EAPS 53600: Introduction to General Circulation of the Atmosphere Spring 2020

Prof. Dan Chavas Topic: Hadley cell

Reading: 1. VallisE 11.1-11.3

White: total precipitable water (brigher white = more water vapor in column) Colors: precipitation rate $(0 - 15 \frac{mm}{hr}, \text{ red=highest})$

Source: https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=30017

Back to the big picture...

White: total precipitable water (brigher white = more water vapor in column) Colors: precipitation rate $(0 - 15 \frac{mm}{hr}, \text{ red=highest})$

Source: https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=30017

A couple of contrasts to think about

- 1) Tropics (weakly-rotating) vs. extra-tropics (strongly-rotating)
- 2) Waves vs. overturning circulations
 - Waves (gravity, Rossby...): require a dynamical restoring force
 - **Overturning circulations** (Hadley, Walker...): principally a response to **differential heating** (less dense fluids tend to rise...)

Zonal-mean meridonal/vertical overturning streamfunction Solid = positive Dashed = negative

Hadley cell:

- Confined to tropics (< 30 N/S)
- stronger in winter hemisphere
- thermally-direct overturning circulation (warmer fluid rises, colder fluid sinks)

Fig. 11.3:

Air motion transports things poleward:

- 1) Energy (heat, water vapor)
- 2) Angular momentum

Angular momentum per unit mass: a point mass

$$M = ru_{abs}$$
 Units: $\left[\frac{m^2}{s}\right]$

r: distance from axis of rotation u_{abs} : absolute tangential speed

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e8/PointInertia.svg/272px-PointInertia.svg.png

Angular momentum of an air parcel

Conservation of angular momentum: *M* is constant unless acted on by a torque.

Mass is moved to smaller radius, so the skater spins faster.

Angular momentum per unit mass: a point mass

$$M = ru_{abs}$$
 Units: $\left[\frac{m^2}{s}\right]$

r: distance from axis of rotation u_{abs} : absolute tangential speed

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e8/PointInertia.svg/272px-PointInertia.svg.png

In the atmosphere, air **above the boundary layer** is nearly *inviscid* – i.e. frictionless. Thus it nearly **conserves its angular momentum** as it moves.

(In the boundary layer, surface friction acts acts as a torque that weakens zonal motion.)

()))

Fig 6.17

In the time-mean, globalmean, **angular momentum balance** must hold.

 $\frac{\partial M_{global}}{\partial t} = 0 = sources - sinks$

Surface friction acting on:

- Easterly flow is a source of angular momentum
- Westerly flow is a sink of angular momentum

Something must move this westerly angular momentum poleward and down to the surface!

The Eulerian mean circulation can't do it. Instead <u>eddies/waves</u> do this transport.

This is really important!

The mean state depends on transport of energy and angular momentum by circulations and eddies.

However, the properties of these circulations and eddies also *depend* on the mean state.

So there is a mutual interaction – **"eddy-mean flow interaction"** – that is fundamental, but is hard to deconvolve.

Hadley cell theory: symmetric about the equator

The logic:

- As air moves poleward, the zonal wind

 (u) increases with latitude (angular momentum conservation).
- 2. Since near-surface flow is weak, this means the <u>vertical shear</u> of the zonal wind $\left(\frac{\partial u}{\partial z}\right)$ also increases with latitude.
- 3. At steady state (thermal wind balance), this shear must also have a meridional temperature gradient $\left(\frac{\partial \theta}{\partial \phi}\right)$ that increases with latitude.

What stops this from continuing all the way to the poles? (i.e. what sets the poleward edge of the Hadley cell?)

u > 0

 $u \neq 0$

8

 \otimes

$$M(\phi) = M(0)$$

$$acos\phi(\Omega acos\phi + u) = \Omega a^{2}$$

$$u_{AMC}(\phi) = \Omega a \frac{\sin^{2} \phi}{\cos \phi}$$
Thermal wind balance:
$$2\Omega sin\phi \frac{\partial u}{\partial z} = -\frac{g}{a\theta_{0}} \frac{\partial \theta}{\partial \phi}$$
Vertical-mean potential temperature:
$$\overline{\theta_{AMC}(\phi)} = \theta(0) - \frac{\theta_{0}\Omega^{2}a^{2}\phi^{2}}{2gH}$$

50

"Held-Hou" theory (Held and Hou 1980)

If the atmosphere *didn't* move – no Hadley cell (radiative equilibrium)

Eddy heat transport is given by: $-v' \frac{dT'}{dy}$

This is positive – i.e. **poleward!**

Our Hadley solution, if true, must transport heat polewards! **Low latitudes**: $\overline{\theta}_{AMC} < \overline{\theta}_{RE}$ -- Hadley cell causes **cooling High latitudes**: $\overline{\theta}_{AMC} > \overline{\theta}_{RE}$ -- Hadley cell causes **warming**

This theory says that the Hadley cell strength depends on $\overline{\theta}_{AMC}$ - $\overline{\theta}_{RE}$

"Held-Hou" theory (Held and Hou 1980)

A thermodynamic constraint! Conservation of energy

"Equal area":

total heat removed from low latitudes

total heat added to high latitudes

 ϕ_{max}

 $\Delta \theta$: equator-pole temperature difference

This theory predicts the poleward edge of the Hadley cell to be around 30° (Note: the answer is sensitive to assumption of how quickly $\overline{\theta}_{RE}$ decreases with latitude)

A dynamical constraint: baroclinic instability

This theory predicts the poleward edge of the Hadley cell to be around 20°

Both of these constraints are likely important for limiting the meridional extent of the Hadley cell to within 30°.

But why is the **seasonal cycle** of the Hadley cell **so strong**?

And why is the Hadley cell so much stronger in the *winter* hemisphere?

Fig. 14.10

Based on the thermodynamic constraint (Held-Hou): Hadley cell strength ($\overline{\psi}$ or \overline{v}) depends on $\overline{\theta}_{AMC}$ - $\overline{\theta}_{RE}$ In the Summer, the peak radiative-equilibrium temperature is shifted towards the summer hemisphere.

Now $\overline{\theta}_{AMC}$ - $\overline{\theta}_{RE}$ is much larger in the *Winter* hemisphere! Thus, this correctly predicts that the Hadley cell should be much stronger in the winter hemisphere.

Theory: Lindzen and Hou (1988)

Now go to Blackboard to answer a few questions about this topic!