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Abstract— In transportation networks the robustness of a net-
work regarding nodes and links failures is a key factor for its
design. At the same time, traveling passengers usually prefer the
itinerary with fewer legs. The average clustering coefficient can
be used to measure the robustness of a network. A high average
clustering coefficient is often synonymous with a lower average
travel distance and fewer number of legs. In this paper we present
the average weighted clustering coefficient maximization problem,
and give several solution methods based on branch and bound
algorithm, dynamic programming and quadratically constrained
programs.

I. Introduction

An air transportation network (ATN) consists of distinct
airports (cities) and direct flight routes between airport pairs
[1]. We use a graph G(V, E) to describe it, where the node set
V represents all the N airports and the edge set E represents
all the m direct flight routes between airports. We assume that
this graph is weighted, and we use the weighted adjacent matrix
W = (wij)i,j to describe it. wi,j represents the total amount of
traffic on the route (i, j), and wij = 0 if there is no route
between airport i and airport j. In particular, wii = 0 and
wij = wji (in this paper the ATN is assumed to be symmetric).
We also denote A = (aij)i,j the non-weighted adjacent matrix.
ai,j is simply defined as 1 if wi,j > 0 and 0 otherwise. Finally,
di represents the degree of the node i that is the number of
its direct neighbors and ti is the number of edges among its
direct neighbors.

Air transportation networks (ATNs) have been widely stud-
ied [2], [3], [4]. In an ATN, reliability and well-connectivity
of the flights routes are a major issue. Different metrics have
been used to measure it: algebraic connectivity in [5], [6] and
betweenness centrality in [7]. Here we propose to consider
the average clustering coefficient (ACC) as a measurement of
both robustness and well-connectivity of the network [8]. It
has previously been shown in [9], [10], that the ACC is a proxy
for increased robustness. Moreover, in an ATN, the robustness
is above all local needs: when a flight route is deleted, com-
panies want to re-route passengers with the fewest possible
connections. And that is exactly what the weighted clustering
coefficient defines: it shows the percentage of passengers
that can be re-routed on other sides of every triangle [12].
Therefore the average weighted clustering coefficient can be
seen as an interesting global measurement of local robustness
for ATNs.

Contrary to other metrics that have been used to measure
the robustness of a network, the ACC directly takes into
account the average distance between two nodes. Indeed,
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a high average clustering coefficient in a given non-regular
graph is often synonymous with a low average distance [10],
and thus guarantees that the network is a "small-world",
which has been proven to be important in the ATN [11]. Thus,
in an ATN, where the average distance is very important
and where the robustness is a local need, we won’t need to
add constraints to limit the maxium distance. This a major
improvement and that’s why we chose to study this new
metric.

Figure 1 explains why a graph with a higher average
clustering coefficient is more robust.

Fig. 1: N = 4, m = 4. Left: non-weighted graph, Right: weighted
graph. The right graph is more robust, because it will be possible to
re-route more passengers in case of a link failure. The right graph
is also the one with the highest average clustering coefficient (see
figure 2).

The (non-weighted) clustering coefficient of a node i, ci,
first defined by [8], is:

ci =


0 if di = 0
1 if di = 1
ti/(di

2 ) if di ≥ 2

Using the non-weighted adjacent matrix A, we can rewrite ci
as:

ci =
1

di(di − 1) ∑
j,h

aijaihajh when di ≥ 2 (1)

According to [9], and using formulation in (1), we can define
a weighted clustering coefficient of a node i, cw

i as:

cw
i =

1
(di − 1) ∑j wij

∑
j,h

wij + wih

2
aijaihajh, (2)

where di ≥ 2(cw
i = 0 if di = 0 and 1 if di = 1).

