EAPS 53600, Spring 2020

Lec 08: Equatorial beta plane dynamics (Vallis Big Book

8.2)

1 Intro

The previous lecture found shallow-water waves on the mid-latitude beta plane, where $f=f_{0}$ but we still retain β.

Let's try a second option: the "equatorial" beta plane, where $f_{0}=0$ and $f=\beta y$.

1.1 Option 2: $f_{0}=0, f=\beta y$ - the equatorial beta-plane

We'll start again with the governing equation we derived last time for the linearized single layer rotating SW system on beta plane:

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{3} v}{\partial t^{3}}+\frac{f^{2}}{c^{2}} \frac{\partial v}{\partial t}-\frac{\partial}{\partial t}\left(\nabla^{2} v\right)-\beta \frac{\partial v}{\partial x}=0 \tag{1}
\end{equation*}
$$

Equatorial beta plane: $f_{0}=0$, i.e. $f=\beta y$
This system now has non-constant coefficients - since βy depends on y !
Thus, we search for solutions with a plane wave in the zonal direction only, i.e.

$$
\begin{equation*}
v=\tilde{v}(y) e^{(i(k x-\omega t))} \tag{2}
\end{equation*}
$$

with boundary conditions: $\tilde{v}(y) \rightarrow 0$ as $y \rightarrow \pm \infty$.
Substitution yields:

$$
\begin{equation*}
\frac{d^{2} \tilde{v}}{d y^{2}}+\left(\frac{\omega^{2}}{c^{2}}-k^{2}-\frac{\beta k}{\omega}-\frac{\beta^{2} y^{2}}{c^{2}}\right) \tilde{v}=0 \tag{3}
\end{equation*}
$$

(Note: $\frac{d^{2} \tilde{v}}{d y^{2}}$ comes from the Laplacian)
We again want to non-dimensionalize this solution. For our equatorial beta plane $f_{0}=0$, which means we need a different time scale.

1.1.1 Deformation radius on the equatorial beta-plane

The f-plane deformation radius: $L_{d}=\frac{c}{f}=$ distance a gravity wave travels before feeling the effect of rotation.

Same concept applies at low latitudes.
$f=\beta y$ and take $y=L_{d}$ we get
$L_{d}=\frac{c}{\beta L_{d}}$
Equatorial beta-plane deformation radius:

$$
\begin{equation*}
L_{d, e q}=\sqrt{\frac{c}{\beta}} \tag{4}
\end{equation*}
$$

Initially no rotation, but gradually feels increasingly strong rotation moving poleward. This also yields an intrinsic timescale for the system from $T=U L=c L_{d, e q}$

$$
\begin{equation*}
T \sim(\sqrt{c \beta})^{-1} \tag{5}
\end{equation*}
$$

The velocity scale c is the same.

1.2 Derivation (see Vallis Big Book 8.2.1)

Feel free to skip the solution in the next section
Non-dim:

- $\hat{\omega}=\frac{\omega}{\sqrt{c \beta}}$
- $\hat{k}=\frac{k}{\sqrt{\frac{c}{\beta}}}$
- $\hat{y}=\frac{y}{\sqrt{\frac{\beta}{c}}}$

$$
\begin{equation*}
\frac{d^{2} \tilde{v}}{d \hat{y}^{2}}+\left(\hat{\omega}^{2}-\hat{k}^{2}-\frac{\hat{k}}{\hat{\omega}}-\hat{y}^{2}\right) \tilde{v}=0 \tag{6}
\end{equation*}
$$

Put into a standard form using

$$
\begin{equation*}
\tilde{v}(\hat{y})=\Psi(\hat{y}) e^{-\frac{\hat{y}^{2}}{2}} \tag{7}
\end{equation*}
$$

yields Hermite's equation:

$$
\begin{equation*}
\frac{d^{2} \Psi}{d \hat{y}^{2}}-2 \hat{y} \frac{d \Psi}{d \hat{y}}+\lambda \Psi=0 \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\hat{\omega}^{2}-\hat{k}^{2}-\frac{\hat{k}}{\hat{\omega}}-1 \tag{9}
\end{equation*}
$$

Hermite's equation is an eigenvalue equation, such only quantized solutions exist where

$$
\begin{equation*}
\lambda=2 m \quad m=0,1,2, \ldots \tag{10}
\end{equation*}
$$

and these solutions are Hermite polynomials

$$
\begin{equation*}
\Psi(\hat{y})=H_{m}(\hat{y}) \tag{11}
\end{equation*}
$$

where $H_{0}=1, H_{1}=2 \hat{y}, H_{2}=4 \hat{y}^{2}-2, H_{3}=8 \hat{y}^{3}-12 \hat{y}, \ldots$
(FIG8-5)
Note: $H_{m}(-\hat{y})=(-1)^{m} H_{m}(\hat{y})$
Thus, the set of solutions for \tilde{v} is:

$$
\begin{equation*}
\tilde{v}_{m}(\hat{y})=H_{m}(\hat{y}) e^{-\frac{\hat{y}^{2}}{2}} \quad m=0,1,2, \ldots \tag{12}
\end{equation*}
$$

