EAPS 53600, Spring 2020 Lec 10: Baroclinic instability (VallisE 8.4-8.7)

April 10, 2020

1 Introduction

2nd form of hydrodynamic instability: baroclinic instability – this creates extra tropical cyclones, which creates most of the weather in the middle/high latitudes of rotating planets like Earth!

Occurs in fluid that has:

- 1. stable stratification
- 2. background rotation
- 3. horizontal density (temperature) gradient i.e. baroclinicity (barotropic: constant density, horizontal variations in fluid height only)

Why do these properties matter *conceptually*?

- 1. Background rotation allows horizontal density gradients to exist in a balanced state (geostrophic balance) you need a Coriolis force to balance horizontal pressure gradient forces.
- 2. Stable stratification allows for hydrostatic balance to hold in the vertical
- 3. Geostrophic balance (horizontal) + hydrostatic balance (vertical) = **thermal wind balance**
- 4. Thermal wind balance: horizontal density gradients = vertical wind shear
- 5. Wind shear will create opportunity for **counter-propagating Rossby waves the essential ingredient for instability!**
- 6. Note: for baroclinic instability, the wind shear is in the vertical rather than horizontal direction (barotropic instability).

We now need to account for stratification of the fluid – a one-layer model won't cut it!

- Real world: **continuous stratification** (which you can think of as an N-layer shallow-water system, where N is a large number)
- The simplest model: **two-layer** shallow-water system check out VallisE Ch 8.6.

2 A conceptual understanding: available potential energy

Instability = a fluid that is initially at rest begins to **move**. This requires **kinetic energy** – which must be drawn from the **potential energy** of the background state. Potential energy that can potentially be converted to kinetic energy is called "available potential energy".

Diagram of basic state + instability: FIG 8.6.

- Basic state (y-z): Thermal wind balance: pressure gradient acceleration = Coriolis acceleration at all levels
- Result: isotherms (isopycnals = constant density surfaces) slope upward towards poles
- Is this basic state stable to perturbations? No, specifically for *sloped* displacements. It is possible to move a denser parcel downwards (B) and a lighter parcel upwards (A) – which would reduce the total potential energy of the system.
- General: slope $\phi > 0$ = potential energy **available** \rightarrow kinetic energy

Consider:

1. Initial PE of parcels: $PE_0 = g(\rho_A z_A + \rho_B z_B)$

- 2. Exchange parcels A (lighter, lower) and B (denser, higher): moved denser fluid downward, lighter fluid upward
- 3. Final PE of parcels: $PE_f = g(\rho_A z_B + \rho_B z_A)$

$$\Delta PE = PE_f - PE_0 = -g\Delta\rho\Delta z \tag{1}$$

(2)

where $\Delta \rho = \rho_B - \rho_A$, $\Delta z = z_B - z_A$

If if $\rho_B > \rho_A$ and $z_B > z_A$: $\Delta PE < 0$ – The center of mass of the fluid is lowered. PE of fluid is converted into KE of perturbation, perturbation amplifies!

Define in terms of slope:

- Slope of displacement: α
- Slope of isopycnals (isotherms): $\phi = \frac{dz}{dy}\Big|_T = -\frac{\frac{\partial \rho}{\partial y}}{\frac{\partial \rho}{\partial z}}$
- Horizontal displacement distance: L

$$\Delta PE = -g\Delta\rho\Delta z = -g\left(\frac{\partial\rho}{\partial y}L + \frac{\partial\rho}{\partial z}\alpha L\right)\alpha L$$

$$tan(\phi) = \frac{\Delta z}{\Delta y} = \frac{\partial\rho}{\partial y}/\frac{\partial\rho}{\partial z}$$

$$\frac{\partial\rho}{\partial z} = \frac{\frac{\partial\rho}{\partial y}}{tan(\phi)}$$

$$tan(\phi) \approx \phi \text{ for } \phi \text{ small}$$

$$\frac{\partial\rho}{\partial z} = \frac{\frac{\partial\rho}{\partial y}}{\phi}$$
Thus, for ϕ small:
$$\Delta PE = -gL^2\alpha\frac{\partial\rho}{\partial y}\left(1 - \frac{\alpha}{\phi}\right)$$