To make computation easier, and using matrices defini-
tions, we can rewrite cw

i as:

cw
i =

(A2W)i,i

(di − 1) ∑j wij
,

where di ≥ 2.
Note that cw

i is built to be like ci in [0, 1], and if all the
weights are the same, we have cw

i = ci. To avoid confusions,
we can write cw

i (G). Then, the average weighted clustering
coefficient Cw(G) is:

Cw(G) =
1
N ∑

i
cw

i
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As suggested in [10], and as we are considering only graphs
of given order N, we can use the reduced average weighted
clustering coefficient, Cw

R (G) defined by:

Cw
R (G) = N × Cw(G) = ∑

i
cw

i

The aim of this work is to determine the network which,
for a given size m and order N, has the maximal average
weighted clustering coefficient under constraints of limited
air traffic on every flight route. We determine whether or not
the structure of graphs with the highest average weighted
clustering coefficient is similar to the one of non-weighted
graphs, and present several algorithms to compute the opti-
mal graph in both cases.

The rest of this paper is organized as follow. In section
II, we model our problem and discuss its difficulty. In sec-
tion III, we solve the average weighted clustering coefficient
maximization problem in the homogeneous weights case. In
section IV, we solve this problem when the weights are no
longer homogeneous. Several applications to the ATN and
several examples are presented in section III and IV. Section
V concludes the paper.

II. Problem formulation and its NP-hardness

A. Problem formulation

The two following constraints will be applied to our max-
imization problem:

• For safety reasons and because the routes have a traffic
throughput capacity, the edge weights have an upper
bound β.

• Moreover, to establish a new flight route, we need a
minimum amount of traffic demand α.

The Average Weighted Clustering Coefficient Maximization
Problem for a given order N and a given size m can be written
as follow:

max
G

Cw
R (G(V, E)) s.t.

 |V| = N
|E| = m
∀(i, j), wij ∈ {0, [α, β]}

(P)

We denote Cw
max(N, m) the value of the optimal solution in

problem P, and Cmax(N, m) the value of the optimal solution
in the same problem when α = β (that is when the graph is
unweighted).

B. NP-hardness

Suppose that we solve problem P in two-steps : first we find
the optimal network structure design (i.e. the non-weighted
graph), and then we weight the edges. The first step has
been proven to be NP-hard in [10], thus, as a more difficult
problem, problem P is NP-hard.

Note that even when the network structure is already fixed,
the process of weighting the edges to maximize Cw

R (G(V, E))
is also a difficult problem as we will see in the next section.

III. Homogeneous weights

In this section, we study a relatively simple case of solving
problem P, where β is sufficiently close to α.

A. Principle of solving problem
Here we give some useful properties, and the general

principle of solving problem P.
Lemma 1: Let G(N, m) be a weighted graph whose weights

are in [α, β]. Then:

∀i ∈ {1, 2, ..., N}, α

β
ci(G) ≤ cw

i (G) ≤ β

α
ci(G).

Proof:

cw
i (G) =

1
(di − 1) ∑j wij

∑
j,h

wij + wih

2
aijaihajh

≤ 1
(di − 1) ∑j αaij

∑
j,h

βaijaihajh

≤ β

α

1
(di − 1)di

∑
j,h

aijaihajh

≤ β

α
ci(G)

And we can obtain the similar proof for the other inequality.

As a reminder, Cmax(N, m) denotes the max in problem P
when α = β.

Lemma 2:

∀(N, m), Cw
max(N, m) ≥ Cmax(N, m).

Proof: Let G be a weighted graph and G′ the non-
weighted graph with the same structure. As G′ can be
obtained from G by setting all its weights to a constant value
between α and β, we have maxwij Cw

R (G) ≥ CR(G′) = CR(G)
and Cw

max(N, m) ≥ Cmax(N, m).
Theorem 1: Let G be the graph that maximizes the average

non-weighted clustering coefficient for a given order N and a
given size m. Let G′ be the graph that maximizes the average
weighted clustering coefficient for the same order and size. If
β is close enough to α, then G and G′ have the same structure.

Proof: Suppose that G and G′ do not have the same
structure. From lemma 1, we know that:

Cw
max(N, m) = max

w
Cw

R (G′) ≤ β

α
C(G′) < C(G) = Cmax(N, m)

The innequality Cw
max(N, m) < Cmax(N, m) is in contradiction

with lemma 2. Thus, G and G′ have the same structure. Note
that this is true only if ∀G′ 6= G, β

α C(G′) < C(G).
The solution then follows from theorem 1. The weights

and the structure of the network are uncorrelated. To find
the optimal graph, we can use the method presented in [10]
to find optimal network structure, and then optimize the
weights using one of the methods presented below.

