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1 Intro

In life, we experience the weather. The weather is interesting because it is always
changing – the atmosphere is not steady. Instead, it is unsteady – varying in time.

Hydrodynamic states that could occur in nature:

• Steady (time-independent): zero motion (e.g. geostrophic balance)

• Time-dependent, stable: waves – perturbations that propagate (and eventually decay

due to dissipation, e.g. friction at boundaries)

• Time-dependent, unstable: instability – infinitesimally small perturbations grow
with time

Where we’ve gone and where we’re going next:

• Up til now: balanced flow, waves (gravity, Rossby) in a single layer of fluid

• Now: hydrodynamic instability of a flow – many forms. We focus on two:

1. Barotropic instability – does not require density variations

• medium: any fluid

• essential property: shear in flow – spatial variations in wind speed/direction

• relevance: jets, vortices; 2D and 3D turbulence; water coming out of your faucet

(if it were purely laminar flow it would be transparent (e.g. a water fountain); if

its opaque, it is turbulent)

2. Baroclinic instability – requires density variations

• medium: rotating, stably-stratified fluid

• essential property: horizontal density (temperature) gradients (which is

accompanied by vertical shear via thermal wind balance!)

• relevance: generates extratropical (”baroclinic”) cyclones – i.e. weather that
directly a↵ects our lives on a daily basis!

It turns out that these are actually dynamically very similar.

What do they both require? Rossby waves moving in opposite directions
within the flow (“counter-propagating Rossby waves”). For the right conditions, these

waves can amplify each other – this is the physical mechanism for the instability.

Question: What do Rossby waves need to exist?
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A PV gradient. We must need the PV gradient to change sign then.

GROUP ACTIVITY: you already have the tools to understand barotropic
instability... consider two contours, each with a PV gradient, and close enough to
each other that they can feel the other’s perturbation circulations. Hypothesis:
for instability to occur, PV gradient of the two contours must be opposite signed.
(Hint: try out two contours each with the same signed PV gradient, then create
a wave on each – what circulations does this induce? how would the circulations
from one contour a↵ect the other contour, and vice versa?)

Importantly: on a rotating sphere like Earth, � > 0 everywhere. So to have the PV

gradient change sign, we’ll need to consider a basic state with gradients in relative
vorticity – i.e. wind shear.

2 Recall: Instability, mathematically

General wave-like solution ( can be any variable):

 0
= Re{ ̃ei(kx�!t)} (1)

Wave phase speed: c = !/k = cr + ici – real and imaginary parts

Which can be written in a way that a human can understand as:

 0
=

⇣
 ̃ekcit

⌘
cos(k(x� crt)) (2)

• Exponential growth rate of wave amplitude: � = kci (positive = growing, negative =

decaying; units: [s�1
])

• Amplitude of wave:  ̃

Thus the phase speed, c, tells you everything about how a wave will evolve:

1. real part (cr) = wave propagation (! = kcr)

2. imaginary part (ci) = exponential growth/decay of wave amplitude (� = kci).

3 Barotropic instability: parallel shear flow

Basics: laminar (i.e. “smooth”) flow with variations in wind speed/direction,
a.k.a. wind shear, can sometimes break down into vortices.

Examples: a jet, two layers of fluid moving in di↵erent direction – Fig 8.2.
What determines when this happens?
We’ll work with the simplest model: 2D incompressible flow:

1. shallow water system

2. constant fluid depth – this also means Ld ! 1 (kd = 0)
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Figure 1: (Fig8-2) Breakdown of a vorticity band into coherent vortices in a nonlinear

barotropic vorticity model. Shading = relative vorticity. Domain size is 4x1, with vorticity

band width of 0.2 (arbitrary units). Initial condition is shown in FIG8-3 below.

3.1 Parallel shear flow (VallisE 8.2)

Recall PV conservation:

DQ

Dt
= 0 (3)

Q =
⇣ + f

h
(4)

and its linearized form:

@Q0

@t
+ U

@Q0

@x
+ v0

@Q

@y
= 0 (5)

Constant fluid depth: PV ! absolute vorticity conservation (Q ! (⇣ + f))

@⇣ 0

@t
+ U

@⇣ 0

@x
+ v0

✓
@⇣

@y
+ �

◆
= 0 (6)

Basic state: “parallel shear flow” – parallel flow, purely x-direction but varying in
y-direction, i.e.
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u = U(y)̂i (7)

Thus, ⇣ = @v
@x � @u

@y , i.e

⇣ = �@U
@y (8)

This yields

@⇣0

@t + U @⇣0

@x + v0
⇣
� � @2U

@y2

⌘
= 0 (9)

Now we are considering two components to meridional PV gradient:

• � : planetary vorticity gradient

• �@2U
@y2 : relative vorticity gradient (

@⇣
@y )

