * 10^{-4} \mathrm{~s}^{-1}$
$c_{G W}=\sqrt{g H}=316 \mathrm{~ms}^{-1} L_{d}=\frac{316 \mathrm{~ms}^{-1}}{1.46 * 10^{-4} \mathrm{~s}^{-1}} \approx 2000 \mathrm{~km}$
Here at Purdue: $L_{d} \approx 3000 \mathrm{~km}$ - length scale of pair of extratropical cyclone + anticyclone (think one United States)

4 Why are we talking about this?

POWERPOINT Maps
Extratropics: larger $f=$ smaller L_{d} - extratropical cyclones, significant pressure gradients can exist in balance with Coriolis acceleration

Tropics: small $f=$ large L_{d} - significant pressure gradients cannot be balanced with Coriolis acceleration ("weak temperature gradient approximation")