B. Binary case
Let’s now simplify our problem, in which rather than

considering that wij ∈ {0, [α, β]}, we will consider wij ∈
{0, α, β}. Thus, the weights of the edges can only take one
of the 2 values: α or β. More formally, the binary problem
can be defined as following:

Problem 1:

max
G

Cw
R (G(V, E))

s.t.

 |V| = N
|E| = m
∀(i, j), wij ∈ {0, α, β}

In this case, we can see that the function fN,m : (α, β) 7→
Cw

max(N, m) depends only on β
α . So we can impose that α = 1

for instance, and only modify the value of β. After computing
the optimal non-weighted graph, which can be done in a
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pseudo-polynomial time (see [10]), we still have to weight
the edges. To do so, a naive technique would be to try every
possible combination, which complexity is θ(2m). We will
also present an heuristic to reduce this complexity. However,
note that the binary case is a difficult problem, as it can be
considered as an integer programming whose relaxation is
NP-Hard, as we will see in the next section.

1) Branch and bound: To reduce this complexity, and as the
maximization problem is not concave, we used a branch and
bound algorithm: we weight the edges in an increasing order,
and branch on the weight of the current edge: α or β. As for
the (maximum) bound part of the algorithm, it is easy to see
that we cannot reach a coefficient larger than the one obtained
from the existing weighted graph, the rest of the edges being
weighted to maximize the clustering coefficient. Thus, if we
are currently branching on edge k, then the bound bi for node
i will be:

bi =
(A2W∗)i,i

(di − 1)(∑k
j=1 wij + (d− k)α)

,

where

W∗p,q =

 β if p = i and q > k
β if q = i and p > k
Wp,q otherwise

2) Increasing weights: Another useful property is given
here, which reduces a lot of the complexity of the weighting
process. Let Gmax(N, m) be the optimal graph for the non-
weighted case. Suppose, for instance, that we limit the num-
ber of edges of Gmax that can be weighted with a maximum
number mβ. We then try to maximize the weighted clustering
coefficient on Gmax with this new constraint. We denote
Ω(Gmax, mβ) the sum of the weights of the edges of Gmax.
Then we have of course Ω(Gmax, mβ) ≤ mββ + (m−mβ)α.

Lemma 3: If Ω(Gmax, mβ) < mββ + (m − mβ)α, then the
number of edges weighted with β in the optimal graph is
lower than mβ.

Proof:
Suppose that the optimal graph Gopt has more than mβ

edges weighted with β. Let G be the graph such that
Ω(G, mβ) < mββ + (m − mβ)α. We know that there is at
least one edge, e, whose weight is α in G and β in Gopt. For
instance, e = (i, k). Now if we assume that wi,j is a continuous
variable, we can compute the derivative of cw

i (G) with respect
to we:

∂cw
i (G)
∂we

=
∂cw

i (G)
∂wik

=
∑h aikaihakh ∑l wil −∑j ∑h wijaijaihajh

(di − 1)(∑l wil)2

=
∑j ∑h wij[aikaihakh − aijaihajh]

(di − 1)(∑l wil)2

=
∑j wijγij

(di − 1)(∑l wil)2 ,

where γij = ∑h[aikaihakh − aijaihajh]. Hence the sign of this
derivative depends only on ∑j wijγij, which, if α is close to β,
is always a constant sign. Then, as this term is supposed to
be positive in Gopt, it is also positive in G, and thus we can
assign β to edge e1. Doing that for all the edges with α in G
and β in Gopt, it will lead to a contradiction with the fact that
Ω(G, mβ) < mββ + (m−mβ)α.

3) Algorithm: We can now describe the algorithm: using
lemma 3, we can set all the weights to α, and then set edges
to β one-by-one. When we find that by switching a new edge
from α to β, the average weighted clustering coefficient is
decreasing, we stop. The algorithm is shown in Algorithm 1.

