EAPS 53600, Spring 2020
Lec 08: Equatorial beta plane dynamics (Vallis Big Book
8.2)

1 Intro

The previous lecture found shallow-water waves on the mid-latitude beta plane, where f = fy
but we still retain 3.
Let’s try a second option: the “equatorial” beta plane, where fo =0 and f = By.

1.1 Option 2: f; =0, f = Py — the equatorial beta-plane

We'll start again with the governing equation we derived last time for the linearized single
layer rotating SW system on beta plane:

3 2
o+ % - 5 (v) -5 o 0

Equatorial beta plane: fy =0, ie. f= [y
This system now has non-constant coefficients - since Sy depends on !

Thus, we search for solutions with a plane wave in the zonal direction only, i.e.
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with boundary conditions: 9(y) — 0 as y — +oc.
Substitution yields:
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(Note: % comes from the Laplacian)
We again want to non-dimensionalize this solution. For our equatorial beta plane fy = 0,
which means we need a different time scale.

1.1.1 Deformation radius on the equatorial beta-plane

The f-plane deformation radius: Lg = % = distance a gravity wave travels before feeling the

effect of rotation.
Same concept applies at low latitudes.
f = By and take y = Ly we get
Lq= ﬂzd
Equatorial beta-plane deformation radius:

Ly — \fg (4)




Initially no rotation, but gradually feels increasingly strong rotation moving poleward.

This also yields an intrinsic timescale for the system from 7' = UL = cL,
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The velocity scale c is the same.

1.2 Derivation (see Vallis Big Book 8.2.1)

Feel free to skip the solution in the next section
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yields Hermite’s equation:
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Hermite’s equation is an eigenvalue equation, such only quantized solutions exist where

A=2m m=20,1,2,..
and these solutions are Hermite polynomials
U(g) = Hum ()

where H() = 17 H1 = 2@, H2 = 4@2 - 27 H3 = 8:&3 - 12@,
(FIGS8-5)

Note: Hp,(—9) = (—1)"H,,(9)

Thus, the set of solutions for v is:

m=0,1,2, ..
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Fig. 8.5

where HO e 1’ Hl — 23}7 H2 = 42_]2 — 2, H3 = 83)3 — 12:&,

Note: H is identical for £y when m is even. Since H is used for solutions for v, v is
symmetric about the equator (e.g. northward for y > 0 and southward for y < 0) for m odd.

Meanwhile, u and 7 are symmetric about the equator for m even.

The dispersion relation comes directly from A = 2m, i.e.
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which rearranges to
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1.3 Solution

Recall, the dispersion relation for our case where we took f = fj
ey W (Y kDA B
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and in non-dimensional form
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For the equatorial beta-plane (f = fBy), the dispersion relation is: (see formal deriva-

tion below)
2
W= bk _ (2m + 1)cB + c*k?

m=0,1,2,..
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m = 0,1,2,... appears because the solution to the governing equation is a set of quan-
tized harmonic solutions. m is very closely analogous to [, i.e. higher m corresponds to
higher-order variability in the y-direction!

e m even = v symmetric about the equator

e m odd = v anti-symmetric about the equator
Thus, the only changes are:
e [? disappears (because no longer plane wave in y-direction)

e instead m appears — a set of harmonic solutions in the y-direction, very closely analo-
gous to [

e first term RHS (fZ — (2m + 1)cf; non-dim: 1 — 2m + 1)
° B does not appear — zero external parameters!

Visualization: (FIG8-6)
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Note: “planetary waves” = Rossby waves.



1.3.1 High frequency waves

Neglect nondim: f)
Yields:
w? = (2m + 1)eB + k2 (&2 = 2m + 1 + k?)
These are equatorially-trapped Poincare waves (f replaced with ¢f) — zero meridional
propagation

For sufficiently high wavenumbers, this is just regular non-rotating SW gravity waves.
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1.3.2 Low frequency waves

Neglect w? (nondim: @?)

Yields: A
- =Bk o _ _ =k
T (2m41) 2 k2 (W= 2m+1+1%2)
These are equatorially-trapped zonally-propagating Rossby waves — zero meridional prop-
agation.

