EAPS 53600 Introduction to General Circulation of the Atmosphere Spring 2020 Version date: 2020-04-14

Instructor: Professor Dan Chavas (<u>dchavas@purdue.edu</u>) Class: 9:00a-10:15a TR HAMP 3214

Dates and topics below are subject to change. All due dates are tentative and will be announced in class.

Week	Торіс	Book Reading	Homework	Lab	Semester project (peer
		prior to class			review for each milestone)
1	Intro / Does the	(Review of basics: Hartmann			
(01/13)	atmosphere have	Ch 1.1-1.7, 3.1-3.2)			
DRC	to move?	Hartmann Ch 2, 3.8, 3.10-3.11			
GONE					
TUES					
01/14					
2	Radiative		HW 1 due		
(01/20)	equilibrium,				
	radiative				
	convective				
	equilibrium / Tank				
	lab 1: hadley cell				
	and baroclinic				
	instability			-	
3	What if the Earth	Hartmann Ch 6		Lab 1	M1a: three hypotheses of
(01/27)	didn't rotate? /	VallisE Ch 11.1		report	interest + methods to test
	Observed			due	(as specific as possible)
	atmospheric				Just to get the juices
	circulation				flowing
					Peer review (1-5): 1)
					creativity; 2) clarity; 3)
	E				feasibility.
4	Equations of	VallisE Ch 2 / (Review basics of waves:			
(02/03)	motion / Shallow	•			
	water system:	VallisE Ch 6.0-6.2)			
	non-rotating	VallisE Ch 4.0-4.4			
	gravity waves	(note: internal gravity waves			
		are covered in Ch 7)			
5	Rotating gravity		HW 2 due		
(02/10)	waves, Kelvin		1100 2 000		
(02/10)	waves / Tank lab				
	2: geostrophic				
	adjustment				
6	Potential vorticity,	VallisE Ch 5.2.2-5.2.3, 5.5		Lab 2	M1b: three topics of
(02/17)	quasi-geostrophic	VallisE Ch 5.2.2-5.2.5, 5.5 VallisE Ch 6.3-6.5		report	interest related to large-
(02/1/)	system / f variable			due	scale circulations
	(beta): Rossby			uue	
	waves				
L	waves	l			

7 (02/24)	in-class modeling lab / Equatorial waves	Notes				
8 (03/02)	Barotropic instability	VallisE Ch 8.0-8.3	HW 3 due		M1c: final three topics + hypotheses + methods	
9 (03/09)	Baroclinic instability	VallisE Ch 8.4-8.5 + p. 162 box, 8.7		Lab 3 report due	M2: half-page proposal (hypothesis + method + expected outcome)	
10 (03/16)		SPRING BREAK				
11 (03/23)	Hadley cell (Held- Hou) / MIDTERM	VallisE 11.1-11.3			M3: final half-page proposal (hypothesis + method + expected outcome) + proof of concept	
12 (03/30)	Monsoon / Walker cell	Hartmann 6.5.1 http://worldmonsoons.org /where-monsoons-are- found/ http://worldmonsoons.org /why-monsoons-happen/ Hartmann Ch 8.3 VallisE Ch 16.4			M4a: 3-slide presentation hypothesis/methods + initial results + next steps	
13 (04/06)	Madden-Julian Oscillation (MJO) / Wave-mean flow interaction and the Eliassen-Palm Flux	Hartmann Ch 8.2.2 VallisE Ch 9.0-9.2			M4b: <1 page draft bullet- point extended outline (hypothesis/methods/initial results+plots; plots not included in page limit); 3- minute oral presentation (same format)	
14 (04/13)	Transformed Eulerian Mean (TEM) / Jet formation, surface winds, and the Ferrel cell	VallisE Ch 9.3-9.4, 12.1 VallisE Ch 12.2-12.3			M4c: (same format as M4b) final extended outline + concrete results testing hypothesis; 3-minute oral presentation	
15 (04/20)	Stratosphere / Advanced topics (Gross Moist Stability, Sverdrup balance)	VallisE Ch 12.4			M5a: draft paper (methods/results); 3- minute oral presentation	
16 (04/27)	Advanced topics (Tropical cyclones) / oral presentations				M5b: draft paper	
FINAL	Semester project final report due noon Thurs 05/07 No final exam					