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1 Introduction

2nd form of hydrodynamic instability: baroclinic instability – this creates extratropical cy-
clones, which creates most of the weather in the middle/high latitudes of rotating planets
like Earth!

Occurs in fluid that has:

1. stable stratification

2. background rotation

3. horizontal density (temperature) gradient – i.e. baroclinicity (barotropic: con-
stant density, horizontal variations in fluid height only)

Why do these properties matter conceptually?

1. Background rotation allows horizontal density gradients to exist in a balanced state
(geostrophic balance) – you need a Coriolis force to balance horizontal pressure
gradient forces.

2. Stable stratification allows for hydrostatic balance to hold in the vertical

3. Geostrophic balance (horizontal) + hydrostatic balance (vertical) = thermal wind
balance

4. Thermal wind balance: horizontal density gradients = vertical wind shear

5. Wind shear will create opportunity for counter-propagating Rossby waves – the
essential ingredient for instability!

6. Note: for baroclinic instability, the wind shear is in the vertical rather than horizontal
direction (barotropic instability).

We now need to account for stratification of the fluid – a one-layer model won’t cut it!

• Real world: continuous stratification (which you can think of as an N-layer shallow-
water system, where N is a large number)

• The simplest model: two-layer shallow-water system – check out VallisE Ch 8.6.
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Figure 1: (Fig8-6)

2 A conceptual understanding: available potential en-

ergy

Instability = a fluid that is initially at rest begins to move. This requires kinetic energy –
which must be drawn from the potential energy of the background state. Potential energy
that can potentially be converted to kinetic energy is called “available potential energy”.

Diagram of basic state + instability: FIG 8.6.

• Basic state (y-z): Thermal wind balance: pressure gradient acceleration = Coriolis
acceleration at all levels

• Result: isotherms (isopycnals = constant density surfaces) slope upward towards poles

• Is this basic state stable to perturbations? No, specifically for sloped displacements.
It is possible to move a denser parcel downwards (B) and a lighter parcel upwards (A)
– which would reduce the total potental energy of the system.

• General: slope φ > 0 = potential energy available → kinetic energy

Consider:

1. Initial PE of parcels: PE0 = g(ρAzA + ρBzB)
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2. Exchange parcels A (lighter, lower) and B (denser, higher): moved denser fluid down-
ward, lighter fluid upward

3. Final PE of parcels: PEf = g(ρAzB + ρBzA)

∆PE = PEf − PE0 = −g∆ρ∆z (1)

where ∆ρ = ρB − ρA, ∆z = zB − zA
If if ρB > ρA and zB > zA: ∆PE < 0 – The center of mass of the fluid is lowered. PE of

fluid is converted into KE of perturbation, perturbation amplifies!
Define in terms of slope:

• Slope of displacement: α

• Slope of isopycnals (isotherms): φ = dz
dy
|
T

= −
∂ρ
∂y
∂ρ
∂z

• Horizontal displacement distance: L

∆PE = −g∆ρ∆z = −g
(
∂ρ
∂y
L+ ∂ρ

∂z
αL
)
αL

tan(φ) = ∆z
∆y

= ∂ρ
∂y
/∂ρ
∂z

∂ρ
∂z

=
∂ρ
∂y

tan(φ)

tan(φ) ≈ φ for φ small
∂ρ
∂z

=
∂ρ
∂y

φ

Thus, for φ small:

∆PE = −gL2α ∂ρ
∂y

(
1− α

φ

)
(2)

• if 0 < α < φ: ∆PE < 0, perturbation grows

• max conversion: α = φ
2

(set d(∆PE)
dα

= 0)

5mm
In the atmosphere, the slope of density surfaces is very shallow: φatm ≈

1 km
1000 km

= 10−3 – but it’s steep enough to provide the available potential energy required
to generate extratropical cyclones!

3 Dynamical theory

3.1 System: QG equations, continuously-stratified, Boussinesq

• Interior: PV equation

• Vertical boundaries (ground, tropopause): buoyancy equation
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(Note: tropopause is not a true rigid surface, but the high static stability of stratosphere
strongly inhibits vertical motion)

Interior flow: QG PV conservation

∂q

∂t
+ u · ∇q = 0, 0 < z < H (3)

where QG PV in the stratified system is

q = ∇2ψ + βy +
∂

∂z

(
f 2

0

N2

∂ψ

∂z

)
(4)

Boussinesq refresher:

• Density: ρ(x, y, z) = ρ0 + ρ′(x, y, z); ρ0 constant; ρ′ only matters for buoyancy

