
EAPS 53600, Spring 2020

Lec 05: Quasi-geostrophic (QG) system

1 Intro

Quasi-geostrophic (QG) equations:

• Most widely used set of equations for atmos/ocean theory

• Want to understand horizontal scales of motion similar to the deformation radius
(larger scales: pure geostrophic)

Motivation:

• Large-scale flow in the atmopshere/ocean is close to geostrophic and hydrostatic bal-
ance, horizontal scales similar to deformation radius

• Want a filtered set of equations appropriate to these specific scales of motion

• The equations only describe the motion on these scales, do not explain their existence

Assumptions:

1. Flow is near-geostrophic balance: small Rossby number, Ro = U
fL
� 1

2. Small variations in f : f = f0 + βy (beta-plane), βy � f0

3. Horizontal scale of motion similar to deformation radius: L ∼ Ld

2 Shallow-water quasi-geostrophic (QG) potential vor-

ticity (VallisE 5.2.2-5.2.3)

Outcomes of our assumptions:

• Small Ro: i) ~u = ~ug + ~ua, where | ~ua| � | ~ug|; ii) ζ � f0

• f nearly constant: ∇ · ug = 0 (recall: for f constant, the geostrophic wind is non-
divergent)

The QG system is simply a linearized version of the full system. Similarly, the system
has a linearized version of the full PV called the quasi-geostrophic potential vorticity.

Note: for derivation from vorticity equation, see VallisE p87-88
Recall SW PV:

Q =
f + ζ

h
(1)

Material conservation: DQ
Dt

= 0
Fluid depth: h = H + h′, where h′ = ηT − ηb is the deviation (top + bottom) from H
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h = H
(
1 + h′

H

)
Beta plane: f = f0 + βy
Q = (f0 + βy + ζ)( 1

H
) 1

1+h′
H

Linearize:

• Assume h′

H
� 1 – taylor expansion: Q ≈ (f0 + βy + ζ)( 1

H
)(1− h′

H
)

• neglect products of perturbations from H and f0 (i.e. h′, βy, ζ)

• ζ ≈ ζg = ∂vg
∂x
− ∂ug

∂y

Q ≈ ( 1
H

)((f0 + βy + ζg)− f0
H
h′)

Divide through by 1
H

, and drop constant f0 term (it’s a constant so doesn’t do anything).
Shallow water quasi-geostrophic potential vorticity:

q = βy + ζg − f0
H
h′ (2)

Material conservation: advection only by the geostrophic wind, i.e.

Dgq

Dt
=
∂q

∂t
+ ug

∂q

∂x
+ vg

∂q

∂y
= 0 (3)

GROUP: Consider a column of fluid that conserves its potential vorticity as it moves.

• If the column becomes taller (i.e. “column stretching”), how would its absolute vor-
ticity change?

• If the column is stretched and f is constant, how would its relative vorticity change?

• If the column moves poleward and h is constant, how would its relative vorticity
change?

• If the column moves eastward down a mountain slope and its top remains at the same
height (e.g. the tropopause), how would its relative vorticity change?

• Do your answers differ from when using the full PV formulation?

Note: the effect of fluid depth is divided for full PV but subtracted for QGPV – both
yield reduced PV for larger h.

Summary: QGPV is a linearized approximation to full PV. (Note: the conser-
vation equation itself is not linearized.)
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2.1 Formulation in terms of streamfunction (ψ) and deformation
radius (Ld)

The above formulation is nice, but h′ and ζ are actually related to each other...
Because the geostrophic wind (for f = f0 constant) is non-divergent, we can write the

horizontal flow field in terms of a streamfunction, ψ:

ug = −∂ψ
∂y

(4)

vg =
∂ψ

∂x
(5)

Non-divergent flow moves parallel to the steamfunction contours, like water flowing between
the banks of a stream. (Is it really non-divergent? Check for yourself: try taking ∇ · ~ug)

In the shallow water system, the geostrophic streamfunction is:

ψ = gh′

f0
(6)

and so

ug = − g

f0

∂h′

∂y
(7)

vg =
g

f0

∂h′

∂x
(8)

The geostrophic relative vorticity is:

ζg =
∂vg
∂x
− ∂ug

∂y
=

g

f0
∇2h′ = ∇2ψ (9)

Finally, recall the deformation radius:

Ld = cGW

f0
(10)

where in the shallow water
cGW =

√
gH (11)