Algorithm 1 Binary Case

G ← Compute_the_optimal_non-weighted_graph (N,m)
C ← Compute_clustering_coefficient (G)
continue ← True
mβ ← 1
while continue do

G ← Compute_the_optimal_weighted_graph (G,mβ)
Cnew ← Compute_the_weighted_clustering_coefficient (G)
if Cnew ≤ C then

continue← False
else

mβ = mβ + 1
C ← Cnew

end if
end while
return [G, C]

Note that we apply the branch & bound method in function
Compute_the_optimal_weighted_graph.

Figure 2 gives some examples of results that we found
using Algorithm 1. Note that two nodes that are close in
Figure 2 do not necessarily represent airports that are ge-
ographically close, and the length of the edges does not have
geographically meaning.

Fig. 2: Examples of optimal graphs for binary case (problem 1).
α = 1, β = 2. Top left corner: Cw

R (4, 4) = 3.4, CR(4, 4) = 3.33
- Top right corner: Cw

R (6, 9) = 5.4375, CR(6, 9) = 5.4 - Bottom
left corner: Cw

R (7, 19) = 6.6444, CR(7, 19) = 6.4667 - Bottom right
corner: Cw

R (10, 32) = 9, 4107, CR(10, 32) = 9, 2817.

C. General case

We now focus on the "relaxed" problem of the binary case,
that is wij ∈ {0, [α, β]}. This is a general problem, and we will
begin with some properties on its difficulty and its solution
method.
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1) On the NP-Hardness of the problem: First, let’s rewrite our
problem:

Cw
R (G(N, m)) =

N

∑
i=1

1
(di − 1) ∑j wij

∑
j,h

wij + wih

2
aijaihajh

=
N

∑
i=1

N

∑
j=1

N

∑
h=1

wij

∑k wik

aijaihajh

(di − 1)

=
N

∑
i=1

N

∑
j=1

wij

∑k wik
bij,

where bij = ∑N
h=1

aij aih ajh

(di−1) . We know that the structure is
already given, since it can be obtained from the non-weighted
optimization with theorem 1. Thus, all bij are known. Now,
we define w∗ij and the vector w of size 2N2 as follow:

w∗ij =
wij

∑k wik
and w =

t ( w11w12 . . . w1Nw21 . . . wnnw∗11w∗12 . . . w∗1Nw∗21 . . . w∗NN )

The constraint w∗ij = wij

∑k wik
can be rewritten as:

wN2+N(i−1)+j ∑
k

wik = wij

⇔ twAijw− tcijw = 0,

where Aij is a symetric matrix and cij a vector defined by:

Aij
kl =


1/2 if k ∈ JN(i− 1) + 1, NiK

and l = N2 + N(i− 1) + j,
1/2 if l ∈ JN(i− 1) + 1, NiK

and k = N2 + N(i− 1) + j,
0 otherwise,

and

cij
k =

{
1 if k = N(i− 1) + j,
0 otherwise.

Finally, we define the vectors b, α, β of size 2N2 and the
matrix D of size (N(N − 1)/2× 2N2) as:

b = t ( 0 . . . 0 b11b12 . . . b1Nb21 . . . bNN ) ,

α = α t ( a11a12 . . . a1N a21 . . . aNN 0 . . . 0 ) ,

β = β t ( a11a12 . . . a1N a21 . . . aNN a11a12 . . . a1N a21 . . . aNN ) ,

Dw =



w12 − w21
w13 − w31

...
w1N − wN1
w23 − w32

...
wN−1N − wNN−1


Thus, our problem can be written as the following quadrat-

ically constrained linear program.
Problem 2:

max
w

b.w

s.t.

 ∀(i, j), twAijw− tcijw = 0
Dw = 0
α ≤ w ≤ β

Theorem 2: Maximizing the average weighted clustering co-
efficient on a given graph structure is a NP-Hard problem.

Proof: It follows directly from problem 2 formulation and
its quadratic constraints.