- if $0 < \alpha < \phi$: $\Delta PE < 0$, perturbation grows
- max conversion: $\alpha = \frac{\phi}{2} (\text{set } \frac{d(\Delta PE)}{d\alpha} = 0)$

$5 \mathrm{mm}$

In the atmosphere, the slope of density surfaces is very shallow: $\phi_{atm} \approx \frac{1 \ km}{1000 \ km} = 10^{-3}$ – but it's steep enough to provide the available potential energy required to generate extratropical cyclones!

3 Dynamical theory

3.1 System: QG equations, continuously-stratified, Boussinesq

- Interior: PV equation
- Vertical boundaries (ground, tropopause): buoyancy equation

(Note: tropopause is *not* a true rigid surface, but the high static stability of stratosphere strongly inhibits vertical motion)

Interior flow: QG PV conservation

$$\frac{\partial q}{\partial t} + \mathbf{u} \cdot \nabla q = 0, \qquad 0 < z < H \tag{3}$$

where QG PV in the stratified system is

$$q = \nabla^2 \psi + \beta y + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \psi}{\partial z} \right)$$
(4)

Boussinesq refresher:

- Density: $\rho(x, y, z) = \rho_0 + \rho'(x, y, z); \rho_0$ constant; ρ' only matters for buoyancy
- Pressure: $p(x, y, z) = p_0(z) + p'(x, y, z)$; hydrostatic background state $p_0(z) = p_{sfc} p_{sfc}$ $\rho_0 g z$
- Buoyancy: $b = -\frac{\rho'}{\rho_0}g$

Top/bottom boundaries: buoyancy conservation

$$\frac{\partial b}{\partial t} + \mathbf{u} \cdot \nabla b = 0, \qquad z = 0, H \tag{5}$$

where

$$b = f_0 \frac{\partial \psi}{\partial z} \tag{6}$$

(where did this come from? Buoyancy is a perturbation from hydrostatic balance: b = $\frac{1}{\rho_0}\frac{\partial p'}{\partial z}, \ \psi = \frac{p'}{\rho_0 f_0}, \ b = \frac{1}{\rho_0}\frac{\partial(\rho_0 f_0\psi)}{\partial z}$

3.2Basic state (using capital letters!)

- $B(y, z) = \text{background meridional+vertical variation in buoyancy (i.e density, temper$ ature)
- $U(y,z) = -\frac{\partial \overline{\psi}(y,z)}{\partial y}$ zonal flow
- *B* and *U* are in **thermal wind balance** with each other: $\left[\frac{\partial B}{\partial y} = -f_0 \frac{\partial U}{\partial z}\right]$ meridional buoyancy gradients = vertical shear of zonal wind

Recall: thermal wind balance comes from geostrophic balance (horizontal momentum) $-\frac{\partial\phi}{\partial y} = f_0 U$ and hydrostatic balance (vertical momentum) $B = \frac{\partial\phi}{\partial z}$ Let's think in terms of PV and buoyancy (both in terms of streamfunction):

- PV: q = Q(y, z) + q'(x, y, z)
- Buoyancy: b = B(y, z) + b'(x, y, z)

$$Q(y,z) = \frac{\partial^2 \overline{\psi}}{\partial y^2} + \beta y + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \overline{\psi}}{\partial z} \right)$$
(7)

(note: x-derivative term is zero here, so $\nabla^2 \overline{\psi} = \frac{\partial^2 \overline{\psi}}{\partial y^2}$)

3.3 Linearization about basic state

Linearize both equations about this basic state:

- q = Q + q'
- b = B + b'
- $\psi = \overline{\psi} + \psi'$
- u = U + u'
- v = v'

Interior flow:

$$\frac{\partial q'}{\partial t} + U \frac{\partial q'}{\partial x} + v' \frac{\partial Q}{\partial y} = 0, \qquad 0 < z < H$$
(8)

where

$$q' = \nabla^2 \psi' + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \psi'}{\partial z} \right)$$
(9)

and

$$v' = \frac{\partial \psi'}{\partial x} \tag{10}$$

Top/bottom boundaries:

$$\frac{\partial b'}{\partial t} + U \frac{\partial b'}{\partial x} + v' \frac{\partial B}{\partial y} = 0 \qquad z = 0, H$$
(11)

where

$$b' = f_0 \frac{\partial \psi'}{\partial z}$$
(12)

and

$$\frac{\partial B}{\partial y} = -f_0 \frac{\partial U}{\partial z} \tag{13}$$

Notice:

1. $\frac{\partial B}{\partial y}$ in the boundary equation very similar role as $\frac{\partial Q}{\partial y}$ in the interior equation. A meridional buoyancy gradient on the top or bottom boundary is dynamically equivalent to a meridional PV gradient!

- meridional PV gradient \rightarrow interior Rossby waves
- meridional buoyancy gradient \rightarrow Rossby *edge* waves

2. $\frac{\partial B}{\partial y} \rightarrow \frac{\partial U}{\partial z}$ (TWB) – wind shear between the two boundaries with Rossby edge waves.

This setup for baroclinic instability is conceptually identical to the Rayleigh problem for barotropic instability. Wow!

3.4 Normal mode (i.e. wave) solutions

Seek wave solutions to our two equations. Coefs are independent of x, not y or z. Thus, solution of form

$$\psi'(x, y, z, t) = Re\{\tilde{\psi}(y, z)e^{ik(x-ct)}\}$$
(14)

(similar form for u', v', b', q')

Plug in and solve: (subscripts = derivatives)

$$(U-c)\left(\tilde{\psi}_{yy} + \left(\frac{f_0^2}{N^2}\tilde{\psi}_z\right)_z - k^2\tilde{\psi}\right) + Q_y\tilde{\psi} = 0, \qquad 0 < z < H$$

$$\tag{15}$$

$$(U-c)\tilde{\psi}_z - U_z\tilde{\psi} = 0, \qquad z = 0, H$$
(16)

These equations govern the stability of the flow – and they are **analogous to Rayleigh** equations for parallel shear flow!

Ultimately, then, this instability involves the horizontal circulations of one Rossby wave amplifying another Rossby wave (with opposite-signed PV gradient), and vice versa. Physically, then, what is the difference?

- **Barotropic** instability: the circulations interact in the same horizontal plane (e.g. one to the north and one to the south). If they are close enough together horizontally, they can mutually amplify.
- **Baroclinic** instability: the circulations interact *vertically* their horizontal circulations project downward (from above) or upward (from below) over some depth of the fluid. If they are close enough together *vertically*, they can mutually amplify.

Let's see how this works mathematically.

4 Simplest model: Eady problem (V8.5)

Two mathematical descriptions of baroclinic instability:

- 1. Eady problem: f-plane ($\beta = 0$), two Rossby edge waves; simplest possible model
- 2. Charney problem: $\beta > 0$, interior Rossby wave + Rossby edge wave; mathematically more complex but conceptually identical (not covered in this book)

Here we do Eady.