Fig. 8.5
where $H_{0}=1, H_{1}=2 \hat{y}, H_{2}=4 \hat{y}^{2}-2, H_{3}=8 \hat{y}^{3}-12 \hat{y}, \ldots$
Note: H is identical for $\pm y$ when m is even. Since H is used for solutions for v, v is symmetric about the equator (e.g. northward for $y>0$ and southward for $y<0$) for m odd. Meanwhile, u and η are symmetric about the equator for m even.

The dispersion relation comes directly from $\lambda=2 m$, i.e.
$2 m=\hat{\omega}^{2}-\hat{k}^{2}-\frac{\hat{k}}{\hat{\omega}}-1$
which rearranges to

$$
\begin{equation*}
\hat{\omega}^{2}-\frac{\hat{k}}{\hat{\omega}}=2 m+1+\hat{k}^{2} \quad m=0,1,2, \ldots \tag{13}
\end{equation*}
$$

1.3 Solution

Recall, the dispersion relation for our case where we took $f=f_{0}$

$$
\begin{align*}
& f=f_{0}:\left(\hat{\omega}=\frac{\omega}{f_{0}} ;(\hat{k}, \hat{l})=\frac{(k, l)}{k_{d}} ; \hat{\beta}=\frac{\beta}{f_{0} k_{d}}\right) \\
& \omega^{2}-\frac{c^{2} \beta k}{\omega}=f_{0}^{2}+c^{2}\left(k^{2}+l^{2}\right) \tag{14}
\end{align*}
$$

and in non-dimensional form

$$
\begin{equation*}
\hat{\omega}^{2}-\hat{\beta} \frac{\hat{k}}{\hat{\omega}}=1+\left(\hat{k}^{2}+\hat{l}^{2}\right) \tag{15}
\end{equation*}
$$

For the equatorial beta-plane $(f=\beta y)$, the dispersion relation is: (see formal derivation below)

$$
\begin{equation*}
\omega^{2}-\frac{c^{2} \beta k}{\omega}=(2 m+1) c \beta+c^{2} k^{2} \quad m=0,1,2, \ldots \tag{16}
\end{equation*}
$$

and in non-dimensional form $f=\beta y:\left(\hat{\omega}=\frac{\omega}{\sqrt{c \beta}} ; \hat{k}=\frac{k}{\sqrt{\frac{c}{\beta}}}\right)$

$$
\begin{equation*}
\hat{\omega}^{2}-\frac{\hat{k}}{\hat{\omega}}=2 m+1+\hat{k}^{2} \quad m=0,1,2, \ldots \tag{17}
\end{equation*}
$$

$m=0,1,2, \ldots$ appears because the solution to the governing equation is a set of quantized harmonic solutions. m is very closely analogous to l, i.e. higher m corresponds to higher-order variability in the y -direction!

- m even $=v$ symmetric about the equator
- m odd $=v$ anti-symmetric about the equator

Thus, the only changes are:

- l^{2} disappears (because no longer plane wave in y -direction)
- instead m appears - a set of harmonic solutions in the y-direction, very closely analogous to l
- first term RHS $\left(f_{0}^{2} \rightarrow(2 m+1) c \beta\right.$; non-dim: $\left.1 \rightarrow 2 m+1\right)$
- $\hat{\beta}$ does not appear - zero external parameters!

Visualization: (FIG8-6)

Fig. 8.6

Note: "planetary waves" = Rossby waves.

1.3.1 High frequency waves

Neglect $\frac{c^{2} \beta k}{\omega}$ (nondim: $\frac{\hat{k}}{\hat{\omega}}$)
Yields:
$\omega^{2}=(2 m+1) c \beta+c^{2} k^{2}\left(\hat{\omega}^{2}=2 m+1+\hat{k}^{2}\right)$
These are equatorially-trapped Poincare waves (f replaced with $c \beta$) - zero meridional propagation

For sufficiently high wavenumbers, this is just regular non-rotating SW gravity waves.

1.3.2 Low frequency waves

Neglect ω^{2} (nondim: $\hat{\omega}^{2}$)
Yields:
$\omega=\frac{-\beta k}{(2 m+1) \frac{\beta}{c}+k^{2}}\left(\hat{\omega}=\frac{-\hat{k}}{2 m+1+\hat{k}^{2}}\right)$
These are equatorially-trapped zonally-propagating Rossby waves - zero meridional propagation.