Note: again a large frequency gap between low-frequency Rossby waves and high fre-
quency gravity waves. Can show theoretically (V p.309) that the ratio of the minimum GW
frequency and maximum RW frequency is given by

YeWmin _ o(9m 4 1) (18)
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This is independent of both f and ¢! — it is a universal property of a fluid on any
equatorial beta plane.

1.3.3 Special case 1: m=0 — Yanai wave (mixed Rossby-Gravity wave)

e
This has two solutions:

w= —ck (19)
ke
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w + % k2c? + 4cfs (20)
The first solution is non-physical: it is a westward-propagating gravity wave, which will
move away from the equator and blow up. This is fundamentally different from the f = fy
case earlier, as this blow-up only occurs because we require solutions to decay moving away
from y = 0.
Second solution cases:

o k=0: w=+/cB ((k,&) = (0,1)
o k — +00: w = ck — eastward-propagating gravity wave (high frequency!)
B

® k — —o0: w= —7 — westward-propagating Rossby wave (low frequency!)



1.3.4 Special case 2: m=-1 — Kelvin wave

Oddly, setting m = —1 in the dispersion relation yields another solution:
W2 — B — (9(=1) + 1)eB + K>
w? — CQ% = —cB+ *k?
Which gives the solution
w = *ck (21)

These are equatorially-trapped Kelvin waves, for which w = +ck (i.e. eastward propa-
gating) is the only physical solution.

1.4 Rossby adjustment

Analogous to geostrophic adjustment problem, but now on an equatorial beta plane.

SHOW MOVIES / SIMULATIONS

1.5 Summary

Equatorial beta-plane yields multiple types of waves:
e high frequency: Poincare (gravity) waves, multiple modes
e low frequency: Rossby waves (westward propagating), multiple modes

e mixed frequencies: Mixed Rossby-Gravity wave (Yanai wave), single mode — eastward
propagating Poincare wave at high frequency, westward propagating Rossby wave at
low frequency

e special case: Kelvin wave (single mode) — eastward propagating, “equatorially-trapped”
(i.e. always being turned into the Equator by the Coriolis force, regardless of which
hemisphere!)

2 Matsuno-Gill Model (Vallis Big Book 8.5)

Forced, steady problem: suppose a bump is permanently being recreated. What does the
steady state solution look?

This problem has analytic solutions, called the ”Matsuno-Gill Model”. In this case, the
forcing for a "bump” is thought of as a source of heating in the atmosphere. See figures
below.

(FIG8-11)

(FIG8-7)

(FIG18-23)
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“Gill model” (or “Matsuno-Gill” model) — see Vallis 8.5
Shading = pressure (shading = low), vertical velocity (shading = positive)

Fig. 8.11
Figure 1: Matsuno-Gill model response to a steady source of heating localized at the equator
(here at (x,y) = (0,0)). Subplots show pressure and horizontal flow perturbations associated
with Kelvin waves (top left) and Rossby waves (top right) and the sum of the two (bottom
left); with total vertical velocity (bottom right; greys = upward motion) and total horizontal
flow perturbations associated with the heating forcing.
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Figure 2: Colors: Frequency-wavenumber plot for a one-layer shallow water model on the
equatorial beta plane. Colors: power spectrum of fluid height (i.e. wave energy) as a
function of w and k . Black lines: theoretical predictions from the Matsuno-Gill model for
the dispersion relations of equatorial Rossby and rotating gravity waves overlaid. Symmetric
= same sign perturbation in NH and SH; Anti-symmetric = opposite signs.
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Figure 3: Similar to previous plot, but for power spectrum of cloud brightness, estimated
from satellite data in the tropics 15S-15N. Black lines show theoretical solutions for disper-
sion relations of equatorial Rossby waves, rotating gravity waves, and mixed rossby-gravity
(Yanai) waves for different equivalent depths, h,, from 8-90m; best fit is h., = 25 m. “MJO”
is the Madden-Julian Oscillation. (cf. Wheeler and Kiladis (1999).



