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Topic: The Transformed Eulerian 
Mean (TEM)
Reading:
1. VallisE Ch 9.3-9.4, Ch 12.1



Learning outcomes for today:
• Describe how the Transformed Eulerian Mean differs from a regular Eulerian mean
• Explain the relationship among wave activity, EP fluxes, EP flux 

divergence/convergence, and acceleration/deceleration of the zonal-mean flow
• Describe how these concepts are relevant to our real atmosphere



Transformed Eulerian mean (TEM): a modified framework that lets 
you directly link eddy effects to changes in mean zonal flow
• Moves eddy PV flux effects out of thermodynamic equation and entirely into 

momentum equation

Eulerian mean: the normal way you take an average, think about eddies
(average at a fixed location in time (e.g. annual mean) and/or space (e.g. zonal mean))

𝑣 = 𝑣 + 𝑣′
Mean

(Eulerian)
Deviation 

(eddy)
Total



Eliassen-Palm (EP) flux
(a.k.a. wave activity flux):

𝓕 = −𝑢$𝑣$*̂ +
𝑓%
𝑁& 𝑣′𝑏$0𝒌 (9.27)

𝒗2𝒒2 < 𝟎

𝑦

𝑞

Initial 𝑞(𝑦)

Last time: The eddy meridional PV flux can be written as the EP flux divergence

Meridional flux 
of zonal 

momentum

Meridional 
flux of  

buoyancy

Eddy meridional PV flux: 𝑣$𝑞′ = ∇ ⋅ 𝓕 (9.28)

So the meridional eddy PV fluxes are related to both:
1) meridional fluxes in zonal wind (𝑢)
2) meridional fluxes in buoyancy (𝑏)

Which of these do eddies actually do? Or is it both?
Let’s go back to the individual equations for each...



Eddy PV flux is actually an eddy momentum flux + eddy buoyancy flux

Eulerian mean zonal-mean equations, Boussinesq fluid:

Zonal wind:

Buoyancy:
Heating

Friction

Purely ageostrophic (meridional overturning)
e.g. the Hadley cell is poleward near tropopause, equatorward near surface

Quasi-geostrophic:

neglect vertical eddy flux convergences (terms with w’)

neglect ageostrophic velocities (𝑣 or 𝑤) except when multiplied by 𝑓% or 𝑁&

Note: '(
')
= 𝑁&

(9.44a)

(9.44b)



Eddy PV flux is actually an eddy momentum flux + eddy buoyancy flux

Zonal wind:

Buoyancy:

Thermal wind balance 
relates 𝑢 and 𝑏 𝑓%

𝜕𝑢
𝜕𝑧 = −

𝜕𝑏
𝜕𝑦

Now we can see the individual eddy fluxes. However, because of thermal wind balance...
- eddy momentum fluxes can change 𝑢, which via TWB changes 𝑏
- eddy buoyancy fluxes can change 𝑏, which via TWB changes 𝑢

Recall: TWB combines

geostrophic balance (meridional): 𝑓!𝑢 = − "#
"$

hydrostatic balance (vertical): 𝑏 = "#
"%

So we still don’t actually know how the eddy fluxes change 𝒖 and 𝒃!

(9.45a)

(9.45b)



(9.45a)

(9.45b)

Eddy PV flux is actually an eddy momentum flux + eddy buoyancy flux

Zonal wind:

Buoyancy:

Thermal wind balance 
relates 𝑢 and 𝑏 𝑓%

𝜕𝑢
𝜕𝑧 = −

𝜕𝑏
𝜕𝑦

Adiabatic 
cooling / 

subsidence 
warming

Diabatic 
heating

𝑺: small but important -- this drives the mean meridional overturning
(note: in the tropics it creates the temperature gradients that drive the Hadley cell)

In the extratropics: these are the dominant balance and these are typically small residuals

Recall: TWB combines

Geostrophic balance (meridional): 𝑓!𝑢 = − "#
"$

Hydrostatic balance (vertical): 𝑏 = "#
"%

Can we transform these equations into a more useful form,
that accounts for this residual term 𝑺?



(Mass continuity has to
apply to the residual, too!)

(9.45a)

(9.45b)

Let’s absorb the dominant thermodynamic balance into our equations

Zonal wind:

Buoyancy:

Mass continuity:
relates 𝑣 and 𝑤

where  '*
'+
+ ',

')
= 0

Define a residual mean 
meridional circulation (𝒗∗, 𝒘∗):

with residual 
streamfunction 𝝍∗:

𝜓!: Eulerian mean 
meridional streamfunction

where  '*
∗

'+
+ ',∗

')
= 0

Dominant balance:

𝑤!"# =
𝜕
𝜕𝑦

1
𝑁$ 𝑣

%𝑏%

Define residual flow:
𝑤∗ = 𝑤 − 𝑤!"#

𝜕𝑣&'(
𝜕𝑦

= −
𝜕
𝜕𝑧

𝜕
𝜕𝑦

1
𝑁) 𝑣

*𝑏* =
𝜕
𝜕𝑦

−
𝜕
𝜕𝑧

1
𝑁) 𝑣

*𝑏*

𝑣&'( = −
𝜕
𝜕𝑧

1
𝑁) 𝑣

*𝑏*

Define residual flow:
𝑣∗ = 𝑣 − 𝑣&'(

Plug in 𝑤!"# to get 𝑣!"#

(9.46)

(9.47a)

(9.47b)

(9.48)

𝜓∗: Transformed Eulerian mean 
(residual) meridional streamfunction



Let’s absorb the dominant thermodynamic balance into our equations

Zonal wind:

Buoyancy:

Zonal wind:

Buoyancy:

Eulerian mean

Transformed Eulerian mean

(9.45a)

(9.45b)

(9.50a,b)

(9.48)

𝒇𝟎𝒗 −
𝝏
𝝏𝒚

𝒖*𝒗*

= 𝑓! 𝑣∗ −
𝜕
𝜕𝑧

1
𝑁# 𝑣$𝑏$ − 𝑣$𝑞$ −

𝜕
𝜕𝑧

𝑓!
𝑁# 𝑣$𝑏$

= 𝒇𝟎𝒗
∗ − 𝒗%𝒒%

Recall the eddy PV flux:

Residual flow:

We’ve effectively moved the eddy buoyancy flux divergence term (𝑣’𝑏’) into the momentum equation and combined it with 
the zonal momentum flux divergence term (𝑢′𝑣’).