Using the above, we can rewrite the last term of the QG PV as:
f0
H
h′ = f0

H

(
f0ψ
g

)
=

f20
gH
ψ = 1

L2
d
ψ

which yields an alternate form of the QG PV equation:

q = βy +∇2ψ − 1
L2
d
ψ (12)

with material derivative

Dgq

Dt
=
∂q

∂t
− ∂ψ

∂y

∂q

∂x
+
∂ψ

∂x

∂q

∂y
(13)
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and thus budget equation

Dgq

Dt
=
∂q

∂t
− J(ψ, q) = 0 (14)

Jacobian J(A,B) = ∂A
∂y

∂B
∂x
− ∂A

∂x
∂B
∂y

Note: this formulation is conveniently written entirely in terms of ψ and q, and the only
external parameters are now Ld and β!

This is very convenient, because it can be used directly to extend our shallow
water system thinking to a continuously-stratified system (i.e. the real atmo-
sphere).

3 Continuously-stratified system (VallisE 5.5)

In a continuously-stratified fluid, the gravity wave phase speed is slightly different:

cGW = NH (15)

where

N =

√
−g
ρ̃

∂ρ̃

∂z
[s−1] (16)

is the Brunt-Vaisala frequency (cf. VallisE p59) – a.k.a. the “buoyancy frequency”,
i.e. the frequency at which an air parcel would oscillate up and down in a stably-stratified
environment. (think of a balloon bobbing slowly up and down). ρ̃(z) is the background
vertical variation in density.

Hence, the deformation radius is:

Ld = cGW

f
= NH

f
(17)

The geostrophic streamfunction is now:

ψ = p′

f0ρ0
(18)

and so

ug = − 1

ρ0f0

∂p

∂y
(19)

vg =
1

ρ0f0

∂p

∂x
(20)

(look familiar? this is regular old geostrophic wind as taught in meteorology)
Now, since we’re allowing density to vary, we need to include the thermodynamic

equation too.
Db

Dt
= 0 (21)

where b is buoyancy (recall: positive buoyancy = less dense = (ideal gas) warmer).

4



Let’s use the boussinesq approximation (i.e. background density constant, background
buoyancy varies only with height) for simplicity:

b(x, y, z, t) = b̃(z) + b′(x, y, t) (22)

plugging in yields
Db′

Dt
+ w

∂b̃

∂z
= 0 (23)

The buoyancy frequency is itself defined as the background vertical gradient in buoyancy,

i.e. N2 = ∂b̃
∂z

. Thus,
Db′

Dt
+N2w = 0 (24)

Finally, we return to the original quasi-geostrophic vorticity equation:

Dg(ζ + f)

Dt
= −f0(∇ · ~u) (25)

Using 3D mass continuity (∇ · ~v = 0), we can rewrite this as

Dg(ζ + f)

Dt
= f0(

∂w

∂z
) (26)

The QG version of the thermodynamic equation is:

Dgb
′

Dt
+N2w = 0 (27)

Combining the above two equations to eliminate w yields:

Dqg
Dt

= 0 (28)

where
q = βy + ζg + ∂

∂z

(
f0
N2 b

′) (29)

Amazingly, buoyancy is also related to the streamfunction via hydrostatic balance:

b′ = f0
∂ψ

∂z
(30)

(Why? f0
∂ψ
∂z

= 1
ρ0

∂p′

∂z
= − 1

ρ0
(ρ′g) = −g(ρ′/ρ0) = b′)

Hence, the alternative form for QG PV is:

q = βy +∇2ψ − f 2
0
∂
∂z

(
1
N2

∂ψ
∂z

)
(31)

Notice that if N2 is constant (i.e. the fluid stratification doesn’t vary with height), you get

q = βy +∇2ψ − H2

L2
d

∂2ψ

∂z2
(32)

Compare this with the shallow-water version above. Note that the two partial derivatives in
z act like a factor 1/H2.

Note: the continuously stratified system is conceptually identical to the
shallow-water system; the math is just a bit more complicated.
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• Pressure has replaced fluid height as the relevant dynamical quantity.

• However, recall that if one uses pressure coordinates instead of height, then pressure
is replaced with geopotential height.

• This is directly analogous to the shallow water fluid height – higher heights = higher
pressure, negative vorticity; lower heights = lower pressure, positive vorticity.
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