2) Elements of solution method: To solve problem 2, we
rewrote the quadratic constraint using a second-order cone
programming (SOCP) formulation. It is known that the gen-
eral quadratic constraint:

txtAAx + tbx + c ≤ 0

can be written as:∥∥∥∥ (1 + tbx + c)/2
Ax

∥∥∥∥ ≤ (1− tbx− c)/2

Thus, the quadratic constraint can be written as a SOCP, and
we can solve the whole problem using a SOCP solver. Here,
we decided to use the matlab package SDPT3 [13]. Another
utility of this package is that it can solve the lovasz theta
number problem, which is useful to compute the non-weighted
optimal graph (see [10]). Figure 3 shows an interesting result
of the relaxed problem.

Fig. 3: Example of an optimal graph for problem 2. α = 1, β = 2.

It shows in particular that the form of the ATN is preserved
by maximizing the average weighted clustering coefficient:
we find highly connected hubs, focus cities, and regional
airports. The same structure is visible in most of the optimal
graphs.

3) Application to regional airlines: For regional airlines in the
USA, which are numerous and have to deal with a highly
competitive market, robustness is a key point to provide an
efficient service and avoid wasteful spendings. With a low
number of destinations, a highly connected network, and
routes with similar number of seats offered, these airlines fit
perfectly in our model. Figure 4 presents some results for two
relevant airlines: ExpressJet Airlines and AirTran Airways.
This figure shows some interesting results: indeed, we see
that the way of maximizing the average weighted clustering
coefficient can be significantly different from a network to
another. For AirTran Airways, the main idea is to redistribute
the weights among the routes (which are more or less the
same as in the real network); while for ExpressJet Airlines,
the main idea is to redistribute the routes among all the
airports in order to harmonize the whole network. In the
real network of this airline, there are some airports connected
with only a few others, but with a high traffic. And it is easy
to understand that this is not really good for robustness,
because it will be difficult to re-route passengers if one of
these routes has a problem.
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Fig. 4: Example of regional airlines network optimization. Left:
real network - Right: optimized network. Top: AirTran Airways -
Bottom: ExpressJet Airlines. The weights are based on the number
of flights over the year 2008 (data obtained from Research and
Innovative Technology Administration).

IV. Non-homogenous weights

In this section, we study the non-homogenous weights
problem. When β is not close to α, we can no longer assume
that the optimal graph has the same structure as the non-
weighted case. Thus, it will be much more difficult to find
the optimal graph, because we will have to optimize both the
structure and the weights at the same time.

A. Dynamic programming formulation

In [10], the authors use a dynamic programming formu-
lation to find the optimal graph in the non-weighted case.
Using the same idea, we can dynamically find the optimal
weighted graph. Let v be a node of the graph G(V, E)
connected to a subset D of V (|D| = d), and G′(V′, E′)
the same graph without the node v, nor its d connections.
Obviously, we have |V′| = N − 1 and |E′| = m − d. As
in [10], we denote ∆Cw

R (N − 1, m − d, D) the change in the
weighted clustering coefficient of the d nodes of the set D
of the graph G′ when we connect the node v to them. More
formally, ∆Cw

R (N− 1, m− d, D) = ∑i∈D cw
i (G)− cw

i (G′). Then,
we have:

Theorem 3: Let V be a set of N nodes, and v a node in V,
indexed by j.

Cw
max(N, m) = max

D⊂V\{v}
{Cw

max(N − 1, m− d)

+ max
wij∈[α,β], i∈D

{cw
j + ∆Cw

R (N − 1, m− d, D)}}

Proof: Let G(V, E) be a graph of order N and size m. Let
v be a node in V, indexed by j. We have:

Cw
R (G) =

N

∑
i=1

cw
i = (

N

∑
i=1
i 6=j

cw
i ) + cw

j

and it folllows that:

Cw
max(N, m) = max

G(N,m)
{

N

∑
i=1
i 6=j

cw
i + cw

j }

Thus, Cw
max(N, m) is obtained by connecting optimally a new

node to a given graph of order N − 1 and size m− d, whose

average weighted clustering coefficient is already maximum.
Hence:

Cw
max(N, m) = max

D⊂V\{v}
wij∈[0,{α,β}]

{Cw
max(N − 1, m− d)

+cw
j + ∆Cw

R (N − 1, m− d, D)}
= max

D⊂V\{v}
{Cw

max(N − 1, m− d)

+ max
wij∈[α,β], i∈D

{cw
j + ∆Cw

R (N − 1, m− d, D)}}

Thanks to theorem 3, we can now compute the optimal graph
with a dynamic programming formulation. Figure 5 shows an
example of this technique an reveals that the optimal network
preserves the difference of traffic among the routes.