Note: again a large frequency gap between low-frequency Rossby waves and high frequency gravity waves. Can show theoretically (V p.309) that the ratio of the minimum GW frequency and maximum RW frequency is given by

$$
\begin{equation*}
\frac{\omega_{G W, \text { min }}}{\omega_{R W, \max }}=2(2 m+1) \tag{18}
\end{equation*}
$$

This is independent of both β and $c!$ - it is a universal property of a fluid on any equatorial beta plane.

1.3.3 Special case 1: $\mathrm{m}=0$ - Yanai wave (mixed Rossby-Gravity wave)

$\hat{\omega}^{2}-\frac{\hat{k}}{\hat{\omega}}=1+\hat{k}^{2}$
This has two solutions:

$$
\begin{array}{r}
\omega=-c k \\
\omega=\frac{k c}{2} \pm \frac{1}{2} \sqrt{k^{2} c^{2}+4 c \beta} \tag{20}
\end{array}
$$

The first solution is non-physical: it is a westward-propagating gravity wave, which will move away from the equator and blow up. This is fundamentally different from the $f=f_{0}$ case earlier, as this blow-up only occurs because we require solutions to decay moving away from $y=0$.

Second solution cases:

- $k=0: \omega=\sqrt{c \beta}((\hat{k}, \hat{\omega})=(0,1)$
- $k \rightarrow+\infty: \omega=c k$ - eastward-propagating gravity wave (high frequency!)
- $k \rightarrow-\infty: \omega=-\frac{\beta}{k}$ - westward-propagating Rossby wave (low frequency!)

1.3.4 Special case 2: $\mathrm{m}=-1$ - Kelvin wave

Oddly, setting $m=-1$ in the dispersion relation yields another solution:

$$
\begin{aligned}
& \omega^{2}-\frac{c^{2} \beta k}{\omega}=(2(-1)+1) c \beta+c^{2} k^{2} \\
& \omega^{2}-\frac{c^{2} \beta k}{\omega}=-c \beta+c^{2} k^{2}
\end{aligned}
$$

Which gives the solution

$$
\begin{equation*}
\omega= \pm c k \tag{21}
\end{equation*}
$$

These are equatorially-trapped Kelvin waves, for which $\omega=+c k$ (i.e. eastward propagating) is the only physical solution.

1.4 Rossby adjustment

Analogous to geostrophic adjustment problem, but now on an equatorial beta plane.
SHOW MOVIES / SIMULATIONS

1.5 Summary

Equatorial beta-plane yields multiple types of waves:

- high frequency: Poincare (gravity) waves, multiple modes
- low frequency: Rossby waves (westward propagating), multiple modes
- mixed frequencies: Mixed Rossby-Gravity wave (Yanai wave), single mode - eastward propagating Poincare wave at high frequency, westward propagating Rossby wave at low frequency
- special case: Kelvin wave (single mode) - eastward propagating, "equatorially-trapped" (i.e. always being turned into the Equator by the Coriolis force, regardless of which hemisphere!)

2 Matsuno-Gill Model (Vallis Big Book 8.5)

Forced, steady problem: suppose a bump is permanently being recreated. What does the steady state solution look?

This problem has analytic solutions, called the "Matsuno-Gill Model". In this case, the forcing for a "bump" is thought of as a source of heating in the atmosphere. See figures below.
(FIG8-11)
(FIG8-7)
(FIG18-23)

Figure 1: Matsuno-Gill model response to a steady source of heating localized at the equator (here at $(x, y)=(0,0))$. Subplots show pressure and horizontal flow perturbations associated with Kelvin waves (top left) and Rossby waves (top right) and the sum of the two (bottom left); with total vertical velocity (bottom right; greys = upward motion) and total horizontal flow perturbations associated with the heating forcing.

Fig. 8.7

Figure 2: Colors: Frequency-wavenumber plot for a one-layer shallow water model on the equatorial beta plane. Colors: power spectrum of fluid height (i.e. wave energy) as a function of ω and k. Black lines: theoretical predictions from the Matsuno-Gill model for the dispersion relations of equatorial Rossby and rotating gravity waves overlaid. Symmetric $=$ same sign perturbation in NH and SH ; Anti-symmetric $=$ opposite signs.

Fig. 18.23

Figure 3: Similar to previous plot, but for power spectrum of cloud brightness, estimated from satellite data in the tropics 15S-15N. Black lines show theoretical solutions for dispersion relations of equatorial Rossby waves, rotating gravity waves, and mixed rossby-gravity (Yanai) waves for different equivalent depths, $h_{e q}$, from $8-90 \mathrm{~m}$; best fit is $h_{e q}=25 \mathrm{~m}$. "MJO" is the Madden-Julian Oscillation. (cf. Wheeler and Kiladis (1999).