• Pressure: p(x, y, z) = p0(z) + p′(x, y, z); hydrostatic background state p0(z) = psfc −
ρ0gz

• Buoyancy: b = − ρ′

ρ0
g

Top/bottom boundaries: buoyancy conservation

∂b

∂t
+ u · ∇b = 0, z = 0, H (5)

where

b = f0
∂ψ

∂z
(6)

(where did this come from? Buoyancy is a perturbation from hydrostatic balance: b =
1
ρ0

∂p′

∂z
, ψ = p′

ρ0f0
, b = 1

ρ0

∂(ρ0f0ψ)
∂z

)

3.2 Basic state (using capital letters!)

• B(y, z) = background meridional+vertical variation in buoyancy (i.e density, temper-
ature)

• U(y, z) = −∂ψ(y,z)
∂y

– zonal flow

• B and U are in thermal wind balance with each other: ∂B
∂y

= −f0
∂U
∂z

– meridional

buoyancy gradients = vertical shear of zonal wind

Recall: thermal wind balance comes from geostrophic balance (horizontal momentum)
−∂φ
∂y

= f0U and hydrostatic balance (vertical momentum) B = ∂φ
∂z

Let’s think in terms of PV and buoyancy (both in terms of streamfunction):
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• PV: q = Q(y, z) + q′(x, y, z)

• Buoyancy: b = B(y, z) + b′(x, y, z)

Q(y, z) = ∂2ψ
∂y2

+ βy + ∂
∂z

(
f20
N2

∂ψ
∂z

)
(7)

(note: x-derivative term is zero here, so ∇2ψ = ∂2ψ
∂y2

)

3.3 Linearization about basic state

Linearize both equations about this basic state:

• q = Q+ q′

• b = B + b′

• ψ = ψ + ψ′

• u = U + u′

• v = v′

Interior flow:
∂q′

∂t
+ U ∂q′

∂x
+ v′ ∂Q

∂y
= 0, 0 < z < H (8)

where

q′ = ∇2ψ′ + ∂
∂z

(
f20
N2

∂ψ′

∂z

)
(9)

and

v′ = ∂ψ′

∂x
(10)

Top/bottom boundaries:

∂b′

∂t
+ U ∂b′

∂x
+ v′ ∂B

∂y
= 0 z = 0, H (11)

where

b′ = f0
∂ψ′

∂z
(12)

and
∂B
∂y

= −f0
∂U
∂z

(13)

Notice:

1. ∂B
∂y

in the boundary equation very similar role as ∂Q
∂y

in the interior equation. A
meridional buoyancy gradient on the top or bottom boundary is dynami-
cally equivalent to a meridional PV gradient!

5



• meridional PV gradient → interior Rossby waves

• meridional buoyancy gradient → Rossby edge waves

2. ∂B
∂y
→ ∂U

∂z
(TWB) – wind shear between the two boundaries with Rossby edge waves.

This setup for baroclinic instability is conceptually identical to the Rayleigh
problem for barotropic instability. Wow!

3.4 Normal mode (i.e. wave) solutions

Seek wave solutions to our two equations. Coefs are independent of x, not y or z. Thus,
solution of form

ψ′(x, y, z, t) = Re{ψ̃(y, z)eik(x−ct)} (14)

(similar form for u′, v′, b′, q′)
Plug in and solve: (subscripts = derivatives)

(U − c)
(
ψ̃yy +

(
f20
N2 ψ̃z

)
z
− k2ψ̃

)
+Qyψ̃ = 0, 0 < z < H (15)

(U − c)ψ̃z − Uzψ̃ = 0, z = 0, H (16)

These equations govern the stability of the flow – and they are analogous to Rayleigh
equations for parallel shear flow!

Ultimately, then, this instability involves the horizontal circulations of one
Rossby wave amplifying another Rossby wave (with opposite-signed PV gradi-
ent), and vice versa. Physically, then, what is the difference?

• Barotropic instability: the circulations interact in the same horizontal plane (e.g. one
to the north and one to the south). If they are close enough together horizontally, they
can mutually amplify.

• Baroclinic instability: the circulations interact vertically – their horizontal circula-
tions project downward (from above) or upward (from below) over some depth of the
fluid. If they are close enough together vertically, they can mutually amplify.

Let’s see how this works mathematically.

