
EAPS 53600, Spring 2020

Lec 08: Equatorial beta plane dynamics (Vallis Big Book

8.2)

1 Intro

The previous lecture found shallow-water waves on the mid-latitude beta plane, where f = f0
but we still retain β.

Let’s try a second option: the “equatorial” beta plane, where f0 = 0 and f = βy.

1.1 Option 2: f0 = 0, f = βy – the equatorial beta-plane

We’ll start again with the governing equation we derived last time for the linearized single
layer rotating SW system on beta plane:

1
c2
∂3v
∂t3

+ f2

c2
∂v
∂t
− ∂

∂t
(∇2v)− β ∂v

∂x
= 0 (1)

Equatorial beta plane: f0 = 0, i.e. f = βy
This system now has non-constant coefficients - since βy depends on y!

Thus, we search for solutions with a plane wave in the zonal direction only, i.e.

v = ṽ(y)e(i(kx−ωt)) (2)

with boundary conditions: ṽ(y)→ 0 as y → ±∞.
Substitution yields:

d2ṽ

dy2
+

(
ω2

c2
− k2 − βk

ω
− β2y2

c2

)
ṽ = 0 (3)

(Note: d2ṽ
dy2

comes from the Laplacian)
We again want to non-dimensionalize this solution. For our equatorial beta plane f0 = 0,

which means we need a different time scale.

1.1.1 Deformation radius on the equatorial beta-plane

The f-plane deformation radius: Ld = c
f

= distance a gravity wave travels before feeling the
effect of rotation.

Same concept applies at low latitudes.
f = βy and take y = Ld we get
Ld = c

βLd
Equatorial beta-plane deformation radius:

Ld,eq =

√
c

β
(4)
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Initially no rotation, but gradually feels increasingly strong rotation moving poleward.
This also yields an intrinsic timescale for the system from T = UL = cLd,eq

T ∼
(√

cβ
)−1

(5)

The velocity scale c is the same.

1.2 Derivation (see Vallis Big Book 8.2.1)

Feel free to skip the solution in the next section
Non-dim:

• ω̂ = ω√
cβ

• k̂ = k√
c
β

• ŷ = y√
β
c

d2ṽ

dŷ2
+

(
ω̂2 − k̂2 − k̂

ω̂
− ŷ2

)
ṽ = 0 (6)

Put into a standard form using

ṽ(ŷ) = Ψ(ŷ)e−
ŷ2

2 (7)

yields Hermite’s equation:
d2Ψ

dŷ2
− 2ŷ

dΨ

dŷ
+ λΨ = 0 (8)

where

λ = ω̂2 − k̂2 − k̂

ω̂
− 1 (9)

Hermite’s equation is an eigenvalue equation, such only quantized solutions exist where

λ = 2m m = 0, 1, 2, ... (10)

and these solutions are Hermite polynomials

Ψ(ŷ) = Hm(ŷ) (11)

where H0 = 1, H1 = 2ŷ, H2 = 4ŷ2 − 2, H3 = 8ŷ3 − 12ŷ,...
(FIG8-5)
Note: Hm(−ŷ) = (−1)mHm(ŷ)
Thus, the set of solutions for ṽ is:

ṽm(ŷ) = Hm(ŷ)e−
ŷ2

2 m = 0, 1, 2, ... (12)
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where H0 = 1, H1 = 2ŷ, H2 = 4ŷ2 − 2, H3 = 8ŷ3 − 12ŷ,...
Note: H is identical for ±y when m is even. Since H is used for solutions for v, v is

symmetric about the equator (e.g. northward for y > 0 and southward for y < 0) for m odd.
Meanwhile, u and η are symmetric about the equator for m even.

The dispersion relation comes directly from λ = 2m, i.e.

2m = ω̂2 − k̂2 − k̂
ω̂
− 1

which rearranges to

ω̂2 − k̂

ω̂
= 2m+ 1 + k̂2 m = 0, 1, 2, ... (13)

1.3 Solution

Recall, the dispersion relation for our case where we took f = f0
f = f0: (ω̂ = ω

f0
; (k̂, l̂) = (k,l)

kd
; β̂ = β

f0kd
)

ω2 − c2βk

ω
= f 2

0 + c2(k2 + l2) (14)

and in non-dimensional form

ω̂2 − β̂ k̂
ω̂

= 1 + (k̂2 + l̂2) (15)

For the equatorial beta-plane (f = βy), the dispersion relation is: (see formal deriva-
tion below)

ω2 − c2βk

ω
= (2m+ 1)cβ + c2k2 m = 0, 1, 2, ... (16)
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and in non-dimensional form f = βy: (ω̂ = ω√
cβ

; k̂ = k√
c
β

)

ω̂2 − k̂

ω̂
= 2m+ 1 + k̂2 m = 0, 1, 2, ... (17)

m = 0, 1, 2, ... appears because the solution to the governing equation is a set of quan-
tized harmonic solutions. m is very closely analogous to l, i.e. higher m corresponds to
higher-order variability in the y-direction!