Simplifying assumptions:

- 1. f-plane $f = f_0$
- 2. N^2 constant (uniformly stratified)
- 3. Top/bottom boundaries: rigid lids (z = 0 ground, z = H tropopause)
- 4. Basic state flow: uniform shear, $U_0(z) = \Lambda z$, $\Lambda = \frac{U}{H}$, $U = U_0(z = H)$

Assumptions more valid for atmosphere, but qualitative outcome applies to ocean too. Basic state:

1) Streamfunction: $(U = -\frac{\partial \overline{\Psi}}{\partial u})$

$$\boxed{\overline{\Psi} = -\Lambda z y} \tag{17}$$

2) Buoyancy: varies only in $y \ (B = f_0 \frac{\partial \overline{\psi}}{\partial z})$

$$B = -f_0 \Lambda y \tag{18}$$

3) PV: = 0 ($\overline{\Psi}$ is linear in y and z)

$$Q = \frac{\partial^2 \overline{\psi}}{\partial y^2} + \frac{H^2}{L_d^2} \frac{\partial^2 \overline{\psi}}{\partial z^2} = \mathbf{0}$$
(19)

where $L_d = \frac{NH}{f_0}$ 3D DIAGRAM OF BASIC STATE BAROCLINIC from comparison with barotropic

Can write our PV as: $Q = -\frac{\partial^2 U}{\partial y^2} + \frac{f_0}{N^2} \frac{\partial B}{\partial z}$ (first term = 0) B = constant outside of interior, decreasing in y direction on boundaries. Thus:

- z = H: (from neg to zero moving upward) $\frac{\partial}{\partial z} (B_y) > 0 \rightarrow \frac{\partial Q}{\partial y} > 0$ westward RW propagation
- z = 0: (from zero to neg moving upward) $\frac{\partial}{\partial z}(B_y) < 0 \rightarrow \frac{\partial Q}{\partial y} < 0$ eastward RW propagation

This should feel familiar: it's exactly the same as the Rayleigh problem – piecewise linear flow for barotropic instability. In both cases: PV gradients of opposite signs confined to two interfaces.

Conceptually, what system have we created? No interior PV gradient, only meridional buoyancy gradients at top and bottom – i.e. only counter-propagating Rossby edge waves at the boundaries, none in interior! We have what we need for instability...

4.1 Linearization

4.1.1 Interior

Recall linearized PV equation:

$$\frac{\partial q'}{\partial t} + U_0 \frac{\partial q'}{\partial x} + v' \frac{\partial Q}{\partial y} = 0, \qquad 0 < z < H$$
(20)

now $q' = \nabla^2 \psi' + \frac{H^2}{L_d^2} \frac{\partial^2 \psi'}{\partial z^2}$ and $v' = \frac{\partial \psi'}{\partial x}$ Plug in to put in terms of ψ' :

Thus, linearized PV equation in terms of ψ' is:

$$\left(\frac{\partial}{\partial t} + \Lambda z \frac{\partial}{\partial x}\right) \left(\nabla^2 \psi' + \frac{H^2}{L_d^2} \frac{\partial^2 \psi'}{\partial z^2}\right) = 0, \qquad 0 < z < H$$
(21)

4.1.2 Boundary conditions

Vertical boundary conditions:

- w = 0 at z = 0
- w = 0 at z = H

Lateral boundary conditions: could do doubly-periodic (i.e. wave solutions in x and y) or channel (y only).

Here we do **zonal channel** of meridional width L. Hence, all wave perturbations should decay to zero at the north/south boundaries, i.e.:

- $\psi = 0$ at $y = +\frac{L}{2}$ (no motion)
- $\psi = 0$ at $y = -\frac{L}{2}$

Recall linearized buoyancy equation:

$$\frac{\partial b'}{\partial t} + U_0 \frac{\partial b'}{\partial x} + v' \frac{\partial B}{\partial y} = 0 \qquad z = 0, H$$
(22)

where $b' = f_0 \frac{\partial \psi'}{\partial z}$ and $\frac{\partial B}{\partial y} = -f_0 \frac{\partial U}{\partial z} = -f_0 \Lambda$ Plug in to put in terms of ψ' :

$$\left(\frac{\partial}{\partial t} + \Lambda z \frac{\partial}{\partial x}\right) \frac{\partial \psi'}{\partial z} - \Lambda \frac{\partial \psi'}{\partial x} = 0 \qquad , z = 0, H$$
(23)