4 Simplest model: Eady problem (V8.5)

Two mathematical descriptions of baroclinic instability:

1. Eady problem: f-plane (β = 0), two Rossby edge waves; simplest possible model

2. Charney problem: β > 0, interior Rossby wave + Rossby edge wave; mathematically
more complex but conceptually identical (not covered in this book)
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Here we do Eady.
Simplifying assumptions:

1. f-plane f = f0

2. N2 constant (uniformly stratified)

3. Top/bottom boundaries: rigid lids (z = 0 ground, z = H tropopause)

4. Basic state flow: uniform shear, U0(z) = Λz , Λ = U
H

, U = U0(z = H)

Assumptions more valid for atmosphere, but qualitative outcome applies to ocean too.
Basic state:
1) Streamfunction: (U = −∂Ψ

∂y
)

Ψ = −Λzy (17)

2) Buoyancy: varies only in y (B = f0
∂ψ
∂z

)

B = −f0Λy (18)

3) PV: = 0 (Ψ is linear in y and z)

Q = ∂2ψ
∂y2

+ H2

L2
d

∂2ψ
∂z2

= 0 (19)

where Ld = NH
f0

3D DIAGRAM OF BASIC STATE BAROCLINIC from comparison with
barotropic

Can write our PV as: Q = −∂2U
∂y2

+ f0
N2

∂B
∂z

(first term = 0)
B = constant outside of interior, decreasing in y direction on boundaries. Thus:

• z = H: (from neg to zero moving upward) ∂
∂z

(By) > 0 → ∂Q
∂y

> 0 – westward RW
propagation

• z = 0: (from zero to neg moving upward) ∂
∂z

(By) < 0 → ∂Q
∂y

< 0 – eastward RW
propagation

This should feel familiar: it’s exactly the same as the Rayleigh problem –
piecewise linear flow for barotropic instability. In both cases: PV gradients of
opposite signs confined to two interfaces.

Conceptually, what system have we created? No interior PV gradient, only merid-
ional buoyancy gradients at top and bottom – i.e. only counter-propagating Rossby
edge waves at the boundaries, none in interior! We have what we need for instabil-
ity...
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4.1 Linearization

4.1.1 Interior

Recall linearized PV equation:

∂q′

∂t
+ U0

∂q′

∂x
+ v′

∂Q

∂y
= 0, 0 < z < H (20)

now q′ = ∇2ψ′ + H2

L2
d

∂2ψ′

∂z2
and v′ = ∂ψ′

∂x

Plug in to put in terms of ψ′:
Thus, linearized PV equation in terms of ψ′ is:

(
∂
∂t

+ Λz ∂
∂x

) (
∇2ψ′ + H2

L2
d

∂2ψ′

∂z2

)
= 0, 0 < z < H (21)

4.1.2 Boundary conditions

Vertical boundary conditions:

• w = 0 at z = 0

• w = 0 at z = H

Lateral boundary conditions: could do doubly-periodic (i.e. wave solutions in x and y)
or channel (y only).

Here we do zonal channel of meridional width L. Hence, all wave perturbations should
decay to zero at the north/south boundaries, i.e.:

• ψ = 0 at y = +L
2

(no motion)

• ψ = 0 at y = −L
2

Recall linearized buoyancy equation:

∂b′

∂t
+ U0

∂b′

∂x
+ v′

∂B

∂y
= 0 z = 0, H (22)

where b′ = f0
∂ψ′

∂z
and ∂B

∂y
= −f0

∂U
∂z

= −f0Λ
Plug in to put in terms of ψ′:(

∂
∂t

+ Λz ∂
∂x

)
∂ψ′

∂z
− Λ∂ψ′

∂x
= 0 , z = 0, H (23)

Channel walls require modal solutions in y, i.e.

ψ′(x, y, z, t) = Re{Φ(z)sin(ly)eik(x−ct)} (24)

with meridional wavenumber l = nπ
L

and n is a positive integer
Plug in:
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1) Interior (PV):

(Λz − c)
[
H2

L2
d

∂2Φ
∂z2
− (k2 + l2)Φ

]
= 0 (25)

2) z = 0:

cdΦ
∂z
− ΛΦ = 0 (26)

3) z = H:

(c− ΛH)dΦ
∂z

+ ΛΦ = 0 (27)

These are simply Eqns (15) applied specifically to Eady problem.
For Λz 6= c, interior equation can be written:[

H2∂
2Φ

∂z2
− µ2Φ

]
= 0 (28)

where
µ2 = L2

d(k
2 + l2) (29)

µ is horizontal wavenumber rescaled by the deformation radius
Solution is

Φ(z) = Acosh(µẑ) +Bsinh(µẑ) (30)

where
ẑ =

z

H
(31)

Thus µ determines vertical structure of solution – smaller µ (i.e. larger λ) →
deeper penetration – a larger disturbance also penetrates deeper up/down into
the fluid!)