Incompressible flow: can define u and v in terms of streamfunction

u0
= �@ 

0

@y
(10)

v0 =
@ 0

@x
(11)

⇣ 0 = r2 0
(12)

(satisfies mass continuity
@u0

@x +
@v0

@y = 0)

Plugging in yields

@r2 0

@t
+ U

@r2 0

@x
+

✓
� � @2U

@y2

◆
@ 0

@x
= 0 (13)

Coe�cients depend on y, but not x: harmonic (wave) solutions in x, retain arbitrary y
dependence, i.e. solution

 0
= Re{ ̃(y)eik(x�ct)} (14)

and similarly

u0
= ũ(y)eik(x�ct)

(15)

v0 = ṽ(y)eik(x�ct)
(16)

⇣ 0 = ⇣̃(y)eik(x�ct)
(17)

Plugging in for  0
gives (subscripts = derivatives) – (note: this is easier to see the math)

u0
= � ̃ye

ik(x�ct)
(18)

v0 = ik ̃eik(x�ct)
(19)

⇣ 0 =
⇣
�k2 ̃ +  ̃yy

⌘
eik(x�ct)

(20)
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Plugging these in to original equation gives

(�ikc)((ik)2 ̃ +  ̃yy) + U(ik)((ik)2 ̃ +  ̃yy) + (ik) ̃ (� � Uyy) = 0

Divide by ik and combine first two terms:

(U � c)((ik)2 ̃ +  ̃yy) +  ̃ (� � Uyy) = 0

i2 = �1

Yields Rayleigh-Kuo equation:

(U � c)( ̃yy � k2 ̃) + (� � Uyy) ̃ = 0 (21)

This equation governs the stability of the flow – do waves grow or decay? Depends on

nature of c

c = cr + ici (22)

Possible outcomes:

• c purely real (ci = 0): c is simply phase speed of a wave

• ci < 0: wave decay exponentially

• ci > 0: wave grows exponentially – unstable

Analytic solution for arbitrary Uyy is very di�cult. We will focus on the simplest case

below – a “piecewise-linear” flow field.

4 Rossby edge wave: zonal point jet

4.1 Flow with a sharp edge

Piecewise-linear zonal flow: Uy constant in intervals but with abrupt change at one or more

y-discontinuities.

Simplest case: a zonal point-jet – one discontinuity (FIG 8.4)
GROUP: Do you think there are PV gradients here? If yes, where and what

is its sign?

GROUP: Which direction will Rossby waves propagate at each interface?

Curvature Uyy = 0 everywhere – except at y-discontinuities.

Thus,
@Q
@y = 0 everywhere except at these interfaces.

Thus, since
@Q
@y is required for Rossby waves, RWs may exist only at these interfaces!

Basic state: two regions

• y > 0: U1 = U0 � Ay (above)

• y < 0: U2 = U0 + Ay (below)
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Figure 2: (Fig 8-4). A point jet: piecewise-linear flow with constant positive shear to the

south and constant negative shear to the short – one discontinuity.

where A is a positive constant.

Thus, at y = 0: U1(y = 0) = U2(y = 0) = U0 (constant)

At interface (y = 0):

• velocity (U): continuous

• vorticity (�Uy): discontinuous

Either side of interface (i.e. y 6= 0): Uyy = 0, thus

(U � c)( ̃yy � k2 ̃) = 0 (23)

For c 6= U , the solution is:

 ̃ =

(
�1e�ky

if y > 0

�2eky if y < 0

These decay moving away from interface on both sides.

4.2 Matching solutions across any sharp edge

What about at the vorticity discontinuity y = 0 itself? How do we match our
solutions across this discontinuity?
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Solve linearized equation separately in each interval, matching adjacent solutions at the

discontinuity points.

Two matching conditions:

1. pressure continuous across interface

2. normal velocity at interface consistent with motion of interface

1) Pressure continuity
Linearized momentum equation in the direction along the interface (x):

@u0

@t
+ U

@u0

@x
+ v0

@U

@y
= � 1

⇢0

@p0

@x
(24)

Wave-like solutions in x-direction:

u0
= ũ(y)eik(x�ct)

(25)

v0 = ṽ(y)eik(x�ct)
(26)

p0 = p̃(y)eik(x�ct)
(27)

Plugging in yields:

ik(U � c) ̃y � ik ̃Uy = � ik

⇢0
p̃ (28)

Since we require p̃ continuous across the interface, this implies:

�

h
(U � c) ̃y �  ̃Uy

i
= 0 (29)

2) Material interface continuity
Normal velocity at (zonal) interface:

v =
D⌘

Dt
(30)

(notice: ⌘ here is a perturbation in the y direction this time!)

