
EAPS 53600, Spring 2020

Lec 07: Mid-latitude beta plane dynamics (see Vallis big

book 8.1-8.2)

1 Intro

The derivation for Rossby waves in the previous lecture focused on a flow that is in near-
geostrophic balance (using quasi-geostrophic PV). This means that it does not allow for –
i.e. it has filtered out – any unbalanced flow. Thus, you get Rossby waves, but not gravity
waves.

Let’s now generalize this derivation to allow for (unbalanced) gravity waves,
too. We will do this by combining the governing equation for QG PV with the original
governing equations for the height and flow fields as well.

This is the most general (and complicated) form of the equations on a “midlatitude” beta
plane – i.e. where |βy| � f0. (See next lecture for the equatorial beta plane, where f0 = 0).

2 General derivation

In a system, Rossby and gravity waves may co-exist – requires: 1) PV gradient and
2) stratification .

Linearized single layer rotating SW system on beta plane (f = f0 + βy):

∂u

∂t
− fv = −g∂h

∂x
(EQ1) (1)
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∂t
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∂y
(EQ2) (2)
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∂x
+
∂v
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= 0 (EQ3) (3)

First, we can combine these:
∂
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∂t
∂u
∂y
− (f ∂v

∂y
+ v ∂f
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∂
∂x
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∂t
∂v
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+ f ∂u
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Subtract (bottom - top), ∂f
∂y

= β: ∂ζg
∂t

+ f
(
∂u
∂x

+ ∂v
∂y

)
+ βv = 0

Use (3) to eliminate divergence: ∂ζg
∂t
− f

H
∂h
∂t

+ βv = 0
Combine derivatives:

∂

∂t

(
ζg −

f

H
h

)
+ βv = 0 (EQ4) (4)

This is almost the same linearized QGPV equation we derived in the previous
section (for zero mean flow u = 0, and ∂q

∂y
= β). The one key difference: we are

keeping f general (rather than setting it to f = f0) in the term multiplying h.
Next
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vt = − f
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1
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gH
utt = − 1

H
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1
H

∂2

∂t∂y
(3): 1

H
htty + (utxy + vtyy) = 0

∂
∂x

(4): vtxx − utxy − f
H
htx + βvx = 0

Combine above equations: (6 - (5+7+8))

( 1
gH
vttt+

f
gH
utt)−

(
( f
gH
utt − f2

gH
vt) + ( 1

H
htty + utxy + vtyy) + (vtxx − utxy − f

H
htx + βvx)

)
=

(− 1
H
hytt)−

(
(− f

H
htx) + 0 + 0

)
Terms that cancel: h, f

gH
utt, utxy. This yields

1
c2
∂3v
∂t3

+ f2

c2
∂v
∂t
− ∂

∂t
(∇2v)− β ∂v

∂x
= 0 (5)

where c = cGW =
√
gH

This equation is at the heart of the complete set of wave dynamics in a medium
with varying f (e.g. a beta plane).

This complicated equation has non-constant coefficients – f varies with y.
Hence, in its current form you cannot simply assume pure wave solutions...

2.1 Option 1: constant f = f0 – the mid-latitude beta-plane

First, let’s start with a simplified version. Let’s try taking f = f0. HOWEVER, we
still retain β (to allow for Rossby waves)! So we are taking f constant except where
differentiated. This may seem weird! But basically we want to retain the dynamics that
depend on gradients in f (Rossby waves) but then neglect the small variations in f for the
dynamics that care only about f itself (gravity waves).

It is also a very convenient mathematical simplification that allows us to solve for regular
waves in this system. With constant coefficients, we can assume plane-wave solutions in
both the x and y directions of the form

v = ṽe(i(kx+ly−ωt)) (6)

Plugging this in yields
1
c2

(−iω)3 +
f20
c2

(−iω)− (−iω)((ik)2 + (il)2)− β(ik) = 0
1
c2
ω3 − f20

c2
ω − ω(k2 + l2)− βk = 0

which can be written as a cubic equation in ω (cubic as expected from equation with
third-order time derivative).