Plug into boundary conditions:

A[ΛH] +B[µc] = 0 (32)

A[(c− ΛH)µsinh(µ) + ΛHcosh(µ)] +B[(c− ΛH)µcosh(µ) + ΛHsinh(µ)] = 0 (33)

As usual, non-trivial solutions only if determinant of coefficient matrix = 0, i.e.:

c2 − Uc+ U2

(
1

µ
coth(µ)− 1

µ2

)
= 0 (34)

where U = ΛH; recall: coth(µ) = cosh(µ)
sinh(µ)

Solve for c:

c = U
2
± U

µ

√(
µ
2
− coth(µ

2
)
) (

µ
2
− tanh(µ

2
)
)

(35)

FIG8.7
Growth/decay: ci 6= 0 – negative under square root
tanh(µ

2
) < µ

2
for all µ → second term positive

Thus, requires µ
2
< coth(µ

2
). This occurs when
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Figure 2: (Fig8-7)

µ < µc = 2.4 (36)

with growth rate is

σ = kci = kU
µ

√(
µ
2
− coth(µ

2
)
) (

µ
2
− tanh(µ

2
)
)

(37)

The maximum growth rate occurs at

µmax = 1.61 (38)

Most unstable µ occurs has n = 1 (i.e. l = π
L

)
Growth rates are larger for l2 � k2 – i.e. large meridional scale of waves. For this case,

the maximum growth rate is called Eady growth rate , and is:

σE = 0.31U
Ld

= 0.31ΛH
Ld

= 0.31Λf
N

(39)

For these growing modes, phase speed is

cr = 0.5U (40)

(i.e. the average zonal speed in the layer)
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Figure 3: (Fig8-9)

Translate to physical space: for l small, µ = Ldk. Thus instability occurs for:

k < 2.4
Ld

(41)

i.e. (λ = 2π
k

)

λ > 2.6Ld (42)

Thus, there exists a shortwave cutoff for baroclinic instability; this cutoff scales
with the deformation radius.

Maximum instability occurs for:

kmax = 1.6
Ld

(43)

i.e.
λmax = 3.9Ld (44)

FIG 8.9
Requirement: phase-locking of counter propagating rossby edge waves.

5 Comparing barotropic and baroclinic instability (Rayleigh

vs. Eady)

See PDF hand-written notes
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5.1 Mechanistic understanding in the lab

You created baroclinic instability in the first rotating tank lab at the highest rotation rate!

5.2 Mechanistic understanding in real world

Movie

6 Necessary conditions for baroclinic instability

Same procedure as for barotropic instability: Multiply eqns by ψ̃∗ and integrate over domain
in y and z. (See VallisE 8.7)

∫ H

0

∫ y2

y1

[∣∣∣ψ̃y∣∣∣2 +
f 2

0

N2
|ψz|2 + k2 |ψ|2

]
dydz−

∫ y2

y1

∫ H

0

Qy

U − c

∣∣∣ψ̃∣∣∣2 dz +

 f20
N2Uz

∣∣∣ψ̃∣∣∣2
U − c


H

0

 dy = 0

(45)

• First term: pure real (ci = 0)

• Second term: complex

Growth/decay: ci 6= 0
Imaginary component of second term:

−ci
∫ y2

y1

∫ H

0

Qy

|U − c|2
∣∣∣ψ̃∣∣∣2 dz +

 f20
N2Uz

∣∣∣ψ̃∣∣∣2
|U − c|2


H

−

 f20
N2Uz

∣∣∣ψ̃∣∣∣2
|U − c|2


0

 dy = 0 (46)

Requires either:

• ci = 0 – no growth/decay

• ci 6= 0, rest of LHS = 0

Charney-Stern-Pedlosky (CSP) necessary condition for baroclinic instability:
ONE of the following criteria must be satisfied:

1. Qy changes sign in the interior

2. Qy is opposite sign to Uz at upper boundary (z = H)

3. Qy is same sign to Uz at lower boundary (z = 0)

4. If Qy = 0, Uz is same sign at upper and lower boundaries

Application to Earth’s atmosphere:

12



• Qy: typically dominated by β, which is positive everywhere – eliminates (1) and (4)

• Uz: also typically positive everywhere (westerly jet streams aloft, surface easterlies) –
eliminates (2)

• (3) is most common: Qy > 0 and Uz(0) > 0

Thus, our atmosphere, particularly at mid-latitudes in the vicinity of the jet stream, is
potentially baroclinically unstable.
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