Channel walls require modal solutions in y, i.e.

$$\psi'(x, y, z, t) = Re\{\Phi(z)sin(ly)e^{ik(x-ct)}\}$$
(24)

with meridional wavenumber $l = \frac{n\pi}{L}$ and n is a positive integer Plug in:

1) Interior (PV):

$$\left(\Lambda z - c\right) \left[\frac{H^2}{L_d^2} \frac{\partial^2 \Phi}{\partial z^2} - (k^2 + l^2)\Phi\right] = 0$$
(25)

2) z = 0:

$$c\frac{d\Phi}{\partial z} - \Lambda \Phi = 0 \tag{26}$$

3)
$$z = H$$
:

$$(c - \Lambda H)\frac{d\Phi}{\partial z} + \Lambda \Phi = 0$$
(27)

These are simply Eqns (15) applied specifically to Eady problem. For $\Lambda z \neq c$, interior equation can be written:

$$\left[H^2 \frac{\partial^2 \Phi}{\partial z^2} - \mu^2 \Phi\right] = 0 \tag{28}$$

where

$$\mu^2 = L_d^2 (k^2 + l^2) \tag{29}$$

μ is horizontal wavenumber rescaled by the deformation radius Solution is

$$\Phi(z) = A\cosh(\mu \hat{z}) + B\sinh(\mu \hat{z})$$
(30)

where

$$\hat{z} = \frac{z}{H} \tag{31}$$

Thus μ determines vertical structure of solution – smaller μ (i.e. larger λ) \rightarrow deeper penetration – a larger disturbance also penetrates deeper up/down into the fluid!)

Plug into boundary conditions:

$$A[\Lambda H] + B[\mu c] = 0 \qquad (32)$$

$$A[(c - \Lambda H)\mu sinh(\mu) + \Lambda H cosh(\mu)] + B[(c - \Lambda H)\mu cosh(\mu) + \Lambda H sinh(\mu)] = 0$$
(33)

As usual, non-trivial solutions only if determinant of coefficient matrix = 0, i.e.:

$$c^{2} - Uc + U^{2} \left(\frac{1}{\mu} coth(\mu) - \frac{1}{\mu^{2}}\right) = 0$$
(34)

where $U = \Lambda H$; recall: $coth(\mu) = \frac{cosh(\mu)}{sinh(\mu)}$ Solve for *c*:

$$c = \frac{U}{2} \pm \frac{U}{\mu} \sqrt{\left(\frac{\mu}{2} - \coth(\frac{\mu}{2})\right) \left(\frac{\mu}{2} - \tanh(\frac{\mu}{2})\right)} \tag{35}$$

FIG8.7

Growth/decay: $c_i \neq 0$ – negative under square root $tanh(\frac{\mu}{2}) < \frac{\mu}{2}$ for all $\mu \rightarrow$ second term positive Thus, requires $\frac{\mu}{2} < coth(\frac{\mu}{2})$. This occurs when

Figure 2: (Fig8-7)

$$\mu < \mu_c = 2.4 \tag{36}$$

Fig. 8.7:

with growth rate is

$$\sigma = kc_i = k\frac{U}{\mu}\sqrt{\left(\frac{\mu}{2} - \coth(\frac{\mu}{2})\right)\left(\frac{\mu}{2} - \tanh(\frac{\mu}{2})\right)} \tag{37}$$

The maximum growth rate occurs at

$$\mu_{max} = 1.61 \tag{38}$$

Most unstable μ occurs has n = 1 (i.e. $l = \frac{\pi}{L}$) Growth rates are larger for $l^2 \ll k^2$ – i.e. large meridional scale of waves. For this case, the maximum growth rate is called *Eady growth rate*, and is:

$$\sigma_E = \frac{0.31U}{L_d} = \frac{0.31\Lambda H}{L_d} = \frac{0.31\Lambda f}{N} \tag{39}$$