The result? A single eddy forcing term: the eddy PV flux, 𝒗%𝒒’, that directly changes the zonal wind (*+
*,

)!



(9.50a,b)

(9.73)

No external 
forcing

(9.29)

(9.74)

Recall that the wave activity, 𝒫, is also called “pseudomomentum”.
This is why: 𝓟 acts dynamically like a zonal-mean zonal momentum per 
unit mass (and it has units of m/s)

Source/sink of 
wave activity

We can use these equations to understand a lot about how the mean flow is affected by eddies.
Let’s think about some examples...

Now let’s link back to wave activity and the EP flux



𝑦

(9.29)

(9.74)

Case 1: No sources/sinks of wave activity (𝒟 = 0), steady motionless waves (𝛁 ⋅ ℱ = 0)

For this case, there 
will be no residual 
circulation either

(𝑣∗ = 0)

𝜕𝑃
𝜕𝑡 = 0

𝜕𝑢
𝜕𝑡

= 0

Result:

wave activity doesn’t change

so the mean flow doesn’t change, either

This is called the “non-acceleration” result.
The mean flow is not accelerated at all, regardless of where wave activity is found.

𝑢

Ok, so waves alone aren’t enough to change the mean flow. What if waves could move around?



(9.29)

(9.74)

Case 2: No sources/sinks of wave activity (𝒟 = 0), barotropic fluid (𝑣 = 0)

𝜕𝑃
𝜕𝑡

= −∇ ⋅ 𝐹

𝜕(𝑢 + 𝒫)
𝜕𝑡 = 0

Result:

wave activity simply moves around
(increases where EP flux converges)

If wave activity goes up, zonal-mean flow goes 
down, and vice versa.
(an exchange between zonal-mean momentum and pseudomomentum)

𝑦

𝑃 𝑢

Cannot have zonal-mean 
meridional flow if vertically 

uniform (barotropic)

Why does this matter?
It means that sources/sinks of wave activity are fundamental to changing the (barotropic) mean flow.

But this is not realistic:
something has to generate (and dissipate) this wave activity in the first place...

∇ ⋅ 𝐹 > 0
(divergent)

∇ ⋅ 𝐹 < 0
(convergent)

∇ ⋅ 𝐹 < 0
(convergent)

𝜕𝑃
𝜕𝑡 < 0

𝜕𝑃
𝜕𝑡 > 0

𝜕𝑃
𝜕𝑡 > 0



(9.29)

(9.74)

Case 3: steady wave activity, barotropic fluid (𝑣 = 0)

∇ ⋅ 𝐹 = 𝒟

𝜕𝑢
𝜕𝑡 = ∇ ⋅ 𝐹 = 𝒟

Result:

wave activity diverges away from where it is 
generated (source), and converges towards 
where it is dissipated (sink).

The zonal flow will be accelerated where waves 
are generated, and decelerated where waves are 
dissipated!

𝑦

𝑃 𝑢

Cannot have zonal-mean 
meridional flow if vertically 

uniform (barotropic)
∇ ⋅ 𝐹 > 0

(divergent)

∇ ⋅ 𝐹 < 0
(convergent)

∇ ⋅ 𝐹 < 0
(convergent)

𝜕𝑢
𝜕𝑡 > 0

𝜕𝑢
𝜕𝑡 < 0

𝜕𝑢
𝜕𝑡 < 0

𝒟 > 0
(source)

𝒟 < 0
(sink)

𝒟 < 0
(sink)

Ok, so how does this manifest itself in our actual atmosphere?

Irreversibility is essential to how 
waves affect the mean-flow.



Wave activity (i.e. waves whose 
amplitude is growing) is generated 

primarily by baroclinic instability of 
the jet stream at mid-latitudes.

This can be thought of as an 
external process that “stirs” 

the fluid, creating waves!

In this way, then waves are converging zonal momentum toward their source region.
This momentum is taken from lower/higher latitudes where the waves break and dissipate.

In essence, then, baroclinic instability of the mid-latitude (barotropic) jet helps to sustain the jet’s very existence.
This instability tries to break down the zonal-mean jet into eddies and restore its zonal-mean state simultaneously!



Can we apply these concepts to understand the large-scale circulation of our atmosphere?

Where do real eddies transport momentum vs. heat (buoyancy)?

How does the global momentum budget fit into this?

Where does the Ferrel cell come from?

We’ll cover these topics in the next lecture.



A couple of notes:
• A nice summary of the TEM equations is provided in the box VallisE p. 186

• Why would a meridional buoyancy flux (𝑣2𝑏2) act like a force (
HI
HJ )? This seems 

weird/magical. (Recall: this shows up as the vertical component of the EP flux) See VallisE
Section 9.4.3 – the buoyancy flux acts like a form drag created by sloping interfaces that 
places a stress on the fluid (i.e. a sink of momentum). Transporting heat (buoyancy) acts to 
change the slope of pressure surfaces and thus changes this form drag.



Now go to Blackboard to answer a few 
questions about this topic!