Linearized:
@ 0

@x
=
@⌘0

@t
+ U

@⌘0

@x
(31)

Insert wave solutions and apply to each side of interface:

 ̃1 = (U1 � c)⌘̃ (32)

 ̃2 = (U2 � c)⌘̃ (33)

Material continuity: ⌘̃ continuous:

�

h
 ̃

U�c

i
= 0 (34)
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4.3 Apply these matching conditions to our point jet

Solve for c: apply these solutions to our two match conditions at interface

�k(U0 � c)�1 � �1U1y = k(U0 � c)�2 � �2U2y (35)

�1 = �2 (36)

Plugging in and solving yields:

c = U0 �
�U1y+U2y

2k (37)

This is the phase speed of Rossby edge waves propagating along interface
y = 0

Note:

• for all shear values, c is purely real = no instability!

• perturbations decay away from interface

• the numerator, �U1y � (�U2y), is directly analogous to � – a meridional change
in PV – these are truly Rossby waves!

5 Barotropic instability: piecewise-linear flow with two
sharp edges (the Rayleigh problem; VallisE 8.2.1)

Now we focus on a piecewise-linear flow with two vorticity discontinuities. This is the
simplest model that allows for Rossby (edge) waves in two separate places in the
flow!

Note: Later on we derive necessary conditions for instability in general.
Rayleigh-Kuo equation governing flow stability:

(U � c)( ̃yy � k2 ̃) + (� � Uyy) ̃ = 0 (38)

Simplify further:

• � = 0

• piecewise-linear flow with three regimes – and thus two sharp edges (Fig 8-3)

GROUP: Do you think there are PV gradients here? If yes, where and what
is its sign?

GROUP: Which direction will Rossby waves propagate at each interface?

Basic state: three regimes (Fig 8-3)
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Figure 3: (Fig 8-3). A piecewise-linear flow with three flow regimes: constant westward

flow, constant shear flow, constant eastward flow. This initial condition is unstable – it’s

breakdown is shown in Fig8-2 above!

• y > a: U1 = U0 (constant)

• �a < y < a: U2 =
U0
a y

• y < �a: U3 = �U0 (constant)

Assume a solution of the form:

• y > a:  ̃1 = Ae�k(y�a)

• �a < y < a:  ̃2 = Bek(y�a)
+ Ce�k(y+a)

• y < �a:  ̃3 = Dek(y+a)

All of these decay away from interfaces in each region.
As before, apply two match conditions, now at each interface

y = a:

�A[(U0 � c)k] = B


(U0 � c)k � U0

a

�
� Ce�2ka


U0

a
+ (U0 � c)k

�
(39)

A = B + Ce�2ka
(40)
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y = �a:

D[(U0 + c)k] = Be�2ka


(U0 + c)k +

U0

a

�
+ C


U0

a
� (U0 + c)k

�
(41)

D = Be�2ka
+ C (42)

Four homogeneous equations in matrix form:

0

BB@

k(U0 � c) k(U0 � c)� U0
a �e�2ka

⇥
k(U0 � c) + U0

a

⇤
0

1 �1 �e�2ka
0

0 �e�2ka
⇥
k(U0 + c) + U0

a

⇤
k(U0 + c)� U0

a k(U0 + c)
0 e�2ka

1 �1

1

CCA

0

BB@

A
B
C
D

1

CCA = 0

Non-trivial solutions: determinant = 0

c =
�

U0
2ka

�p
(1� 2ka)2 � e�4ka (43)

Non-dimensional version:
c
U0

vs. ka

c
U0

=
�

1
2ka

�p
(1� 2ka)2 � e�4ka (44)

Instability: if (1� 2ka)2 � e�4ka < 0, i.e. ka < 0.63293
Recall: c = cr + ici
What is required for instability? An imaginary part of the phase speed. This occurs

specifically if the quantity in the square root is negative.

How does the system evolve? (FIG VallisBB9-5 – non-dimensional form)

• ka > 0.63293: cr
U0

=
�

1
2ka

�p
(1� 2ka)2 � e�4ka, ci = 0 – pure real, wave propagation

only

• ka < 0.63293: cr = 0,
ci
U0

=
�

1
2ka

�p
e�4ka � (1� 2ka)2 – pure imaginary, wave

growth only – instability!

The wave either propagates or grows – not both at the same time!
Note:

• All waves with wavenumbers k < 0.63293
a (i.e. wavelengths � =

2⇡
k > 2⇡ a

0.63293) amplify

exponentially

• Maximum growth rate �max occurs for k =
0.39
a – how would you solve for this?

• The total flow evolution will be dominated by the fastest-growing modes .
Example: See FIG8-2: this solution uses a = 0.1 ! ��max = 1.57 ! for domain

of length 4, which yields wavenumber k =
4

1.57 = 2.55; periodic domain quantizes

wavenumbers, k = 3 emerges – i.e. 3 waves!