For these growing modes, phase speed is

$$c_r = 0.5U \tag{40}$$

(i.e. the average zonal speed in the layer)

Figure 3: (Fig8-9)

Translate to physical space: for l small, $\mu = L_d k$. Thus instability occurs for:

$$\boxed{k < \frac{2.4}{L_d}} \tag{41}$$

i.e. $(\lambda = \frac{2\pi}{k})$

$$\lambda > 2.6L_d \tag{42}$$

Thus, there exists a shortwave cutoff for baroclinic instability; this cutoff scales with the deformation radius.

Maximum instability occurs for:

$$k_{max} = \frac{1.6}{L_d} \tag{43}$$

i.e.

$$\lambda_{max} = 3.9L_d \tag{44}$$

FIG 8.9

Requirement: phase-locking of counter propagating rossby edge waves.

5 Comparing barotropic and baroclinic instability (Rayleigh vs. Eady)

See PDF hand-written notes

5.1 Mechanistic understanding in the lab

You created baroclinic instability in the first rotating tank lab at the highest rotation rate!

5.2 Mechanistic understanding in real world

Movie

6 Necessary conditions for baroclinic instability

Same procedure as for barotropic instability: Multiply eqns by $\tilde{\psi}^*$ and integrate over domain in y and z. (See VallisE 8.7)

$$\int_{0}^{H} \int_{y_{1}}^{y_{2}} \left[\left| \tilde{\psi}_{y} \right|^{2} + \frac{f_{0}^{2}}{N^{2}} \left| \psi_{z} \right|^{2} + k^{2} \left| \psi \right|^{2} \right] dy dz - \int_{y_{1}}^{y_{2}} \left(\int_{0}^{H} \frac{Q_{y}}{U - c} \left| \tilde{\psi} \right|^{2} dz + \left[\frac{\frac{f_{0}^{2}}{N^{2}} U_{z} \left| \tilde{\psi} \right|^{2}}{U - c} \right]_{0}^{H} \right) dy = 0$$

$$\tag{45}$$

- First term: pure real $(c_i = 0)$
- Second term: complex

Growth/decay: $c_i \neq 0$ Imaginary component of second term:

$$-c_{i} \int_{y_{1}}^{y_{2}} \left(\int_{0}^{H} \frac{Q_{y}}{\left|U-c\right|^{2}} \left|\tilde{\psi}\right|^{2} dz + \left[\frac{\frac{f_{0}^{2}}{N^{2}} U_{z} \left|\tilde{\psi}\right|^{2}}{\left|U-c\right|^{2}} \right]_{H} - \left[\frac{\frac{f_{0}^{2}}{N^{2}} U_{z} \left|\tilde{\psi}\right|^{2}}{\left|U-c\right|^{2}} \right]_{0} \right) dy = 0 \qquad (46)$$

Requires either:

- $c_i = 0$ no growth/decay
- $c_i \neq 0$, rest of LHS = 0

Charney-Stern-Pedlosky (CSP) necessary condition for baroclinic instability: ONE of the following criteria must be satisfied:

- 1. Q_y changes sign in the interior
- 2. Q_y is opposite sign to U_z at upper boundary (z = H)
- 3. Q_y is same sign to U_z at lower boundary (z = 0)
- 4. If $Q_y = 0$, U_z is same sign at upper and lower boundaries

Application to Earth's atmosphere:

- Q_y : typically dominated by β , which is positive everywhere eliminates (1) and (4)
- U_z : also typically positive everywhere (westerly jet streams aloft, surface easterlies) eliminates (2)
- (3) is most common: $Q_y > 0$ and $U_z(0) > 0$

Thus, our atmosphere, particularly at mid-latitudes in the vicinity of the jet stream, is potentially baroclinically unstable.