Fig. 5: N = 12, m = 57. Exact solution for non-homogeneous
weights.

However, we still need to test every possible combination
of D and wij, which is really costly. Again, for the binary
case, we can use a branch & bound algorithm which will
reduce the time needed. However, even with that technique,
we cannot go farther than graphs with 14 or 15 nodes.

B. Algorithm

The complete algorithm for the binary case is given below.
We used a branch and bound algorithm during the step-by-
step weighting process.

Algorithm 2 Dynamic Programming Algorithm

Graph← Array(N, M)
for i = 1→ N do

for j = 1→ m do
C← 0
bound← 0
for all D substet do

G ← Graph(i− 1, j− d)
while Branch_bound(G, D) ≥ bound do

G ← Weighting_process(G, D)
end while
C′ ← Compute_coefficient(G)
if C′ > C then

C ← C′

Graph(i, j)← G
end if

end for
end for

end for
return Graph(N, m)
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C. Variation with β

As it is very difficult to get the optimal solution for bigger
graphs, we present here a minimal bound which can be
seen as an approximation of the average weighted clustering
coefficient. To find this bound, we will study the variation of
Cw(G) with β. As in section III.B, we will use the function
fN,m : (α, β) 7→ Cw

max(N, m).
Lemma 4: ∀ (N, m), fN,m increases with β.

Proof: If β1 ≤ β2, then β1 ∈ [α, β2]. Thus, when β2 is the
maximum bound, the optimal graph with β1 as the maximum
bound is an acceptable graph in the maximization problem.

The next theorem is then obvious:
Theorem 4: The value of problem P for homogeneous

weights is a minimal bound of the value of problem P for
non-homogeneous weights.
Hence for big graphs, where it is impossible to compute the
exact optimal, we can still use this approximation, which is
easier to compute as seen in section 3. A natural question is
whether or not this bound is a good approximation. To study
this problem, we computed and compared the exact and the
approximated optimal graph for different sizes, orders, and
above all for different values of α and β. Figure 6 presents
the results.

Fig. 6: Comparison between exact optimal graphs and approximated
optimal graphs. A blue circle means the two graphs are the same.
A red circle means the two graphs are different. α = 1.

From figure 6, we know that in most cases, the approxi-
mated graph is the same as the exact graph, even when β
becomes very different from α. This means that the bound
presented in theorem 4 is often reached, and thus that it
can be seen as a good approximation. In figure 6, when the
two graphs are different, we can also compare the actual
average clustering coefficient, in order to study how far the
approximated graph is from the optimal solution. On average,
we found that the approximated average clustering coefficient
is 0.992 times the optimum.

V. Conclusion

In this work we have presented and studied a new prob-
lem concerning the optimization of the weighted clustering

coefficient in the Air Transportation Network. This problem
consists in optimizing both the structure and the weights of
the network under several practical constraints.

We solved exactly the problem and showed that the struc-
ture of the optimal graph can be very different depending on
whether the maximal and minimal traffic limits are close to
each other.

Even if the complexity limits the size of the network we
can optimize, regional airlines networks fit perfectly in our
model. Moreover, good approximations can be found for big-
ger transportation networks. This novel work on robustness
enhancement can therefore have practical applications and
can lead to improvements from current ways of network
design. In particular, we showed that the structure of an
ATN, generally defined by hubs, focus cities and regional
airports can be found on the optimal networks created with
that metric.

Many improvements of this work can be considered, in par-
ticular for the non-homogeneous weights problem, in which
the large complexity needs other methods to outperform our
results.
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