Physical insight: (Fig Vallis BB 9.7)
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Figure 4: (Vallis Big Book Fig 9-5). Barotropic instability growth rate and phase speed.

Note that � = cik, so the appropriate non-dimensional version is (
ci
U0
)(ka) = �

U0/a
.

• This system only has Rossby edge waves on two interfaces

• These edge waves initially propagate in opposite directions – northern edge

waves moves eastward, southern edge waves move westward.

• They then “phase lock” – and suddenly stop propagating and start amplifying
each other – GROUP: can you explain why using PV convservation?

• the streamfunction (and vorticity) perturbations tilt upshear

• for increasing a, max growth rate occurs at fixed ka, which implies decreasing k i.e.

increasing � – if the waves are farther apart they must be larger in order to
interact

6 Does � matter?

Necessary condition: PV gradient changes sign in the domain. (this is most important – see

below for 2nd condition)

FIG8-5: Which of these zonal wind profiles might be unstable?
What if � > 0 – will this change your answers?

� can stabilize an unstable jet, or it can destabilize a stable jet – it depends on the profile!

(Note: for su�ciently large � (how large?), the PV will become positive everywhere – i.e.

stable.)
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Figure 5: (Vallis Big Book Fig 9-7). What is actually happening when the instability begins.

7 (OPTIONAL) Generalization: Necessary conditions
for barotropic instability

Necessary (but not su�cient) – does not guarantee instability. (= su�cient conditions for

stability).
Two conditions:

1) Rayleigh’s criterion:

Rewrite Rayleigh-Kuo as

 ̃yy � k2 ̃ +
� � Uyy

U � c
 ̃ = 0 (45)

Multiply by complex conjugate  ̃⇤
, where

 ̃ ̃⇤
=

��� ̃
���
2

(46)

and integrate over domain of interest (here in y), integrating the first term by parts:

(
R y2
y1
 ̃⇤ ̃yydy =

R y2
y1

@
@y

⇣
 ̃⇤ ̃y

⌘
�  ̃⇤

y ̃ydy =
R y2
y1

� ̃⇤
y ̃ydy; integral of perfect di↵erential

= 0 for |y| ! 1)

then mult by -1 yields:
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Figure 6: (Fig8-5) Zonal wind profiles. Which might be unstable?

Z y2

y1

✓��� ̃y

���
2

+ k2
��� ̃

���
2
◆
dy �

Z y2

y1

� � Uyy

U � c

��� ̃
���
2

dy = 0 (47)

Assume  ̃ vanishes at the boundaries (i.e. no perturbation for |y| ! 1).

The only variable that is complex is c – only appears in second integral. Thus, first

integral is purely real.

Second integral:

To get imaginary part out of denominator, multiply top and bottom of integrand by

complex conjugate (U � c⇤), where c⇤ = cr � ici
(U�c)⇤(U�c⇤) = U2�Uc�Uc⇤+cc⇤ = U2�U(cr+ici)�U(cr�ici)+(cr+ici)(cr�ici) =

U2 � Ucr � Ucr + (c2r + c2i ) = U2 � 2Ucr + (c2r + c2i )
Thus,

(U � c)(U � c⇤) = |U � c|2 (48)

is purely real.

This yields

R y2
y1
(U � (cr � ici))

��Uyy

|U�c|2

��� ̃
���
2

dy = 0 (49)

Thus, the purely imaginary component of second integral is

ci
R y2
y1

��Uyy

|U�c|2

��� ̃
���
2

dy = 0 (50)
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Two options for this to be true:

1. ci = 0: stable

2. integral = 0

Latter occurs only if � � Uyy changes sign somewhere in the domain.

1) Rayleigh’s necessary condition for barotropic instability: the PV gradient
(� � Uyy) changes sign within domain (Rayleight-Kuo inflection point criterion)

Special case: � = 0

Uyy changes sign in domain – when does this occur? Requires an inflection point in U(y).
Example: a jet!

2) Fjortoft criterion

Let’s use the real part, too

Z y2

y1

(U � cr)
� � Uyy

|U � c|2
��� ̃

���
2

dy =

Z y2

y1

✓��� ̃y

���
2

+ k2
��� ̃

���
2
◆
dy > 0 (51)

The RHS is positive-definite.

But for instabliity, the Rayleigh-Kuo criterion says that the LHS integrand without the
factor (U � cr) must = 0. Thus, the only way the integral can be > 0 is

2) Fjortoft’s necessary condition for barotropic instability: (U � Us)(� � Uyy)

must be positive somewhere in the domain, where Us is any real constant (typically

chosen to be balue of U(y) where � �Uyy = 0 – this is most stringent criterion; if choose Us

very large or small, then you add nothing to Rayleigh’s criterion).

What does this mean? The magnitude of the vorticity (Uy) must have extremum
inside the domain (not at boundary).
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