• m even = v symmetric about the equator

• m odd = v anti-symmetric about the equator

Thus, the only changes are:

• l2 disappears (because no longer plane wave in y-direction)

• instead m appears – a set of harmonic solutions in the y-direction, very closely analo-
gous to l

• first term RHS (f 2
0 → (2m+ 1)cβ; non-dim: 1→ 2m+ 1)

• β̂ does not appear – zero external parameters!

Visualization: (FIG8-6)

Note: “planetary waves” = Rossby waves.
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1.3.1 High frequency waves

Neglect c2βk
ω

(nondim: k̂
ω̂

)
Yields:
ω2 = (2m+ 1)cβ + c2k2 (ω̂2 = 2m+ 1 + k̂2)
These are equatorially-trapped Poincare waves (f replaced with cβ) – zero meridional

propagation
For sufficiently high wavenumbers, this is just regular non-rotating SW gravity waves.

1.3.2 Low frequency waves

Neglect ω2 (nondim: ω̂2)
Yields:
ω = −βk

(2m+1)β
c
+k2

(ω̂ = −k̂
2m+1+k̂2

)

These are equatorially-trapped zonally-propagating Rossby waves – zero meridional prop-
agation.

Note: again a large frequency gap between low-frequency Rossby waves and high fre-
quency gravity waves. Can show theoretically (V p.309) that the ratio of the minimum GW
frequency and maximum RW frequency is given by

ωGW,min
ωRW,max

= 2(2m+ 1) (18)

This is independent of both β and c! – it is a universal property of a fluid on any
equatorial beta plane.

1.3.3 Special case 1: m=0 – Yanai wave (mixed Rossby-Gravity wave)

ω̂2 − k̂
ω̂

= 1 + k̂2

This has two solutions:

ω = −ck (19)

ω =
kc

2
± 1

2

√
k2c2 + 4cβ (20)

The first solution is non-physical: it is a westward-propagating gravity wave, which will
move away from the equator and blow up. This is fundamentally different from the f = f0
case earlier, as this blow-up only occurs because we require solutions to decay moving away
from y = 0.

Second solution cases:

• k = 0: ω =
√
cβ ((k̂, ω̂) = (0, 1)

• k → +∞: ω = ck – eastward-propagating gravity wave (high frequency!)

• k → −∞: ω = −β
k

– westward-propagating Rossby wave (low frequency!)
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1.3.4 Special case 2: m=-1 – Kelvin wave

Oddly, setting m = −1 in the dispersion relation yields another solution:
ω2 − c2βk

ω
= (2(−1) + 1)cβ + c2k2

ω2 − c2βk
ω

= −cβ + c2k2

Which gives the solution
ω = ±ck (21)

These are equatorially-trapped Kelvin waves, for which ω = +ck (i.e. eastward propa-
gating) is the only physical solution.

1.4 Rossby adjustment

Analogous to geostrophic adjustment problem, but now on an equatorial beta plane.
SHOW MOVIES / SIMULATIONS

1.5 Summary

Equatorial beta-plane yields multiple types of waves:

• high frequency: Poincare (gravity) waves, multiple modes

• low frequency: Rossby waves (westward propagating), multiple modes

• mixed frequencies: Mixed Rossby-Gravity wave (Yanai wave), single mode – eastward
propagating Poincare wave at high frequency, westward propagating Rossby wave at
low frequency

• special case: Kelvin wave (single mode) – eastward propagating, “equatorially-trapped”
(i.e. always being turned into the Equator by the Coriolis force, regardless of which
hemisphere!)

2 Matsuno-Gill Model (Vallis Big Book 8.5)

Forced, steady problem: suppose a bump is permanently being recreated. What does the
steady state solution look?

This problem has analytic solutions, called the ”Matsuno-Gill Model”. In this case, the
forcing for a ”bump” is thought of as a source of heating in the atmosphere. See figures
below.

(FIG8-11)
(FIG8-7)
(FIG18-23)

6



“Gill model” (or “Matsuno-Gill” model) – see Vallis 8.5
Shading = pressure (shading = low), vertical velocity (shading = positive)

Figure 1: Matsuno-Gill model response to a steady source of heating localized at the equator
(here at (x, y) = (0, 0)). Subplots show pressure and horizontal flow perturbations associated
with Kelvin waves (top left) and Rossby waves (top right) and the sum of the two (bottom
left); with total vertical velocity (bottom right; greys = upward motion) and total horizontal
flow perturbations associated with the heating forcing.

7



Figure 2: Colors: Frequency-wavenumber plot for a one-layer shallow water model on the
equatorial beta plane. Colors: power spectrum of fluid height (i.e. wave energy) as a
function of ω and k . Black lines: theoretical predictions from the Matsuno-Gill model for
the dispersion relations of equatorial Rossby and rotating gravity waves overlaid. Symmetric
= same sign perturbation in NH and SH; Anti-symmetric = opposite signs.
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Figure 3: Similar to previous plot, but for power spectrum of cloud brightness, estimated
from satellite data in the tropics 15S-15N. Black lines show theoretical solutions for disper-
sion relations of equatorial Rossby waves, rotating gravity waves, and mixed rossby-gravity
(Yanai) waves for different equivalent depths, heq, from 8-90m; best fit is heq = 25 m. “MJO”
is the Madden-Julian Oscillation. (cf. Wheeler and Kiladis (1999).
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