Thus, the dispersion relation for this wave system is

ω2 − c2βk
ω

= f 2
0 + c2(k2 + l2) (7)

Cases:
1) f-plane (β = 0)

ω(ω2 − f 2
0 − c2(k2 + l2)) = 0 (8)
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We saw this before:
ω = 0: geostrophic flow (time-independent)
ω2 = f 2

0 + c2K2: Poincare waves
No Rossby waves. (Why? β = 0)
2) High frequency waves ω � f0 (requires ω � β too for physicality)

ω2 − c2(k2 + l2) = 0 (9)

ω = cK: regular non-rotating gravity waves
3) Low frequency waves ω � f0

i.e. ω2 � f 2
0

ω = −βkc2
c2(k2+l2)+f20

ω =
−βk

k2 + l2 + k2
d

(10)

where k2
d =

f20
c2

QG Rossby waves
This system has it all!
Notice: there is a distinction here between waves according to frequency: gravity waves

are high frequency, Rossby waves are low frequency.

2.2 Visualizing the dispersion relation

Let’s visualize this dispersion relation and its associated wave solutions.

ω2 − c2βk

ω
= f 2

0 + c2(k2 + l2) (11)

Nondimensionalization:

• time: T ∼ f−1
0

• distance: L ∼ Ld = k−1
d = c

f0

• velocity: U ∼ L
T

= c (this is consistent with intuition!)

Recall: c =
√
gH, Ld = c

f0
, kd = f0

c

Thus:

• frequency: ω = ω̂f0 (units: [ 1
T

])

• wavenumber: (k, l) = (k̂, l̂)kd (units: [ 1
L

])

• β: β = β̂f0kd (units: [ 1
TL

]) – from df
dy
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Plug these in

(ω̂f0)2 − c2β̂f0kdk̂kd
ω̂f0

= f 2
0 + c2((k̂kd)

2 + (l̂kd)
2)

Plug in for kd = f0
c

: (ω̂f0)2 − c2β̂f0k̂(
f0
c

)2

ω̂f0
= f 2

0 + c2(f0
c

)2((k̂)2 + (l̂)2)

Divide through by f 2
0 , and all c and f0 terms cancel, yielding

ω̂2 − β̂ k̂
ω̂

= 1 + (k̂2 + l̂2) (12)

Now we have an equation relating frequency and wavenumber that contains only a single
external parameter: β̂

β̂ = βLd

f0
Characteristic values for the the atmosphere: 40 oN
Ld = 1000 km = 106 m
f0 = 2Ωsin(φ) ≈ 10−4 s−1

β = 2Ωcos(φ)
aEarth

≈ 2 ∗ 10−11 m−1s−1

Thus β̂ = 2∗10−11 m−1s−1

10−4 s−1 (106 m) = (2 ∗ 10−7 m−1)(106 m) = 0.2

Let’s take β̂ = 0.2:
DRAW ME!
(Reminder: Standard convection is to define frequency (ω) to be non-negative, i.e. ω ≥ 0.

Wavenumber (k, l, m) may be negative or positive; positive = eastward/northward/upward;
negative = westward/southward/downward. Why? The wavevector is k · x, where x is
defined positive eastward/northward/upward. Thus k · x < 0 means that e.g. for zonal
motion k < 0 points opposite to the positive x direction (eastward) and hence the wave will
move westward.)

You can see the strong separation in waves between low and high frequency. Let’s un-
derstand these:

4



1) Higher frequency waves ω̂ � β̂: Poincare waves

ω̂2 = 1 + (k̂2 + l̂2) (13)

So, for example:

• l = 0 (i.e. constant in the y-direction), this yields: ω̂2 = 1 + k̂2 – i.e. a curve that is
linear at larger k̂ with a minimum at (k̂, ω̂) = (0, 1), which corresponds to ω = f0 as
the lowest possible frequency of a Poincare wave – this is the MINIMUM possible GW
frequency

• l = 1: meridional wavelength = deformation length scale, the wave has a higher
frequency and wave speed

3) Low frequency waves ω̂ � 1: Rossby waves

ω = −β̂k̂
(k̂2+l̂2)+f20

ω̂ =
−β̂k̂

k̂2 + l̂2 + 1
(14)

So, for example:

• l = 0, this yields: ω̂ = −β̂k̂
k̂2+1

. – this is the MAXIMUM possible RW frequency (Note

k̂ < 0 required for this to be real )
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